Thyroid Cancer: The Quest for Genetic Susceptibility Involving DNA Repair Genes
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Subjects
2.2. SNP Selection
2.3. Practical Methodologies—Brief Description
2.4. Statistical Analysis
3. Results
3.1. General Analysis
3.2. All DTC Cases
3.3. Stratified Analysis
3.4. Combined Genotypes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, 2018. Available online: https://gco.iarc.fr/today (accessed on 28 May 2019).
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.V.; Osamura, R.Y.; Klӧppel, G.N.; Rosai, J. WHO Classification of Tumours of Endocrine Organs, 4th ed.; International Agency for Research on Cancer (IARC) Press: Lyon, France, 2017; Volume 10, pp. 65–144. [Google Scholar]
- Khosravi, M.H.; Kouhi, A.; Saeedi, M.; Bagherihagh, A.; Amirzade-Iranaq, M.H. Thyroid Cancers: Considerations, Classifications, and Managements. In Diagnosis and Management of Head and Neck Cancer; Akarslan, Z., Ed.; IntechOpen: London, UK, 2017; pp. 57–82. [Google Scholar] [CrossRef]
- Marcello, M.A.; Malandrino, P.; Almeida, J.F.M.; Martins, M.B.; Cunha, L.L.; Bufalo, N.E.; Pellegriti, G.; Ward, L.S. The influence of the environment on the development of thyroid tumors: A new appraisal. Endocr. Relat. Cancer 2014, 21, T235–T254. [Google Scholar] [CrossRef] [PubMed]
- Saenko, V.A.; Rogounovitch, T.I. Genetic Polymorphism Predisposing to Differentiated Thyroid Cancer: A Review of Major Findings of the Genome-Wide Association Studies. Endocrinol. Metab. 2018, 33, 164–174. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Park, Y.J. Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer. Endocrinol. Metab. 2018, 33, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Adjadj, E.; Schlumberger, M.; de Vathaire, F. Germ-line DNA polymorphisms and susceptibility to differentiated thyroid cancer. Lancet. Oncol. 2009, 10, 181–190. [Google Scholar] [CrossRef]
- Iñigo, L.; Mercedes, R. Association studies in thyroid cancer susceptibility: Are we on the right track? J. Mol. Endocrinol. 2011, 47, R43–R58. [Google Scholar] [CrossRef]
- Figlioli, G.; Elisei, R.; Romei, C.; Melaiu, O.; Cipollini, M.; Bambi, F.; Chen, B.; Köhler, A.; Cristaudo, A.; Hemminki, K.; et al. A Comprehensive Meta-analysis of Case–Control Association Studies to Evaluate Polymorphisms Associated with the Risk of Differentiated Thyroid Carcinoma. Cancer Epidemiol. Biomark. Prev. 2016, 25, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef] [Green Version]
- Gatzidou, E.; Michailidi, C.; Tseleni-Balafouta, S.; Theocharis, S. An epitome of DNA repair related genes and mechanisms in thyroid carcinoma. Cancer Lett. 2010, 290, 139–147. [Google Scholar] [CrossRef]
- Köberle, B.; Koch, B.; Fischer, B.M.; Hartwig, A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch. Toxicol. 2016, 90, 2369–2388. [Google Scholar] [CrossRef]
- Bastos, H.N.; Antão, M.R.; Silva, S.N.; Azevedo, A.P.; Manita, I.; Teixeira, V.; Pina, J.E.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; et al. Association of Polymorphisms in Genes of the Homologous Recombination DNA Repair Pathway and Thyroid Cancer Risk. Thyroid 2009, 19, 1067–1075. [Google Scholar] [CrossRef]
- Gomes, B.C.; Silva, S.N.; Azevedo, A.P.; Manita, I.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; Rueff, J.; Gaspar, J.F. The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol. Rep. 2010, 24, 1079–1085. [Google Scholar]
- Santos, L.S.; Branco, S.C.; Silva, S.N.; Azevedo, A.P.; Gil, O.M.; Manita, I.; Ferreira, T.C.; Limbert, E.; Rueff, J.; Gaspar, J.F. Polymorphisms in base excision repair genes and thyroid cancer risk. Oncol. Rep. 2012, 28, 1859–1868. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.S.; Gomes, B.C.; Gouveia, R.; Silva, S.N.; Azevedo, A.P.; Camacho, V.; Manita, I.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; et al. The role of CCNH Val270Ala (rs2230641) and other nucleotide excision repair polymorphisms in individual susceptibility to well-differentiated thyroid cancer. Oncol. Rep. 2013, 30, 2458–2466. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, S.N.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; Rueff, J. Mismatch repair single nucleotide polymorphisms and thyroid cancer susceptibility. Oncol. Lett. 2018, 15, 6715–6726. [Google Scholar] [CrossRef] [Green Version]
- Bashir, K.; Sarwar, R.; Fatima, S.; Saeed, S.; Mahjabeen, I.; Akhtar Kayani, M. Haplotype analysis of XRCC1 gene polymorphisms and the risk of thyroid carcinoma. J. BUON 2018, 23, 234–243. [Google Scholar]
- Bashir, K.; Sarwar, R.; Saeed, S.; Mahjabeen, I.; Kayani, M.A. Interaction among susceptibility genotypes of PARP1 SNPs in thyroid carcinoma. PLoS ONE 2018, 13, e0199007. [Google Scholar] [CrossRef]
- Sandler, J.E.; Huang, H.; Zhao, N.; Wu, W.; Liu, F.; Ma, S.; Udelsman, R.; Zhang, Y. Germline Variants in DNA Repair Genes, Diagnostic Radiation, and Risk of Thyroid Cancer. Cancer Epidemiol. Biomark. Prev. 2018, 27, 285–294. [Google Scholar] [CrossRef]
- Sarwar, R.; Mahjabeen, I.; Bashir, K.; Saeed, S.; Kayani, M.A. Haplotype Based Analysis of XRCC3Gene Polymorphisms in Thyroid Cancer. Cell Physiol. Biochem. 2017, 42, 22–33. [Google Scholar] [CrossRef]
- Lonjou, C.; Damiola, F.; Moissonnier, M.; Durand, G.; Malakhova, I.; Masyakin, V.; Le Calvez-Kelm, F.; Cardis, E.; Byrnes, G.; Kesminiene, A.; et al. Investigation of DNA repair-related SNPs underlying susceptibility to papillary thyroid carcinoma reveals MGMT as a novel candidate gene in Belarusian children exposed to radiation. BMC Cancer 2017, 17, 328. [Google Scholar] [CrossRef]
- Halkova, T.; Dvorakova, S.; Sykorova, V.; Vaclavikova, E.; Vcelak, J.; Vlcek, P.; Sykorova, P.; Kodetova, D.; Betka, J.; Lastuvka, P.; et al. Polymorphisms in selected DNA repair genes and cell cycle regulating genes involved in the risk of papillary thyroid carcinoma. Cancer Biomark. 2016, 17, 97–106. [Google Scholar] [CrossRef]
- Cipollini, M.; Figlioli, G.; Maccari, G.; Garritano, S.; De Santi, C.; Melaiu, O.; Barone, E.; Bambi, F.; Ermini, S.; Pellegrini, G.; et al. Polymorphisms within base and nucleotide excision repair pathways and risk of differentiated thyroid carcinoma. DNA Repair 2016, 41, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Landa, I.; Boullosa, C.; Inglada-Pérez, L.; Sastre-Perona, A.; Pastor, S.; Velázquez, A.; Mancikova, V.; Ruiz-Llorente, S.; Schiavi, F.; Marcos, R.; et al. An Epistatic Interaction between the PAX8 and STK17B Genes in Papillary Thyroid Cancer Susceptibility. PLoS ONE 2013, 8, e74765. [Google Scholar] [CrossRef]
- Liyanarachchi, S.; Wojcicka, A.; Li, W.; Czetwertynska, M.; Stachlewska, E.; Nagy, R.; Hoag, K.; Wen, B.; Ploski, R.; Ringel, M.D.; et al. Cumulative Risk Impact of Five Genetic Variants Associated with Papillary Thyroid Carcinoma. Thyroid 2013, 23, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Isakova, J.; Talaibekova, E.; Aldasheva, N.; Vinnikov, D.; Aldashev, A. The association of polymorphic markers Arg399Gln of XRCC1 gene, Arg72Pro of TP53 gene and T309G of MDM2 gene with breast cancer in Kyrgyz females. BMC Cancer 2017, 17, 758. [Google Scholar] [CrossRef]
- Mordukhovich, I.; Beyea, J.; Herring, A.H.; Hatch, M.; Stellman, S.D.; Teitelbaum, S.L.; Richardson, D.B.; Millikan, R.C.; Engel, L.S.; Shantakumar, S.; et al. Polymorphisms in DNA repair genes, traffic-related polycyclic aromatic hydrocarbon exposure and breast cancer incidence. Int. J. Cancer 2016, 139, 310–321. [Google Scholar] [CrossRef]
- Sapkota, Y.; Mackey, J.R.; Lai, R.; Franco-Villalobos, C.; Lupichuk, S.; Robson, P.J.; Kopciuk, K.; Cass, C.E.; Yasui, Y.; Damaraju, S. Assessing SNP-SNP Interactions among DNA Repair, Modification and Metabolism Related Pathway Genes in Breast Cancer Susceptibility. PLoS ONE 2013, 8, e64896. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Shakeri, M.; Zakeri, F.; Changizi, V.; Rajabpour, M.R.; Farshidpour, M.R. Cytogenetic effects of radiation and genetic polymorphisms of the XRCC1 and XRCC3 repair genes in industrial radiographers. Radiat. Environ. Biophys. 2019, 58, 247–255. [Google Scholar] [CrossRef]
- Song, Y.-Z.; Han, F.-J.; Liu, M.; Xia, C.-C.; Shi, W.-Y.; Dong, L.-H. Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis. PLoS ONE 2015, 10, e0130388. [Google Scholar] [CrossRef]
- Chai, F.; Liang, Y.; Chen, L.; Zhang, F.; Jiang, J. Association between XRCC3 Thr241Met Polymorphism and Risk of Breast Cancer: Meta-Analysis of 23 Case-Control Studies. Med. Sci. Monit. 2015, 21, 3231–3240. [Google Scholar] [CrossRef]
- Zhang, B.; Beeghly-Fadiel, A.; Long, J.; Zheng, W. Genetic variants associated with breast-cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Lancet Oncol. 2011, 12, 477–488. [Google Scholar] [CrossRef]
- He, X.-F.; Wei, W.; Li, J.-L.; Shen, X.-L.; Ding, D.-P.; Wang, S.-L.; Liu, Z.-Z.; Qin, J.-B.; Wu, L.-X.; Xie, D.-L. Association between the XRCC3 T241M polymorphism and risk of cancer: Evidence from 157 case–control studies. Gene 2013, 523, 10–19. [Google Scholar] [CrossRef]
- Peng, Q.; Mo, C.; Tang, W.; Chen, Z.; Li, R.; Zhai, L.; Yang, S.; Wu, J.; Sui, J.; Li, S.; et al. DNA repair gene XRCC3 polymorphisms and bladder cancer risk: A meta-analysis. Tumor Biol. 2014, 35, 1933–1944. [Google Scholar] [CrossRef]
- Ma, Q.; Zhao, Y.; Wang, S.; Zhang, X.; Zhang, J.; Du, M.; Li, L.; Zhang, Y. Genetic polymorphisms of XRCC3 Thr241Met (C18067T, rs861539) and bladder cancer risk: A meta-analysis of 18 research studies. Tumor Biol. 2014, 35, 1473–1480. [Google Scholar] [CrossRef]
- Yan, L.; Li, Q.; Li, X.; Ji, H.; Zhang, L. Association Studies between XRCC1, XRCC2, XRCC3 Polymorphisms and Differentiated Thyroid Carcinoma. Cell Physiol. Biochem. 2016, 38, 1075–1084. [Google Scholar] [CrossRef]
- Yuan, K.; Huo, M.; Sun, Y.; Wu, H.; Chen, H.; Wang, Y.; Fu, R. Association between x-ray repair cross-complementing group 3 (XRCC3) genetic polymorphisms and papillary thyroid cancer susceptibility in a Chinese Han population. Tumor Biol. 2016, 37, 979–987. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Liu, X.; Liu, B.; Wang, Z. Association between XRCC1 and XRCC3 gene polymorphisms and risk of thyroid cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 3160–3167. [Google Scholar]
- Fayaz, S.; Karimmirza, M.; Tanhaei, S.; Fathi, M.; Torbati, P.M.; Fard-Esfahani, P. Increased risk of differentiated thyroid carcinoma with combined effects of homologous recombination repair gene polymorphisms in an Iranian population. Asian Pac. J. Cancer Prev. 2014, 14, 6727–6731. [Google Scholar] [CrossRef]
- Sturgis, E.M.; Zhao, C.; Zheng, R.; Wei, Q. Radiation Response Genotype and Risk of Differentiated Thyroid Cancer: A Case-Control Analysis. Laryngoscope 2005, 115, 938–945. [Google Scholar] [CrossRef]
- Lu, W.; Wu, G.; Zhang, B. Association Between X-Ray Cross-complementing Group 3 (XRCC3) Thr241Met Polymorphism and Risk of Thyroid Cancer: A Meta-Analysis. Med. Sci. Monit. 2015, 21, 3978–3985. [Google Scholar] [CrossRef]
- Yu, X.-L.; Liu, H.; Wang, B.; Fu, Z.-J.; Yuan, Y.; Yan, S.-L.; Zhao, W.-J.; Wang, Y.-G.; Cai, J. Significant associations between X-ray repair cross-complementing group 3 genetic polymorphisms and thyroid cancer risk. Tumor Biol. 2014, 35, 2009–2015. [Google Scholar] [CrossRef]
- Natallia, M.A.; Vladimir, A.S.; Tatiana, I.R.; Valentina, M.D.; Eugeny, F.L.; Victor, K.I.; Norisato, M.; Ryo, K.; Shunichi, Y. Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr. Relat. Cancer 2009, 16, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Siraj, A.K.; Al-Rasheed, M.; Ibrahim, M.; Siddiqui, K.; Al-Dayel, F.; Al-Sanea, O.; Uddin, S.; Al-Kuraya, K. RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J. Endocrinol. Investig. 2008, 31, 893–899. [Google Scholar] [CrossRef]
- Nouspikel, T. DNA Repair in Mammalian Cells. Cell Mol. Life Sci. 2009, 66, 994–1009. [Google Scholar] [CrossRef]
- Melis, J.P.M.; Luijten, M.; Mullenders, L.H.F.; van Steeg, H. The role of XPC: Implications in cancer and oxidative DNA damage. Mutat. Res. Rev. Mutat. 2011, 728, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.-G.; Huang, X.-Y.; Long, X.-D. Interaction of DNA repair gene polymorphisms and aflatoxin B1 in the risk of hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 6231–6244. [Google Scholar]
- Chen, Z.; Yang, J.; Wang, G.; Song, B.; Li, J.; Xu, Z. Attenuated Expression of Xeroderma Pigmentosum Group C Is Associated with Critical Events in Human Bladder Cancer Carcinogenesis and Progression. Cancer Res. 2007, 67, 4578–4585. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Huang, Y.; Sellers, T.A. Single Nucleotide Polymorphisms in DNA Repair Genes and Prostate Cancer Risk. In Cancer Epidemiology. Methods in Molecular Biology; Verma, M., Ed.; Humana Press: Totowa, NJ, USA, 2009; Volume 471, pp. 361–385. [Google Scholar] [CrossRef]
- Mei, C.-R.; Luo, M.; Li, H.-M.; Deng, W.-J.; Zhou, Q.-H. DNA repair gene polymorphisms in the nucleotide excision repair pathway and lung cancer risk: A meta-analysis. Chin. J. Cancer Res. 2011, 23, 79. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Zhang, W.; Gong, S. An association between XPC Lys939Gln polymorphism and the risk of bladder cancer: A meta-analysis. Tumor Biol. 2013, 34, 973–982. [Google Scholar] [CrossRef]
- Hua, R.-X.; Zhu, J.; Jiang, D.-H.; Zhang, S.-D.; Zhang, J.-B.; Xue, W.-Q.; Li, X.-Z.; Zhang, P.-F.; He, J.; Jia, W.-H. Association of XPC Gene Polymorphisms with Colorectal Cancer Risk in a Southern Chinese Population: A Case-Control Study and Meta-Analysis. Genes 2016, 7, 73. [Google Scholar] [CrossRef]
- He, J.; Shi, T.-Y.; Zhu, M.-L.; Wang, M.-Y.; Li, Q.-X.; Wei, Q.-Y. Associations of Lys939Gln and Ala499Val polymorphisms of the XPC gene with cancer susceptibility: A meta-analysis. Int. J. Cancer 2013, 133, 1765–1775. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, Z.; Shi, X.; Wang, Z. Associations between XPC polymorphisms and risk of cancers: A meta-analysis. Eur. J. Cancer 2008, 44, 2241–2253. [Google Scholar] [CrossRef]
- Francisco, G.; Menezes, P.R.; Eluf-Neto, J.; Chammas, R. XPC polymorphisms play a role in tissue-specific carcinogenesis: A meta-analysis. Eur. J. Hum. Genet. 2008, 16, 724. [Google Scholar] [CrossRef]
- Jin, B.; Dong, Y.; Zhang, X.; Wang, H.; Han, B. Association of XPC Polymorphisms and Lung Cancer Risk: A Meta-Analysis. PLoS ONE 2014, 9, e93937. [Google Scholar] [CrossRef]
- Zhu, M.-L.; Hua, R.-X.; Zheng, L. Associations between polymorphisms of the XPC gene and lung cancer susceptibility: A meta-analysis. Tumor Biol. 2014, 35, 2931–2939. [Google Scholar] [CrossRef]
- Dai, Q.-S.; Hua, R.-X.; Zeng, R.-F.; Long, J.-T.; Peng, Z.-W. XPC gene polymorphisms contribute to bladder cancer susceptibility: A meta-analysis. Tumor Biol. 2014, 35, 447–453. [Google Scholar] [CrossRef]
- Dou, K.; Xu, Q.; Han, X. The association between XPC Lys939Gln gene polymorphism and urinary bladder cancer susceptibility: A systematic review and meta-analysis. Diagn. Pathol. 2013, 8, 112. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, B.; Zheng, W. Genetic variants associated with colorectal cancer risk: Comprehensive research synopsis, meta-analysis, and epidemiological evidence. Gut 2014, 63, 326–336. [Google Scholar] [CrossRef]
- Peng, Q.; Lao, X.; Tang, W.; Chen, Z.; Li, R.; Qin, X.; Li, S. XPC Lys939Gln polymorphism contributes to colorectal cancer susceptibility: Evidence from a meta-analysis. Diagn. Pathol. 2014, 9, 120. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, L.-T.; Zhang, S.-C.; Chen, K. XPC Polymorphism Increases Risk of Digestive System Cancers: Current Evidence from A Meta-Analysis. Chin. J. Cancer Res. 2012, 24, 181–189. [Google Scholar] [CrossRef]
- Long, X.-D.; Ma, Y.; Zhou, Y.-F.; Ma, A.-M.; Fu, G.-H. Polymorphism in xeroderma pigmentosum complementation group C codon 939 and aflatoxin B1–related hepatocellular carcinoma in the Guangxi population. Hepatology 2010, 52, 1301–1309. [Google Scholar] [CrossRef]
- Wang, C.; Nie, H.; Li, Y.; Liu, G.; Wang, X.; Xing, S.; Zhang, L.; Chen, X.; Chen, Y.; Li, Y. The study of the relation of DNA repair pathway genes SNPs and the sensitivity to radiotherapy and chemotherapy of NSCLC. Sci. Rep. 2016, 6, 26526. [Google Scholar] [CrossRef] [Green Version]
- Caronia, D.; Patiño-García, A.; Milne, R.L.; Zalacain-Díez, M.; Pita, G.; Alonso, M.R.; Moreno, L.T.; Sierrasesumaga-Ariznabarreta, L.; Benítez, J.; González-Neira, A. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenom. J. 2009, 9, 347. [Google Scholar] [CrossRef]
- Sakano, S.; Hinoda, Y.; Sasaki, M.; Wada, T.; Matsumoto, H.; Eguchi, S.; Shinohara, A.; Kawai, Y.; Hara, T.; Nagao, K.; et al. Nucleotide excision repair gene polymorphisms may predict acute toxicity in patients treated with chemoradiotherapy for bladder cancer. Pharmacogenomics 2010, 11, 1377–1387. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, H.; Chen, Q.; Lin, J.; Grossman, H.B.; Dinney, C.P.; Wu, X.; Gu, J. Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 2008, 7, 141–148. [Google Scholar] [CrossRef]
- Pavanello, S.; Pulliero, A.; Siwinska, E.; Mielzynska, D.; Clonfero, E. Reduced nucleotide excision repair and GSTM1-null genotypes influence anti-B[a]PDE–DNA adduct levels in mononuclear white blood cells of highly PAH-exposed coke oven workers. Carcinogenesis 2005, 26, 169–175. [Google Scholar] [CrossRef]
- Lin, J.; Swan, G.E.; Shields, P.G.; Benowitz, N.L.; Gu, J.; Amos, C.I.; de Andrade, M.; Spitz, M.R.; Wu, X. Mutagen Sensitivity and Genetic Variants in Nucleotide Excision Repair Pathway: Genotype-Phenotype Correlation. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Cornetta, T.; Festa, F.; Testa, A.; Cozzi, R. DNA damage repair and genetic polymorphisms: Assessment of individual sensitivity and repair capacity. Int. J. Radiat. Oncol. 2006, 66, 537–545. [Google Scholar] [CrossRef]
- Qiao, Y.; Spitz, M.R.; Shen, H.; Guo, Z.; Shete, S.; Hedayati, M.; Grossman, L.; Mohrenweiser, H.; Wei, Q. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes. Carcinogenesis 2002, 23, 295–299. [Google Scholar] [CrossRef]
- Ho, V.; Brunetti, V.; Peacock, S.; Massey, T.E.; Godschalk, R.W.L.; van Schooten, F.J.; Ashbury, J.E.; Vanner, S.J.; King, W.D. Exposure to meat-derived carcinogens and bulky DNA adduct levels in normal-appearing colon mucosa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 821, 5–12. [Google Scholar] [CrossRef]
- Broaddus, R.R.; Lynch, P.M.; Lu, K.H.; Luthra, R.; Michelson, S.J. Unusual tumors associated with the hereditary nonpolyposis colorectal cancer syndrome. Mod. Pathol. 2004, 17, 981–989. [Google Scholar] [CrossRef]
- Pande, M.; Wei, C.; Chen, J.; Amos, C.I.; Lynch, P.M.; Lu, K.H.; Lucio, L.A.; Boyd-Rogers, S.G.; Bannon, S.A.; Mork, M.E.; et al. Cancer spectrum in DNA mismatch repair gene mutation carriers: Results from a hospital based Lynch syndrome registry. Fam. Cancer 2012, 11, 441–447. [Google Scholar] [CrossRef]
- Stulp, R.P.; Herkert, J.C.; Karrenbeld, A.; Mol, B.; Vos, Y.J.; Sijmons, R.H. Thyroid cancer in a patient with a germline MSH2 mutation. Case report and review of the Lynch syndrome expanding tumour spectrum. Hered. Cancer Clin. Pract. 2008, 6, 15–21. [Google Scholar] [CrossRef]
- Pelizzo, M.R.; Pennelli, G.; Zane, M.; Galuppini, F.; Colletti, P.M.; Merante Boschin, I.; Rubello, D. Papillary thyroid carcinoma (PTC) in Lynch syndrome: Report of two cases and discussion on Lynch syndrome behaviour and genetics. BioMed Pharmacother. 2015, 74, 9–16. [Google Scholar] [CrossRef]
- Johnson, J.M.; Chen, J.; Ali, S.M.; Dardi, I.K.; Tuluc, M.; Cognetti, D.; Campling, B.; Sama, A.R. Molecular Profiling of Synchronous Colon Cancers and Anaplastic Thyroid Cancer in a Patient with Lynch Syndrome. J. Gastrointest. Cancer 2018, 49, 203–206. [Google Scholar] [CrossRef]
- Kunstman, J.W.; Juhlin, C.C.; Goh, G.; Brown, T.C.; Stenman, A.; Healy, J.M.; Rubinstein, J.C.; Choi, M.; Kiss, N.; Nelson-Williams, C.; et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Genet. 2015, 24, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Dong, L.; Li, D.; Chuai, S.; Wu, Z.; Zheng, X.; Cheng, Y.; Han, L.; Yu, J.; Gao, M. Targeted DNA Sequencing Detects Mutations Related to Susceptibility among Familial Non-medullary Thyroid Cancer. Sci. Rep. 2015, 5, 16129. [Google Scholar] [CrossRef] [Green Version]
- Picelli, S.; Zajac, P.; Zhou, X.-L.; Edler, D.; Lenander, C.; Dalén, J.; Hjern, F.; Lundqvist, N.; Lindforss, U.; Påhlman, L.; et al. Common variants in human CRC genes as low-risk alleles. Eur. J. Cancer 2010, 46, 1041–1048. [Google Scholar] [CrossRef]
- Giráldez, M.D.; Balaguer, F.; Caldés, T.; Sanchez-de-Abajo, A.; Gómez-Fernández, N.; Ruiz-Ponte, C.; Muñoz, J.; Garre, P.; Gonzalo, V.; Moreira, L.; et al. Association of MUTYH and MSH6 germline mutations in colorectal cancer patients. Fam. Cancer 2009, 8, 525. [Google Scholar] [CrossRef]
- Conde, J.; Silva, S.N.; Azevedo, A.P.; Teixeira, V.; Pina, J.E.; Rueff, J.; Gaspar, J.F. Association of common variants in mismatch repair genes and breast cancer susceptibility: A multigene study. BMC Cancer 2009, 9, 344. [Google Scholar] [CrossRef]
- Curtin, K.; Samowitz, W.S.; Wolff, R.K.; Caan, B.J.; Ulrich, C.M.; Potter, J.D.; Slattery, M.L. MSH6 G39E polymorphism and CpG island methylator phenotype in colon cancer. Mol. Carcinog. 2009, 48, 989–994. [Google Scholar] [CrossRef]
- Hirata, H.; Hinoda, Y.; Kawamoto, K.; Kikuno, N.; Suehiro, Y.; Okayama, N.; Tanaka, Y.; Dahiya, R. Mismatch Repair Gene MSH3 Polymorphism is Associated with the Risk of Sporadic Prostate Cancer. J. Urol. 2008, 179, 2020–2024. [Google Scholar] [CrossRef]
- Smith, T.R.; Levine, E.A.; Freimanis, R.I.; Akman, S.A.; Allen, G.O.; Hoang, K.N.; Liu-Mares, W.; Hu, J.J. Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis 2008, 29, 2132–2138. [Google Scholar] [CrossRef] [Green Version]
- Landi, S.; Gemignani, F.; Canzian, F.; Gaborieau, V.; Barale, R.; Landi, D.; Szeszenia-Dabrowska, N.; Zaridze, D.; Lissowska, J.; Rudnai, P.; et al. DNA Repair and Cell Cycle Control Genes and the Risk of Young-Onset Lung Cancer. Cancer Res. 2006, 66, 11062–11069. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.H.; Bigler, J.; Whitton, J.; Potter, J.D.; Ulrich, C.M. Mismatch repair polymorphisms and colorectal polyps: hMLH1-93G>A variant modifies risk associated with smoking. Am. J. Gastroenterol. 2006, 101, 1313–1319. [Google Scholar] [CrossRef]
- Zelga, P.; Przybyłowska-Sygut, K.; Zelga, M.; Dziki, A.; Majsterek, I. The 116G > A MSH6 and IVS1-1121C > T PMS2 Genes Polymorphisms Modulate the Risk of the Sporadic Colorectal Cancer Development in Polish Population. Pathol. Oncol. Res. 2018, 24, 231–235. [Google Scholar] [CrossRef]
- Berndt, S.I.; Platz, E.A.; Fallin, M.D.; Thuita, L.W.; Hoffman, S.C.; Helzlsouer, K.J. Mismatch repair polymorphisms and the risk of colorectal cancer. Int. J. Cancer 2007, 120, 1548–1554. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.T.; Curtin, K.; Ulrich, C.M.; Samowitz, W.S.; Bigler, J.; Velicer, C.M.; Caan, B.; Potter, J.D.; Slattery, M.L. Mismatch repair polymorphisms and risk of colon cancer, tumour microsatellite instability and interactions with lifestyle factors. Gut 2009, 58, 661–667. [Google Scholar] [CrossRef]
- Sanyal, S.; De Verdier, P.J.; Steineck, G.; Larsson, P.; Onelov, E.; Hemminki, K.; Kumar, R. Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncol. 2007, 46, 31–41. [Google Scholar] [CrossRef]
- Dong, X.; Li, Y.; Chang, P.; Hess, K.R.; Abbruzzese, J.L.; Li, D. DNA mismatch repair network gene polymorphism as a susceptibility factor for pancreatic cancer. Mol. Carcinog. 2012, 51, 491–499. [Google Scholar] [CrossRef]
- Lee, E.; Levine, E.A.; Franco, V.I.; Allen, G.O.; Gong, F.; Zhang, Y.; Hu, J.J. Combined Genetic and Nutritional Risk Models of Triple Negative Breast Cancer. Nutr. Cancer 2014, 66, 955–963. [Google Scholar] [CrossRef]
- Tulupova, E.; Kumar, R.; Hanova, M.; Slyskova, J.; Pardini, B.; Polakova, V.; Naccarati, A.; Vodickova, L.; Novotny, J.; Halamkova, J.; et al. Do polymorphisms and haplotypes of mismatch repair genes modulate risk of sporadic colorectal cancer? Mutat. Res. 2008, 648, 40–45. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Jia, J.; Tang, L.; Gao, X.; Yan, L.; Wang, L.; Yu, F.; Ma, N.; Liu, W.; et al. Correlation between polymorphisms in DNA mismatch repair genes and the risk of primary hepatocellular carcinoma for the Han population in northern China. Scand. J. Gastroenterol. 2015, 50, 1404–1410. [Google Scholar] [CrossRef]
- Li, Z.; Kong, L.; Yu, L.; Huang, J.; Wang, K.; Chen, S.; Yu, M.; Wei, S. Association between MSH6 G39E polymorphism and cancer susceptibility: A meta-analysis of 7,046 cases and 34,554 controls. Tumour Biol. 2014, 35, 6029–6037. [Google Scholar] [CrossRef]
- Chen, M.; Kamat, A.M.; Huang, M.; Grossman, H.B.; Dinney, C.P.; Lerner, S.P.; Wu, X.; Gu, J. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk. Carcinogenesis 2007, 28, 2160–2165. [Google Scholar] [CrossRef] [Green Version]
- Enjuanes, A.; Benavente, Y.; Bosch, F.; Martín-Guerrero, I.; Colomer, D.; Pérez-Álvarez, S.; Reina, O.; Ardanaz, M.T.; Jares, P.; García-Orad, A.; et al. Genetic Variants in Apoptosis and Immunoregulation-Related Genes Are Associated with Risk of Chronic Lymphocytic Leukemia. Cancer Res. 2008, 68, 10178–10186. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Lin, J.; Izzo, J.G.; Liu, Y.; Xing, J.; Huang, M.; Ajani, J.A.; Wu, X. Genetic susceptibility to esophageal cancer: The role of the nucleotide excision repair pathway. Carcinogenesis 2009, 30, 785–792. [Google Scholar] [CrossRef]
- Wu, X.; Gu, J.; Grossman, H.B.; Amos, C.I.; Etzel, C.; Huang, M.; Zhang, Q.; Millikan, R.E.; Lerner, S.; Dinney, C.P.; et al. Bladder Cancer Predisposition: A Multigenic Approach to DNA-Repair and Cell-Cycle–Control Genes. Am. J. Hum. Genet. 2006, 78, 464–479. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, W.-Y.; Andreotti, G.; Gao, Y.-T.; Rashid, A.; Chen, J.; Sakoda, L.C.; Shen, M.-C.; Wang, B.-S.; Chanock, S.; et al. Variants of DNA Repair Genes and the Risk of Biliary Tract Cancers and Stones: A Population-Based Study in China. Cancer Epidemiol. Biomark. Prev. 2008, 17, 2123–2127. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Pu, X.; Wang, W.; Matin, S.; Tannir, N.M.; Wood, C.G.; Wu, X. Case–control analysis of nucleotide excision repair pathway and the risk of renal cell carcinoma. Carcinogenesis 2008, 29, 2112–2119. [Google Scholar] [CrossRef]
- Wang, Y.; Spitz, M.R.; Lee, J.J.; Huang, M.; Lippman, S.M.; Wu, X. Nucleotide Excision Repair Pathway Genes and Oral Premalignant Lesions. Clin. Cancer Res. 2007, 13, 3753–3758. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Lu, C.; Ye, Y.; Chang, J.; Yang, H.; Lin, J.; Gu, J.; Hong, W.K.; Stewart, D.; Spitz, M.R. Germline genetic variations in drug action pathways predict clinical outcomes in advanced lung cancer treated with platinum-based chemotherapy. Pharmacogenet. Genom. 2008, 18, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Palugulla, S.; Devaraju, P.; Kayal, S.; Narayan, S.K.; Mathaiyan, J. Genetic polymorphisms in cyclin H gene are associated with oxaliplatin-induced acute peripheral neuropathy in South Indian digestive tract cancer patients. Cancer Chemother. Pharm. 2018, 82, 421–428. [Google Scholar] [CrossRef]
- Custodio, A.; Moreno-Rubio, J.; Aparicio, J.; Gallego-Plazas, J.; Yaya, R.; Maurel, J.; Higuera, O.; Burgos, E.; Ramos, D.; Calatrava, A.; et al. Pharmacogenetic predictors of severe peripheral neuropathy in colon cancer patients treated with oxaliplatin-based adjuvant chemotherapy: A GEMCAD group study. Ann. Oncol. 2013, 25, 398–403. [Google Scholar] [CrossRef]
- Lolli, G.; Johnson, L.N. CAK-Cyclin-dependent Activating Kinase: A key kinase in cell cycle control and a target for drugs? Cell cycle 2005, 4, 572–577. [Google Scholar] [CrossRef]
- Emmert, S.; Schneider, T.D.; Khan, S.G.; Kraemer, K.H. The human XPG gene: Gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 2001, 29, 1443–1452. [Google Scholar] [CrossRef]
- Sang, L.; Lv, Z.; Sun, L.-P.; Xu, Q.; Yuan, Y. Impact of SNP-SNP interactions of DNA repair gene ERCC5 and metabolic gene GSTP1 on gastric cancer/atrophic gastritis risk in a Chinese population. World J. Gastroenterol. 2018, 24, 602–612. [Google Scholar] [CrossRef]
- Negovan, A.; Iancu, M.; Moldovan, V.; Mocan, S.; Banescu, C. The Interaction between GSTT1, GSTM1, and GSTP1 Ile105Val Gene Polymorphisms and Environmental Risk Factors in Premalignant Gastric Lesions Risk. BioMed Res. Int. 2017, 2017, 7365080. [Google Scholar] [CrossRef]
- Khabaz, M.N. Polymorphism of the glutathione S-transferase P1 gene (GST-pi) in breast carcinoma. Pol. J. Pathol. 2014, 65, 141–146. [Google Scholar] [CrossRef]
- Cheng, L.; Sturgis, E.M.; Eicher, S.A.; Spitz, M.R.; Wei, Q. Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 2002, 94, 393–397. [Google Scholar] [CrossRef]
- Hussain, S.K.; Mu, L.-N.; Cai, L.; Chang, S.-C.; Park, S.L.; Oh, S.S.; Wang, Y.; Goldstein, B.Y.; Ding, B.-G.; Jiang, Q.; et al. Genetic Variation in Immune Regulation and DNA Repair Pathways and Stomach Cancer in China. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2304–2309. [Google Scholar] [CrossRef] [Green Version]
- Paszkowska-Szczur, K.; Scott, R.J.; Serrano-Fernandez, P.; Mirecka, A.; Gapska, P.; Górski, B.; Cybulski, C.; Maleszka, R.; Sulikowski, M.; Nagay, L.; et al. Xeroderma pigmentosum genes and melanoma risk. Int. J. Cancer 2013, 133, 1094–1100. [Google Scholar] [CrossRef]
- Ma, H.; Yu, H.; Liu, Z.; Wang, L.-E.; Sturgis, E.M.; Wei, Q. Polymorphisms of XPG/ERCC5 and risk of squamous cell carcinoma of the head and neck. Pharmacogenet. Genom. 2012, 22, 50–57. [Google Scholar] [CrossRef]
- Huang, J.; Liu, X.; Tang, L.-L.; Long, J.-T.; Zhu, J.; Hua, R.-X.; Li, J. XPG gene polymorphisms and cancer susceptibility: Evidence from 47 studies. Oncotarget 2017, 8, 37263–37277. [Google Scholar] [CrossRef]
- Su, C.-H.; Chang, W.-S.; Hu, P.-S.; Hsiao, C.-L.; Ji, H.-X.; Liao, C.-H.; Yueh, T.-C.; Chuang, C.-L.; Tsai, C.-W.; Hsu, C.-M.; et al. Contribution of DNA Double-strand Break Repair Gene XRCC3 Genotypes to Triple-negative Breast Cancer Risk. Cancer Genom. Proteom. 2015, 12, 359–367. [Google Scholar]
- Derwahl, M.; Nicula, D. Estrogen and its role in thyroid cancer. Endocr. Relat. Cancer 2014, 21, T273–T283. [Google Scholar] [CrossRef]
- Nielsen, S.M.; White, M.G.; Hong, S.; Aschebrook-Kilfoy, B.; Kaplan, E.L.; Angelos, P.; Kulkarni, S.A.; Olopade, O.I.; Grogan, R.H. The Breast–Thyroid Cancer Link: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2016, 25, 231–238. [Google Scholar] [CrossRef]
- Chuffa, L.G.; Lupi-Júnior, L.A.; Costa, A.B.; Amorim, J.P.; Seiva, F.R. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 2017, 118, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, E.; Rogan, E. The molecular etiology and prevention of estrogen-initiated cancers: Ockham’s Razor: Pluralitas non est ponenda sine necessitate. Plurality should not be posited without necessity. Mol. Asp. Med. 2014, 36, 1–55. [Google Scholar] [CrossRef]
- Vahteristo, P.; Ojala, S.; Tamminen, A.; Tommiska, J.; Sammalkorpi, H.; Kiuru-Kuhlefelt, S.; Eerola, H.; Aaltonen, L.A.; Aittomäki, K.; Nevanlinna, H. No MSH6 germline mutations in breast cancer families with colorectal and/or endometrial cancer. J. Med. Genet. 2005, 42, e22. [Google Scholar] [CrossRef]
- Hsieh, P.; Yamane, K. DNA mismatch repair: Molecular mechanism, cancer, and ageing. Mech. Ageing Dev. 2008, 129, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Peltomäki, P. Update on Lynch syndrome genomics. Fam. Cancer 2016, 15, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Lynch, H.T.; Shaw, T.G. Practical genetics of colorectal cancer. Chin. Clin. Oncol. 2013, 2, 12. [Google Scholar] [CrossRef]
- Wada-Hiraike, O.; Yano, T.; Nei, T.; Matsumoto, Y.; Nagasaka, K.; Takizawa, S.; Oishi, H.; Arimoto, T.; Nakagawa, S.; Yasugi, T.; et al. The DNA mismatch repair gene hMSH2 is a potent coactivator of oestrogen receptor [alpha]. Br. J. Cancer 2005, 92, 2286–2291. [Google Scholar] [CrossRef]
- Dralle, H.; Machens, A.; Basa, J.; Fatourechi, V.; Franceschi, S.; Hay, I.D.; Nikiforov, Y.E.; Pacini, F.; Pasieka, J.L.; Sherman, S.I. Follicular cell-derived thyroid cancer. Nat. Rev. Dis. Prim. 2015, 1, 15077. [Google Scholar] [CrossRef]
- Li, C.; Yin, M.; Wang, L.-E.; Amos, C.I.; Zhu, D.; Lee, J.E.; Gershenwald, J.E.; Grimm, E.A.; Wei, Q. Polymorphisms of Nucleotide Excision Repair Genes Predict Melanoma Survival. J. Investig. Dermatol. 2013, 133, 1813–1821. [Google Scholar] [CrossRef] [Green Version]
- Mumbrekar, K.D.; Goutham, H.V.; Vadhiraja, B.M.; Bola Sadashiva, S.R. Polymorphisms in double strand break repair related genes influence radiosensitivity phenotype in lymphocytes from healthy individuals. DNA Repair 2016, 40, 27–34. [Google Scholar] [CrossRef]
- Edelbrock, M.A.; Kaliyaperumal, S.; Williams, K.J. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat. Res. 2013, 743, 53–66. [Google Scholar] [CrossRef]
- Bridge, G.; Rashid, S.; Martin, S. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment. Cancers 2014, 6, 1597–1614. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Pearlman, A.H.; Hsieh, P. DNA mismatch repair and the DNA damage response. DNA Repair 2016, 38, 94–101. [Google Scholar] [CrossRef]
- Kamiza, A.B.; Hsieh, L.-L.; Tang, R.; Chien, H.-T.; Lai, C.-H.; Chiu, L.-L.; Lo, T.-P.; Hung, K.-Y.; You, J.-F.; Wang, W.-C.; et al. Polymorphisms of DNA repair genes are associated with colorectal cancer in patients with Lynch syndrome. Mol. Genet. Genom. Med. 2018, 6, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Vral, A.; Willems, P.; Claes, K.; Poppe, B.; Perletti, G.; Thierens, H. Combined effect of polymorphisms in Rad51 and Xrcc3 on breast cancer risk and chromosomal radiosensitivity. Mol. Med. Rep. 2011, 4, 901–912. [Google Scholar] [CrossRef]
- Bishop, D.K.; Ear, U.; Bhattacharyya, A.; Calderone, C.; Beckett, M.; Weichselbaum, R.R.; Shinohara, A. Xrcc3 Is Required for Assembly of Rad51 Complexes in vivo. J. Biol. Chem. 1998, 273, 21482–21488. [Google Scholar] [CrossRef]
Gene | Location | db SNP Cluster ID (rs no.) | Base Change | Aminoacid Change | MAF (%) a | AB Assay ID |
---|---|---|---|---|---|---|
Base Excision Repair (BER) | ||||||
XRCC1 | 19q13.31 | rs1799782 | C → T | Arg194Trp | 13.1 | --e |
19q13.31 | rs25487 | G → A | Arg399Gln | 26.6 | --e | |
OGG1 | 3p25.3 | rs1052133 | C → G | Ser326Cys | 29.9 | --e |
APEX1 | 14q11.2 | rs1130409 | T → G | Asp148Glu | 44.0 | C___8921503_10 |
MUTYH | 1p34.1 | rs3219489 | G → C | Gln335His | 31.9 | C__27504565_10 |
PARP1 | 1q42.12 | rs1136410 | T → C | Val762Ala | 24.4 | C___1515368_1_ |
Nucleotide Excision Repair (NER) | ||||||
CCNH | 5q14.3 | rs2230641 | T → C | Val270Ala | 13.8 | C__11685807_10 |
CDK7 | 5q13.2 | rs2972388 | A → G | Asn33Asn | 40.5 | C___1191757_10 |
ERCC5 | 13q33.1 | rs2227869 | G → C | Cys529Ser | 4.9 | C__15956775_10 |
13q33.1 | rs17655 | C → G | Asp1104His | 37.7 | C___1891743_10 | |
ERCC1 | 19q13.32 | rs3212986 | G → T | -- b | 29.4 | C___2532948_10 |
RAD23B | 9q31.2 | rs1805329 | C → T | Ala249Val | 16.7 | C__11493966_10 |
ERCC6 | 10q11.23 | rs2228529 | A → G | Gln1413Arg | 15.6 | C__16171343_10 |
10q11.23 | rs4253211 | G → C | Arg1230Pro | 6.4 | C__25762749_10 | |
ERCC4 | 16p13.12 | rs1800067 | G → A | Arg415Gln | 3.1 | C___3285104_10 |
XPC | 3p25.1 | rs2228000 | C→T | Ala499Val | 24.8 | --e |
3p25.1 | rs2228001 | A→C | Lys939Gln | 34.4 | --e | |
Mismatch Repair (MMR) | ||||||
MLH1 | 3p22.2 | rs1799977 | A → G | Ile219Val | 13.0 | C___1219076_20 |
MSH3 | 5q14.1 | rs26279 | A → G | Thr1045Ala | 28.0 | C____800002_1_ |
5q14.1 | rs184967 | G → A | Arg949Gln | 9.8 | C____907914_10 | |
MSH4 | 1p31.1 | rs5745549 | G → A | Ser914Asn | 6.4 | C___1184803_10 |
1p31.1 | rs5745325 | G → A | Ala97Thr | 21.3 | C___3286081_10 | |
PMS1 | 2q32.2 | rs5742933 | G → C | -- c | 21.9 | C__29329633_10 |
MLH3 | 14q24.3 | rs175080 | G → A | Pro844Leu | 36.4 | C___1082805_10 |
MSH6 | 2p16.3 | rs1042821 | C → T | Gly39Glu | 20.1 | C___8760558_10 |
Homologous Recombination (HR) | ||||||
RAD51 | 15q15.1 | rs1801321 | G → T | -- c | 25.7 | C___7482700_10 |
NBN | 8q21.3 | rs1805794 | C → G | Glu185Gln | 35.7 | C__26470398_30 |
XRCC2 | 7q36.1 | rs3218536 | G → A | Arg188His | 5.3 | --e |
XRCC3 | 14q32.33 | rs861539 | C → T | Thr241Met | 21.7 | --e |
Non-homologous End Joining (NHEJ) | ||||||
XRCC4 | 5q14.2 | rs1805377 | G → A | -- d | 37.5 | C__11685997_10 |
LIG4 | 13q33.3 | rs1805388 | C → T | Thr9Ile | 14.6 | C__11427969_20 |
XRCC4 | 5q14.2 | rs28360135 | T → C | Ile134Thr | 1.4 | C__25618660_10 |
XRCC5 | 2q35 | rs1051685 | A → G | -- b | 17.2 | C___8838368_1_ |
2q35 | rs1051677 | T → C | -- b | 15.6 | C___8838367_1_ | |
2q35 | rs6941 | C → A | -- b | 15.7 | C___8838374_10 | |
2q35 | rs2440 | C → T | -- b | 42.0 | C___3231046_10 |
Characteristics | Controls n (%) | Cases n (%) | p-Value c | |
---|---|---|---|---|
Gender | Male | 43 (18.8) | 16 (15.1) | 0.445 |
Female | 186 (81.2) | 90 (84.9) | ||
Age a, b | <30 | 14 (6.1) | 4 (3.8) | 0.817 |
30–49 | 85 (37.1) | 38 (35.8) | ||
50–69 | 100 (43.7) | 49 (46.2) | ||
≥70 | 30 (13.1) | 15 (14.2) | ||
Smoking habits | Non-smokers | 184 (80.3) | 94 (88.7) | 0.084 |
Smokers | 43 (18.8) | 12 (11.3) | ||
Missing | 2 (0.9) | 0 (0.0) |
Genotype | MAF | Genotype Frequency | p-Value a | OR (95% CI) | Adjusted OR (95% CI) b | ||
---|---|---|---|---|---|---|---|
Controls | Cases | Controls n (%) | Cases n (%) | ||||
CCNHrs2230641 | 212 (100) | 106 (100) | |||||
Val/Val | C: 0.17 | C: 0.23 | 148 (69.8) | 60 (56.6) | 0.037 c | 1 (Reference) | 1 (Reference) |
Val/Ala | 56 (26.4) | 43 (40.6) | 1.89 (1.15–3.12) c | 1.89 (1.14–3.14) c | |||
Ala/Ala | 8 (3.8) | 3 (2.8) | 0.93 (0.24–3.61) | 1.01 (0.25-4.04) | |||
Dominant model | 64 (30.2) | 46 (43.4) | 0.024 c | 1.77 (1.09–2.87) c | 1.79 (1.09–2.93) c | ||
Recessive model | 8 (3.8) | 3 (2.8) | 0.757 | 0.74 (0.19–2.86) | 0.80 (0.20–3.17) | ||
ERCC5 rs2227869 | 212 (100) | 106 (100) | |||||
Cys/Cys | C: 0.07 | C: 0.04 | 184 (86.8) | 99 (93.4) | 0.135 | 1 (Reference) | 1 (Reference) |
Cys/Ser | 27 (12.7) | 6 (5.7) | 0.41 (0.17–1.03) | 0.39 (0.16–1.00) c | |||
Ser/Ser | 1 (0.5) | 1 (0.9) | 1.86 (0.12–30.04) | 1.78 (0.11–29.13) | |||
Dominant model | 28 (13.2) | 7 (6.6) | 0.088 | 0.47 (0.20–1.10) | 0.44 (0.19–1.06) | ||
Recessive model | 1 (0.5) | 1 (0.9) | 1.000 | 2.01 (0.12–32.45) | 1.92 (0.12–31.48) | ||
XPCrs2228001 | 212 (100) | 106 (100) | |||||
Lys/Lys | C: 0.36 | C: 0.41 | 82 (38.7) | 39 (36.8) | 0.103 | 1 (Reference) | 1 (Reference) |
Lys/Gln | 108 (50.9) | 47 (44.3) | 0.92 (0.55–1.53) | 0.95 (0.57–1.60) | |||
Gln/Gln | 22 (10.4) | 20 (18.9) | 1.91 (0.94–3.91) | 1.92 (0.93–3.97) | |||
Dominant model | 130 (61.3) | 67 (63.2) | 0.807 | 1.08 (0.67–1.76) | 1.12 (0.69–1.82) | ||
Recessive model | 22 (10.4) | 20 (18.9) | 0.052 | 2.01 (1.04–3.87) c | 1.97 (1.01–3.84) c | ||
MSH6 rs1042821 | 210 (100) | 106 (100) | |||||
Gly/Gly | T: 0.21 | T: 0.22 | 127 (60.5) | 68 (64.2) | 0.042 c | 1 (Reference) | 1 (Reference) |
Gly/Glu | 78 (37.1) | 30 (28.3) | 0.72 (0.43–1.20) | 0.73 (0.43–1.23) | |||
Glu/Glu | 5 (2.4) | 8 (7.5) | 2.99 (0.94–9.49) | 3.42 (1.04–11.24) c | |||
Dominant model | 83 (39.5) | 38 (35.8) | 0.543 | 0.86 (0.53–1.39) | 0.87 (0.54–1.43) | ||
Recessive model | 5 (2.4) | 8 (7.5) | 0.037 c | 3.35 (1.07–10.50) c | 3.84 (1.18–12.44) c | ||
XRCC3 rs861539 | 209 (100) | 106 (100) | |||||
Thr/Thr | T: 0.40 | T: 0.45 | 70 (33.5) | 36 (34.0) | 0.021 c | 1 (Reference) | 1 (Reference) |
Thr/Met | 112 (53.6) | 44 (41.5) | 0.76 (0.45–1.30) | 0.77 (0.45–1.31) | |||
Met/Met | 27 (12.9) | 26 (24.5) | 1.87 (0.96–3.67) | 1.89 (0.96–3.72) | |||
Dominant model | 139 (66.5) | 70 (66.0) | 1.000 | 0.98 (0.60–1.61) | 0.99 (0.60–1.62) | ||
Recessive model | 27 (12.9) | 26 (24.5) | 0.011 c | 2.19 (1.20–3.99) c | 2.20 (1.20–4.03) c |
Genotype | Papillary Carcinoma | Follicular Carcinoma | ||||
n(%) | Crude OR (95% CI) | Adjusted OR (95% CI) a | n(%) | Crude OR (95% CI) | Adjusted OR (95% CI) a | |
MUTYHrs3219489 | 78 (100) | 28 (100) | ||||
Gln/Gln | 48 (61.5) | 1 (reference) | 1 (reference) | 15 (53.6) | 1 (reference) | 1 (reference) |
Gln/His | 27 (34.6) | 0.56 (0.32–1.00) b | 0.57 (0.32–1.02) | 11 (39.3) | 0.95 (0.37–2.43) | 1.09 (0.40–2.92) |
His/His | 3 (3.8) | 0.66 (0.16–2.68) | 0.69 (0.17–2.86) | 2 (7.1) | 4.13 (0.35–49.28) | 6.97 (0.47–104.26) |
Dominant model | 30 (38.5) | 0.57 (0.33–0.99) b | 0.58 (0.33–1.02) | 13 (46.4) | 1.08 (0.43–2.67) | 1.27 (0.49–3.29) |
Recessive model | 3 (3.8) | 0.85 (0.21–3.36) | 0.87 (0.22–3.54) | 2 (7.1) | 4.23 (0.37–48.8) | 6.75 (0.46–98.39) |
ERCC5 rs2227869 | 78 (100) | 28 (100) | ||||
Cys/Cys | 75 (96.2) | 1 (reference) | 1 (reference) | 24 (85.7) | 1 (reference) | 1 (reference) |
Cys/Ser | 3 (3.8) | 0.24 (0.07–0.84) b | 0.23 (0.07–0.81) b | 3 (10.7) | 1.28 (0.28–5.78) | 1.20 (0.26–5.61) |
Ser/Ser | 0 (0.0) | -- | -- | 1 (3.6) | -- | -- |
Dominant model | 3 (3.8) | 0.23 (0.07–0.80) b | 0.22 (0.06–0.77) b | 4 (14.3) | 1.70 (0.42–6.90) | 1.61 (0.38–6.74) |
Recessive model | 0 (0.0) | -- | -- | 1 (3.6) | -- | -- |
XPCrs2228001 | 78 (100) | 28 (100) | ||||
Lys/Lys | 26 (33.3) | 1 (reference) | 1 (reference) | 13 (46.4) | 1 (reference) | 1 (reference) |
Lys/Gln | 36 (46.2) | 1.01 (0.55–1.85) | 1.03 (0.56–1.90) | 11 (39.3) | 0.72 (0.27–1.91) | 0.91 (0.33–2.54) |
Gln/Gln | 16 (20.5) | 2.27 (0.99–5.22) | 2.35 (1.00–5.51) | 4 (14.3) | 1.18 (0.28–4.96) | 1.05 (0.24–4.65) |
Dominant model | 52 (66.7) | 1.22 (0.69–2.15) | 1.23 (0.69–2.20) | 15 (53.6) | 0.80 (0.32–2.01) | 0.94 (0.36–2.44) |
Recessive model | 16 (20.5) | 2.26 (1.06–4.80) b | 2.31 (1.07–4.98) b | 4 (14.3) | 1.39 (0.36–5.39) | 1.10 (0.27–4.51) |
MLH3rs175080 | ||||||
Pro/Pro | 19 (24.4) | 1 (reference) | 1 (reference) | 3 (10.7) | 1 (reference) | 1 (reference) |
Pro/Leu | 42 (53.8) | 1.13 (0.59–2.19) | 1.17 (0.60–2.27) | 17 (60.7) | 3.78 (0.97–14.79) | 3.61 (0.88–14.85) |
Leu/Leu | 17 (21.8) | 1.17 (0.53–2.61) | 1.20 (0.54–2.68) | 8 (28.6) | 4.36 (0.95–20.04) | 4.29 (0.89–20.78) |
Dominant model | 59 (75.6) | 1.14 (0.61–2.14) | 1.18 (0.62–2.22) | 25 (89.3) | 3.95 (1.05–14.81) b | 3.81 (0.97–14.95) |
Recessive model | 17 (21.8) | 1.08 (0.56–2.10) | 1.08 (0.56–2.10) | 8 (28.6) | 1.64 (0.57–4.69) | 1.67 (0.55–5.02) |
MSH6 rs1042821 | 78 (100) | 28 (100) | ||||
Gly/Gly | 49 (62.8) | 1 (reference) | 1 (reference) | 19 (67.9) | 1 (reference) | 1 (reference) |
Gly/Glu | 24 (30.8) | 0.74 (0.41–1.32) | 0.74 (0.41–1.35) | 6 (21.4) | 0.65 (0.22–1.91) | 0.76 (0.24–2.35) |
Glu/Glu | 5 (6.4) | 2.30 (0.59–8.95) | 2.47 (0.61–9.89) | 3 (10.7) | 5.84 (0.57–60.03) | 20.98 (1.08–406.53) b |
Dominant model | 29 (37.2) | 0.83 (0.48–1.46) | 0.85 (0.48–1.49) | 9 (32.1) | 0.92 (0.35–2.43) | 1.10 (0.39–3.07) |
Recessive model | 5 (6.4) | 2.57 (0.67–9.85) | 2.74 (0.69–10.84) | 3 (10.7) | 6.60 (0.65–66.63) | 23.70 (1.25–449.32) b |
NBNrs1805794 | 78 (100) | 28 (100) | ||||
Glu/Glu | 42 (53.8) | 1 (reference) | 1 (reference) | 13 (46.4) | 1 (reference) | 1 (reference) |
Glu/Gln | 33 (42.3) | 1.17 (0.66–2.07) | 1.15 (0.64–2.04) | 10 (35.7) | 0.90 (0.33–2.41) | 0.72 (0.25–2.05) |
Gln/Gln | 3 (3.8) | 0.31 (0.09–1.10) | 0.29 (0.08–1.06) | 5 (17.9) | 2.69 (0.62–11.71) | 2.23 (0.44–11.18) |
Dominant model | 36 (46.2) | 0.95 (0.55–1.64) | 0.94 (0.54–1.63) | 15 (53.6) | 1.15 (0.47–2.86) | 0.90 (0.34–2.39) |
Recessive model | 3 (3.8) | 0.29 (0.08–1.01) | 0.28 (0.08–0.97) b | 5 (17.9) | 2.83 (0.70–11.50) | 2.66 (0.58–12.06) |
XRCC2rs3218536 | 78 (100) | 28 (100) | ||||
Arg/Arg | 66 (84.6) | 1 (reference) | 1 (reference) | 26 (92.9) | 1 (reference) | 1 (reference) |
Arg/His | 12 (15.4) | 1.17 (0.54–2.52) | 1.19 (0.55–2.57) | 2 (7.1) | 0.21 (0.04–1.00) b | 0.20 (0.04–1.05) |
His/His | 0 (0.0) | -- | -- | 0 (0.0) | -- | -- |
Dominant model | 12 (15.4) | 1.17 (0.54–2.52) | 1.19 (0.55–2.57) | 2 (7.1) | 0.21 (0.04–1.00) b | 0.20 (0.04–1.05) |
Recessive model | 0 (0.0) | -- | -- | 0 (0.0) | -- | -- |
XRCC3rs861539 | 78 (100) | 28 (100) | ||||
Thr/Thr | 26 (33.3) | 1 (reference) | 1 (reference) | 10 (35.7) | 1 (reference) | 1 (reference) |
Thr/Met | 31 (39.7) | 0.75 (0.40–1.40) | 0.74 (0.39–1.39) | 13 (46.4) | 0.81 (0.30–2.20) | 0.78 (0.27–2.24) |
Met/Met | 21 (26.9) | 1.76 (0.82–3.75) | 1.76 (0.82–3.77) | 5 (17.9) | 2.50 (0.55–11.41) | 2.72 (0.54–13.60) |
Dominant model | 52 (66.7) | 0.97 (0.54–1.73) | 0.97 (0.54–1.73) | 18 (64.3) | 1.00 (0.39–2.58) | 1.00 (0.37–2.69) |
Recessive model | 21 (26.9) | 2.08 (1.07–4.06) b | 2.10 (1.07–4.11) b | 5 (17.9) | 2.83 (0.70–11.50) | 3.12 (0.69–14.02) |
Genotype | Male | Female | ||||
n(%) | OR (95% CI) | Adjusted OR (95% CI) a | n(%) | OR (95% CI) | Adjusted OR (95% CI) a | |
CCNH rs2230641 | 16 (100) | 90 (100) | ||||
Val/Val | 7 (43.8) | 1 (reference) | 1 (reference) | 53 (58.9) | 1 (reference) | 1 (reference) |
Val/Ala | 9 (56.3) | 1.38 (0.40–4.70) | 1.67 (0.44–6.34) | 34 (37.8) | 2.03 (1.17–3.53) b | 1.97 (1.13–3.43) b |
Ala/Ala | 0 (0.0) | -- | -- | 3 (3.3) | 1.26 (0.30–5.20) | 1.36 (0.32–5.78) |
Dominant model | 9 (56.3) | 1.21 (0.36–4.06) | 1.40 (0.38–5.17) | 37 (41.1) | 1.93 (1.13–3.30) b | 1.90 (1.11–3.24) b |
Recessive model | 0 (0.0) | -- | -- | 3 (3.3) | 1.01 (0.25–4.12) | 1.11 (0.26–4.68) |
ERCC5 rs2227869 | 16 (100) | 90 (100) | ||||
Cys/Cys | 13 (81.3) | 1 (reference) | 1 (reference) | 86 (95.6) | 1 (reference) | 1 (reference) |
Cys/Ser | 3 (18.8) | 0.96 (0.21–4.48) | 0.94 (0.19–4.62) | 3 (3.3) | 0.26 (0.08–0.91) b | 0.25 (0.07–0.88) b |
Ser/Ser | 0 (0.0) | -- | -- | 1 (1.1) | 1.85 (0.11–29.93) | 1.70 (0.10–27.92) |
Dominant model | 3 (18.8) | 0.96 (0.21–4.48) | 0.94 (0.19–4.62) | 4 (4.4) | 0.34 (0.11–1.01) | 0.32 (0.11–0.97) b |
Recessive model | 0 (0.0) | -- | -- | 1 (1.1) | 2.02 (0.13–32.71) | 1.92 (0.12–31.53) |
ERCC5rs17655 | 16 (100) | 89 (100) | ||||
Asp/Asp | 10 (62.5) | 1 (reference) | 1 (reference) | 41 (46.1) | 1 (reference) | 1 (reference) |
Asp/His | 5 (31.3) | 0.61 (0.17–2.20) | 0.63 (0.17–2.34) | 45 (50.6) | 1.38 (0.81–2.33) | 1.36 (0.80–2.30) |
His/His | 1 (6.3) | -- | -- | 3 (3.4) | 0.31 (0.09–1.10) | 0.32 (0.09–1.14) |
Dominant model | 6 (37.5) | 0.73 (0.21–2.51) | 0.76 (0.22–2.67) | 48 (53.9) | 1.13 (0.68–1.88) | 1.13 (0.68–1.89) |
Recessive model | 1 (6.3) | -- | -- | 3 (3.4) | 0.27 (0.08–0.92) b | 0.27 (0.08–0.95) b |
XPCrs2228001 | 16 (100) | 90 (100) | ||||
Lys/Lys | 9 (56.3) | 1 (reference) | 1 (reference) | 30 (33.3) | 1 (reference) | 1 (reference) |
Lys/Gln | 6 (37.5) | 0.58 (0.17–2.05) | 0.59 (0.16–2.20) | 41 (45.6) | 1.01 (0.57–1.78) | 1.05 (0.59–1.86) |
Gln/Gln | 1 (6.3) | 1.56 (0.09–28.15) | 1.22 (0.06–23.58) | 19 (21.1) | 2.05 (0.96–4.36) | 2.05 (0.96–4.38) |
Dominant model | 7 (43.8) | 0.64 (0.19–2.16) | 0.63 (0.18–2.27) | 60 (66.7) | 1.20 (0.71–2.05) | 1.24 (0.72–2.12) |
Recessive model | 1 (6.3) | 2.00 (0.12–34.24) | 1.55 (0.09–28.35) | 19 (21.1) | 2.04 (1.03–4.03) b | 2.00 (1.01–3.96) b |
MSH6rs1042821 | 16 (100) | 90 (100) | ||||
Gly/Gly | 11 (68.8) | 1 (reference) | 1 (reference) | 57 (63.3) | 1 (reference) | 1 (reference) |
Gly/Glu | 4 (25.0) | 0.86 (0.21–3.54) | 0.96 (0.20–4.52) | 26 (28.9) | 0.70 (0.41–1.22) | 0.70 (0.40–1.22) |
Glu/Glu | 1 (6.3) | 0.86 (0.07–10.66) | 1.08 (0.07–16.53) | 7 (7.8) | 4.42 (1.10–17.75) b | 4.78 (1.17–19.56) b |
Dominant model | 5 (31.2) | 0.86 (0.23–3.19) | 0.98 (0.23–4.24) | 33 (36.7) | 0.86 (0.51–1.44) | 0.86 (0.51–1.45) |
Recessive model | 1 (6.3) | 0.90 (0.08–10.77) | 1.09 (0.08–15.61) | 7 (7.8) | 5.00 (1.26–19.84) b | 5.42 (1.34–21.92) b |
XRCC3 rs861539 | 16 (100) | 90 (100) | ||||
Thr/Thr | 8 (50.0) | 1 (reference) | 1 (reference) | 28 (31.1) | 1 (reference) | 1 (reference) |
Thr/Met | 6 (37.5) | 0.69 (0.19–2.59) | 0.62 (0.16–2.43) | 38 (42.2) | 0.80 (0.44–1.43) | 0.81 (0.45–1.46) |
Met/Met | 2 (12.5) | 0.60 (0.09–3.89) | 0.47 (0.07–3.28) | 24 (26.7) | 2.26 (1.09–4.71) b | 2.36 (1.12–4.97) b |
Dominant model | 8 (50.0) | 0.67 (0.20–2.26) | 0.58 (0.16–2.08) | 62 (68.9) | 1.06 (0.62–1.83) | 1.08 (0.63–1.88) |
Recessive model | 2 (12.5) | 0.71 (0.12–4.18) | 0.60 (0.10–3.67) | 24 (26.7) | 2.60 (1.36–4.95) b | 2.68 (1.39–5.18) b |
Genotype | <50 years | ≥50 years | ||||
n(%) | OR (95% CI) | Adjusted OR (95% CI) a | n(%) | OR (95% CI) | Adjusted OR (95% CI) a | |
CCNH rs2230641 | 42 (100) | 64 (100) | ||||
Val/Val | 27 (64.3) | 1 (reference) | 1 (reference) | 33 (51.6) | 1 (reference) | 1 (reference) |
Val/Ala | 14 (33.3) | 0.96 (0.43–2.13) | 0.93 (0.41–2.12) | 29 (45.3) | 2.97 (1.55–5.68) b | 2.91 (1.51–5.60) b |
Ala/Ala | 1 (2.4) | 0.27 (0.03–2.26) | 0.27 (0.03–2.31) | 2 (3.1) | 5.94 (0.52–67.64) | 8.01 (0.62–102.77) |
Dominant model | 15 (35.7) | 0.82 (0.38–1.76) | 0.79 (0.36–1.75) | 31 (48.4) | 3.07 (1.62–5.81) b | 3.04 (1.59–5.81) b |
Recessive model | 1 (2.4) | 0.27 (0.03–2.26) | 0.27 (0.03–2.33) | 2 (3.1) | 4.10 (0.36–46.05) | 5.67 (0.45–72.01) |
ERCC6rs2228529 | 42 (100) | 62 (100) | ||||
Gln/Gln | 20 (47.6) | 1 (reference) | 1 (reference) | 46 (74.2) | 1 (reference) | 1 (reference) |
Gln/Arg | 20 (47.6) | 1.19 (0.56–2.54) | 1.09 (0.50–2.36) | 15 (24.2) | 0.49 (0.25–0.98) b | 0.48 (0.24–0.97) b |
Arg/Arg | 2 (4.8) | 2.20 (0.29–16.75) | 2.12 (0.27–16.60) | 1 (1.6) | 0.32 (0.04–2.84) | 0.30 (0.03–2.63) |
Dominant model | 22 (52.4) | 1.24 (0.59–2.61) | 1.14 (0.53–2.44) | 16 (25.8) | 0.48 (0.24–0.93) b | 0.47 (0.24–0.92) b |
Recessive model | 2 (4.8) | 2.03 (0.28–14.91) | 2.04 (0.27–15.33) | 1 (1.6) | 0.40 (0.05–3.53) | 0.37 (0.04–3.28) |
XPCrs2228001 | 42 (100) | 64 (100) | ||||
Lys/Lys | 17 (40.5) | 1 (reference) | 1 (reference) | 22 (34.4) | 1 (reference) | 1 (reference) |
Lys/Gln | 15 (35.7) | 0.58 (0.25–1.32) | 0.58 (0.25–1.37) | 32 (50.0) | 1.22 (0.63–2.35) | 1.27 (0.66–2.48) |
Gln/Gln | 10 (23.8) | 2.21 (0.73–6.65) | 2.11 (0.68–6.58) | 10 (15.6) | 1.69 (0.65–4.38) | 1.74 (0.66–4.57) |
Dominant model | 25 (59.5) | 0.82 (0.38–1.75) | 0.81 (0.37–1.78) | 42 (65.6) | 1.31 (0.70–2.44) | 1.36 (0.72–2.56) |
Recessive model | 10 (23.8) | 2.97 (1.07–8.21) b | 2.86 (1.01–8.08) b | 10 (15.6) | 1.51 (0.63–3.61) | 1.52 (0.63–3.67) |
RAD51rs1801321 | 42 (100) | 64 (100) | ||||
G/G | 14 (33.3) | 1 (reference) | 1 (reference) | 14 (21.9) | 1 (reference) | 1 (reference) |
G/T | 19 (45.2) | 0.95 (0.41–2.24) | 1.00 (0.42–2.38) | 31 (48.4) | 1.76 (0.84–3.69) | 1.83 (0.87–3.86) |
T/T | 9 (21.4) | 0.80 (0.29–2.20) | 0.75 (0.27–2.10) | 19 (29.7) | 2.90 (1.23–6.83) b | 2.99 (1.25–7.14) b |
Dominant model | 28 (66.7) | 0.90 (0.41–1.98) | 0.91 (0.41–2.02) | 50 (78.1) | 2.07 (1.04–4.14) b | 2.14 (1.06–4.32) b |
Recessive model | 9 (21.4) | 0.82 (0.34–1.99) | 0.75 ( (0.30–1.84) | 19 (29.7) | 2.03 (1.00–4.12) b | 2.05 (1.00–4.21) |
XRCC3 rs861539 | 42 (100) | 64 (100) | ||||
Thr/Thr | 15 (35.7) | 1 (reference) | 1 (reference) | 21 (32.8) | 1 (reference) | 1 (reference) |
Thr/Met | 16 (38.1) | 0.65 (0.27–1.52) | 0.63 (0.27–1.52) | 28 (43.8) | 0.85 (0.43–1.68) | 0.87 (0.44–1.73) |
Met/Met | 11 (26.2) | 1.47 (0.53–4.08) | 1.48 (0.52–4.19) | 15 (23.4) | 2.25 (0.92–5.49) | 2.42 (0.97–6.03) |
Dominant model | 27 (64.3) | 0.84 (0.38–1.83) | 0.83 (0.37–1.84) | 43 (67.2) | 1.09 (0.57–2.05) | 1.12 (0.59–2.14) |
Recessive model | 11 (26.2) | 1.88 (0.76–4.67) | 1.92 (0.77–4.83) | 15 (23.4) | 2.47 (1.11–5.51) b | 2.63 (1.16–5.97) b |
XRCC5rs2440 | 42 (100) | 62 (100) | ||||
C/C | 8 (19.0) | 1 (reference) | 1 (reference) | 22 (35.5) | 1 (reference) | 1 (reference) |
C/T | 23 (54.8) | 2.25 (0.88–5.77) | 2.53 (0.96–6.62) | 31 (50.0) | 1.00 (0.52–1.95) | 0.97 (0.50–1.90) |
T/T | 11 (26.2) | 2.35 (0.79–6.98) | 2.53 (0.84–7.63) | 9 (14.5) | 1.28 (0.49–3.38) | 1.29 (0.48–3.45) |
Dominant model | 34 (81.0) | 2.28 (0.94–5.57) | 2.53 (1.02–6.26) b | 40 (64.5) | 1.06 (0.56–1.99) | 1.03 (0.54–1.95) |
Recessive model | 11 (26.2) | 1.38 (0.58–3.29) | 1.41 (0.58–3.43) | 9 (14.5) | 1.28 (0.53–3.11) | 1.31 (0.53–3.23) |
Risk Score (RS) a. | Frequency | p-Value b | OR (95% CI) | p-Value | Adjusted OR (95% CI) c | p-Value b | |
---|---|---|---|---|---|---|---|
Controls n (%) | Cases n (%) | ||||||
DTC (all cases) | 191 (100) | 106 (100) | |||||
0–1 | 114 (59.7) | 34 (32.1) | <0.001 d | 1 (Reference) | 1 (Reference) | ||
2 | 64 (33.5) | 52 (49.1) | 2.72 (1.60–4.63) d | <0.001 d | 2.68 (1.56–4.59) d | <0.001 d | |
3/+ | 13 (6.8) | 20 (18.9) | 5.16 (2.33–11.44) d | <0.001 d | 5.02 (2.24–11.24) d | <0.001 d | |
Histological type | |||||||
Papillary TC | 152 (100) | 78 (100) | |||||
0–2 | 85 (55.9) | 17 (21.8) | <0.001 d | 1 (Reference) | 1 (Reference) | ||
3 | 48 (31.6) | 44 (56.4) | 4.58 (2.36–8.89) d | <0.001 d | 4.55 (2.34–8.84) d | <0.001 d | |
4/+ | 19 (12.5) | 17 (21.8) | 4.47 (1.94–10.32) d | <0.001 d | 4.46 (1.92–10.36) d | <0.001 d | |
Follicular TC | 56 (100) | 28 (100) | |||||
0–1 | 24 (42.9) | 5 (17.9) | 0.029 d | 1 (Reference) | 1 (Reference) | ||
2/+ | 32 (57.1) | 23 (82.1) | 3.45 (1.15–10.39) d | 0.028 d | 3.52 (1.12–11.07) d | 0.032 d | |
Gender | |||||||
Female | 174 (100) | 89 (100) | |||||
0–2 | 114 (65.5) | 28 (31.5) | <0.001 d | 1 (Reference) | 1 (Reference) | ||
3 | 51 (29.3) | 43 (48.3) | 3.43 (1.92–6.13) d | <0.001 d | 3.42 (1.90–6.14) d | <0.001 d | |
4/+ | 9 (5.2) | 18 (20.2) | 8.14 (3.31–20.04) d | <0.001 d | 8.01 (3.22–19.92) d | <0.001 d | |
Age | |||||||
<50 years | 83 (100) | 42 (100) | |||||
0 | 26 (31.3) | 6 (14.3) | 0.020 d | 1 (Reference) | 1 (Reference) | ||
1 | 52 (62.7) | 28 (66.7) | 2.33 (0.86–6.34) | 0.097 | 2.52 (0.92–6.94) | 0.073 | |
2 | 5 (6.0) | 8 (19.0) | 6.93 (1.66–28.89) d | 0.008 d | 7.34 (1.72–31.24) d | 0.007 d | |
≥50 years | 127 (100) | 62 (100) | |||||
0–1 | 60 (47.2) | 12 (19.4) | <0.001 d | 1 (Reference) | 1 (Reference) | ||
2 | 51 (40.2) | 26 (41.9) | 2.55 (1.17–5.56) d | 0.019 d | 2.66 (1.21–5.85) d | 0.015 d | |
3/+ | 16 (12.6) | 24 (38.7) | 7.50 (3.09–18.18) d | <0.001 d | 7.90 (3.21–19.45) d | <0.001 d |
Combined Genotype | Frequency | DTC Risk | |||
---|---|---|---|---|---|
Controls n (%) | Cases n (%) | p-Value a | Adjusted OR (95% CI) b | p-Value a | |
CCNH rs2230641 – RAD51 rs1801321 | 212 (100) | 106 (100) | |||
Val/Val – G/G | 58 (27.4) | 13 (12.3) | 0.037 c | 1 (Reference) | |
Val/Val – G/T | 64 (30.2) | 29 (27.4) | 2.10 (0.99–4.45) | 0.052 | |
Val/Ala – G/G | 15 (7.1) | 13 (12.3) | 3.77 (1.44–9.87) | 0.007 d | |
Val/Ala – G/T | 27 (12.7) | 20 (18.9) | 3.43 (1.46–8.06) | 0.005 d | |
Val/Val – T/T | 26 (12.3) | 18 (17.0) | 3.05 (1.29–7.19) | 0.011 c | |
Val/Ala – T/T | 14 (6.6) | 10 (9.4) | 3.22 (1.17–8.89) | 0.024 c | |
Ala/Ala – G/G Ala/Ala – G/T Ala/Ala – T/T | 8 (3.8) | 3 (2.8) | 1.86 (0.42–8.18) | 0.414 | |
MUTYH rs3219489 –CCNH rs2230641 | 211 (100) | 106 (100) | |||
Gln/Gln – Val/Val | 77 (36.5) | 35 (33.0) | 0.018 c | 1 (Reference) | |
Gln/Gln – Val/Ala | 22 (10.4) | 26 (24.5) | 2.68 (1.32–5.42) | 0.006 d | |
Gln/His – Val/Val | 66 (31.3) | 23 (21.7) | 0.81 (0.43–1.51) | 0.500 | |
Gln/His – Val/Ala | 30 (14.2) | 14 (13.2) | 1.05 (0.49–2.23) | 0.904 | |
Gln/Gln – Ala/Ala His/His – Val/Val Gln/His – Ala/Ala His/His – Val/Ala | 16 (7.6) | 8 (7.5) | 1.24 (0.48–3.23) | 0.660 | |
CCNH rs2230641 – MLH3 rs175080 | 195 (100) | 106 (100) | |||
Val/Val – Pro/Pro | 40 (20.5) | 11 (10.4) | 0.097 | 1 (Reference) | |
Val/Val – Pro/Leu | 77 (39.5) | 36 (34.0) | 1.76 (0.80–3.87) | 0.162 | |
Val/Ala – Pro/Pro | 14 (7.2) | 11 (10.4) | 2.60 (0.91–7.41) | 0.074 | |
Val/Ala – Pro/Leu | 23 (11.8) | 21 (19.8) | 3.34 (1.35–8.26) | 0.009 d | |
Val/Val – Leu/Leu | 25 (12.8) | 13 (12.3) | 1.95 (0.75–5.09) | 0.173 | |
Val/Ala – Leu/Leu | 11 (5.6) | 11 (10.4) | 3.69 (1.25–10.90) | 0.018 c | |
Ala/Ala – Pro/Pro Ala/Ala – Pro/Leu Ala/Ala – Leu/Leu | 5 (2.6) | 3 (2.8) | 2.44 (0.48–12.45) | 0.284 | |
CCNH rs2230641 – MSH4 rs5745549 | 195 (100) | 106 (100) | |||
Val/Val – Ser/Ser | 132 (67.7) | 51 (48.1) | 0.009 d | 1 (Reference) | |
Val/Val – Ser/Asn | 10 (5.1) | 9 (8.5) | 2.45 (0.93–6.43) | 0.070 | |
Val/Ala – Ser/Ser | 41 (21.0) | 38 (35.8) | 2.27 (1.30–3.96) | 0.004 d | |
Val/Ala – Ser/Asn Ala/Ala – Ser/Ser | 12 (6.2) | 8 (7.5) | 1.87 (0.71–4.92) | 0.207 | |
MLH3 rs175080 – RAD51 rs1801321 | 195 (100) | 106 (100) | |||
Pro/Pro – G/G | 23 (11.8) | 4 (3.8) | 0.288 | 1 (Reference) | |
Pro/Pro – G/T | 24 (12.3) | 10 (9.4) | 2.88 (0.77–10.78) | 0.117 | |
Pro/Leu – G/G | 32 (16.4) | 18 (17.0) | 3.98 (1.14–13.89) | 0.031 c | |
Pro/Leu – G/T | 46 (23.6) | 25 (23.6) | 3.59 (1.09–11.81) | 0.035 c | |
Pro/Pro – T/T | 9 (4.6) | 8 (7.5) | 5.43 (1.23–23.88) | 0.025 c | |
Leu/Leu – G/G | 14 (7.2) | 6 (5.7) | 2.92 (0.68–12.57) | 0.151 | |
Pro/Leu – T/T | 23 (11.8) | 16 (15.1) | 4.66 (1.32–16.45) | 0.017 c | |
Leu/Leu – G/T | 16 (8.2) | 15 (14.2) | 6.22 (1.70–22.78) | 0.006 d | |
Leu/Leu – T/T | 8 (4.1) | 4 (3.8) | 3.55 (0.69–18.15) | 0.128 | |
ERCC6rs4253211 –RAD51 rs1801321 | 211 (100) | 102 (100) | |||
Arg/Arg – G/G | 65 (30.8) | 16 (15.7) | 0.026 c | 1 (Reference) | |
Arg/Arg – G/T | 72 (34.1) | 42 (41.2) | 2.51 (1.28–4.94) | 0.007 d | |
Arg/Pro – G/T | 21 (10.0) | 7 (6.9) | 1.53 (0.54–4.29) | 0.423 | |
Arg/Arg – T/T | 33 (15.6) | 21 (20.6) | 2.67 (1.22–5.85) | 0.014 c | |
Arg/Pro – G/G Pro/Pro – G/G Arg/Pro – T/T Pro/Pro – G/T | 20 (9.5) | 16 (15.7) | 3.65 (1.52–8.78) | 0.004 d | |
MLH3 rs175080 – MSH6 rs1042821 | 210 (100) | 106 (100) | |||
Pro/Pro – Gly/Gly | 32 (15.2) | 19 (17.9) | 0.032 c | 1 (Reference) | |
Pro/Pro – Gly/Glu | 26 (12.4) | 2 (1.9) | 0.11 (0.02–0.53) | 0.006 d | |
Pro/Leu – Gly/Gly | 71 (33.8) | 36 (34.0) | 0.81 (0.40–1.65) | 0.561 | |
Pro/Leu – Gly/Glu | 35 (16.7) | 19 (17.9) | 0.94 (0.41–2.13) | 0.878 | |
Leu/Leu – Gly/Gly | 24 (11.4) | 13 (12.3) | 0.83 (0.34–2.03) | 0.680 | |
Leu/Leu – Gly/Glu | 17 (8.1) | 9 (8.5) | 0.89 (0.33–2.43) | 0.819 | |
Pro/Pro – Glu/Glu Pro/Leu – Glu/Glu Leu/Leu – Glu/Glu | 5 (2.4) | 8 (7.5) | 3.09 (0.85–11.27) | 0.088 | |
MSH4 rs5745549 – MSH6 rs1042821 | 210 (100) | 106 (100) | |||
Ser/Ser – Gly/Gly | 124 (59.0) | 60 (56.6) | 0.004 d | 1 (Reference) | |
Ser/Ser – Gly/Glu | 63 (30.0) | 24 (22.6) | 0.81 (0.46–1.43) | 0.467 | |
Ser/Asn – Gly/Glu | 15 (7.1) | 6 (5.7) | 0.83 (0.30–2.28) | 0.720 | |
Ser/Asn – Gly/Gly Ser/Ser – Glu/Glu | 8 (3.8) | 16 (15.1) | 4.63 (1.83–11.69) | 0.001 d | |
ERCC6rs4253211 –MLH3 rs175080 | 195 (100) | 102 (100) | |||
Arg/Arg – Pro/Pro | 51 (26.2) | 13 (12.7) | 0.067 | 1 (Reference) | |
Arg/Arg – Pro/Leu | 78 (40.0) | 45 (44.1) | 2.43 (1.18–5.04) | 0.017 c | |
Arg/Pro – Pro/Leu | 21 (10.8) | 10 (9.8) | 2.25 (0.83–6.14) | 0.113 | |
Arg/Arg – Leu/Leu | 30 (15.4) | 21 (20.6) | 2.96 (1.28–6.88) | 0.012 c | |
Arg/Pro – Pro/Pro Pro/Pro – Pro/Pro Arg/Pro – Leu/Leu Pro/Pro – Pro/Leu Pro/Pro – Leu/Leu | 15 (7.7) | 13 (12.7) | 4.23 (1.55–11.53) | 0.005 d | |
RAD51 rs1801321 – XRCC3 rs861539 | 209 (100) | 106 (100) | |||
G/G – Thr/Thr | 26 (12.4) | 7 (6.6) | 0.006 d | 1 (Reference) | |
G/G – Thr/Met | 35 (16.7) | 15 (14.2) | 1.59 (0.56–4.49) | 0.381 | |
G/T – Thr/Thr | 29 (13.9) | 24 (22.6) | 3.10 (1.14–8.44) | 0.027 c | |
G/T – Thr/Met | 55 (26.3) | 14 (13.2) | 0.98 (0.35–2.73) | 0.967 | |
G/G – Met/Met | 11 (5.3) | 6 (5.7) | 1.99 (0.54–7.41) | 0.304 | |
T/T – Thr/Thr | 15 (7.2) | 5 (4.7) | 1.23 (0.33–4.61) | 0.759 | |
G/T – Met/Met | 12 (5.7) | 12 (11.3) | 3.77 (1.17–12.13) | 0.026 c | |
T/T – Thr/Met | 22 (10.5) | 15 (14.2) | 2.41 (0.83–7.05) | 0.108 | |
T/T – Met/Met | 4 (1.9) | 8 (7.5) | 7.90 (1.80–34.74) | 0.006 d | |
ERCC6rs2228529 –MSH4 rs5745549 | 195 (100) | 104 (100) | |||
Gln/Gln – Ser/Ser | 102 (52.3) | 53 (51.0) | 0.009 d | 1 (Reference) | |
Gln/Gln – Ser/Asn | 6 (3.1) | 13 (12.5) | 4.77 (1.67–13.61) | 0.003 d | |
Gln/Arg – Ser/Ser | 71 (36.4) | 34 (32.7) | 0.82 (0.48–1.43) | 0.489 | |
Gln/Arg – Ser/Asn Arg/Arg – Ser/Ser Arg/Arg – Ser/Asn | 16 (8.2) | 4 (3.8) | 0.46 (0.14–1.47) | 0.190 | |
MSH4 rs5745549 – XRCC5 rs2440 | 195 (100) | 104 (100) | |||
Ser/Ser – C/C | 67 (34.4) | 24 (23.1) | 0.049 c | 1 (Reference) | |
Ser/Ser – C/T | 84 (43.1) | 50 (48.1) | 1.76 (0.97–3.19) | 0.063 | |
Ser/Asn – C/T | 12 (6.2) | 4 (3.8) | 1.02 (0.29–3.56) | 0.972 | |
Ser/Ser – T/T | 27 (13.8) | 17 (16.3) | 1.86 (0.84–4.12) | 0.124 | |
Ser/Asn – C/C Ser/Asn – T/T | 5 (2.6) | 9 (8.7) | 6.18 (1.83–20.86) | 0.003 d | |
MUTYH rs3219489 – XPC rs2228001 | 211 (100) | 106 (100) | |||
Gln/Gln – Lys/Lys | 38 (18.0) | 28 (26.4) | 0.037 c | 1 (Reference) | |
Gln/Gln – Lys/Gln | 54 (25.6) | 27 (25.5) | 0.68 (0.35–1.35) | 0.274 | |
Gln/His – Lys/Lys | 41 (19.4) | 9 (8.5) | 0.31 (0.13–0.73) | 0.008d | |
Gln/His – Lys/Gln | 48 (22.7) | 18 (17.0) | 0.55 (0.26–1.16) | 0.117 | |
Gln/Gln – Gln/Gln | 13 (6.2) | 8 (7.5) | 0.81 (0.29–2.25) | 0.689 | |
Gln/His – Gln/Gln | 9 (4.3) | 11 (10.4) | 1.70 (0.61–4.77) | 0.311 | |
His/His – Lys/Lys His/His – Lys/Gln His/His – Gln/Gln | 8 (3.8) | 5 (4.7) | 0.91 (0.26–3.16) | 0.884 | |
MSH3rs184967 – XRCC5 rs1051685 | 195 (100) | 106 (100) | |||
Arg/Arg – A/A | 99 (50.8) | 70 (66.0) | 0.001 d | 1 (Reference) | |
Arg/Arg – A/G | 32 (16.4) | 8 (7.5) | 0.34 (0.15–0.80) | 0.013 c | |
Arg/Gln – A/A | 52 (26.7) | 14 (13.2) | 0.36 (0.18–0.71) | 0.003 d | |
Arg/Gln – A/G Arg/Arg – G/G Gln/Gln – A/A | 12 (6.2) | 14 (13.2) | 1.46 (0.62–3.40) | 0.387 | |
CCNH rs2230641 – LIG4 rs1805388 | 212 (100) | 106 (100) | |||
Val/Val – Thr/Thr | 112 (52.8) | 42 (39.6) | 0.015 c | 1 (Reference) | |
Val/Val – Thr/Ile | 32 (15.1) | 16 (15.1) | 1.36 (0.67–2.75) | 0.396 | |
Val/Ala – Thr/Thr | 37 (17.5) | 36 (34.0) | 2.62 (1.45–4.71) | 0.001 d | |
Val/Ala – Thr/Ile | 18 (8.5) | 5 (4.7) | 0.73 (0.25–2.11) | 0.555 | |
Val/Val – Ile/Ile Ala/Ala – Thr/Thr Val/Ala – Ile/Ile Ala/Ala – Thr/Ile | 13 (6.1) | 7 (6.6) | 1.47 (0.53–4.08) | 0.456 |
Haplotype | Adj. OR (95% CI) | p-Value a | |||||
---|---|---|---|---|---|---|---|
Chromosome 5q | |||||||
CCNH rs2230641 | CDK7 rs2972388 | MSH3 rs26279 | MSH3 rs184967 | XRCC4 rs1805377 | XRCC4 rs28360135 | 0.015 | |
Val | A | Thr | Arg | G | Ile | 1.00 (Reference) | |
Val | A | Ala | Arg | G | Ile | 0.26 (0.08–0.87) | 0.03 |
Val | G | Ala | Gln | G | Ile | 0.15 (0.03–0.72) | 0.019 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, L.S.; Gomes, B.C.; Bastos, H.N.; Gil, O.M.; Azevedo, A.P.; Ferreira, T.C.; Limbert, E.; Silva, S.N.; Rueff, J. Thyroid Cancer: The Quest for Genetic Susceptibility Involving DNA Repair Genes. Genes 2019, 10, 586. https://doi.org/10.3390/genes10080586
Santos LS, Gomes BC, Bastos HN, Gil OM, Azevedo AP, Ferreira TC, Limbert E, Silva SN, Rueff J. Thyroid Cancer: The Quest for Genetic Susceptibility Involving DNA Repair Genes. Genes. 2019; 10(8):586. https://doi.org/10.3390/genes10080586
Chicago/Turabian StyleSantos, Luís S., Bruno Costa Gomes, Hélder N. Bastos, Octávia M. Gil, Ana Paula Azevedo, Teresa C. Ferreira, Edward Limbert, Susana N. Silva, and José Rueff. 2019. "Thyroid Cancer: The Quest for Genetic Susceptibility Involving DNA Repair Genes" Genes 10, no. 8: 586. https://doi.org/10.3390/genes10080586