Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower (Helianthus annuus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parents and Populations for Gene Pyramiding
2.2. Marker Selection
2.3. New SSR Marker Development for R15
2.4. Disease Evaluation
3. Results
3.1. Marker Selection and Disease Evaluation of Homozygous Multi-Resistant Plants
3.1.1. R4/R12/PlArg Homozygous Plants
3.1.2. R5/R12/PlArg Homozygous Plants
3.1.3. R13b/R12/PlArg Homozygous Plants
3.1.4. R15/R12 Homozygous Plants
3.1.5. R13b/R15 Homozygous Plants
3.2. Detection of Recombination in the Marker Cluster Linked to PlArg
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sackston, W.E. On a treadmill, breeding sunflowers for resistance to disease. Annu. Rev. Phytopathol. 1992, 30, 529–551. [Google Scholar] [CrossRef] [PubMed]
- Vear, F. Breeding disease-resistant sunflowers. CAB Rev. 2017, 12, 1–11. [Google Scholar] [CrossRef]
- Putt, E.D.; Sackston, W.E. Studies on sunflower rust. I. Some sources of rust resistance. Can. J. Plant Sci. 1957, 37, 43–54. [Google Scholar] [CrossRef]
- Putt, E.D.; Sackston, W.E. Studies on sunflower rust. IV. Two genes, R1 and R2 for resistance in the host. Can. J. Plant Sci. 1963, 43, 490–496. [Google Scholar] [CrossRef]
- Ma, G.J.; Song, Q.J.; Markell, S.G.; Qi, L.L. High throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R15, in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2018, 131, 1423–1432. [Google Scholar] [CrossRef]
- Sackston, W.E. Studies on sunflower rust. III. Occurrence, distribution, and significance of race Puccinia helianthi Schw. Can. J. Bot. 1962, 40, 1449–1458. [Google Scholar] [CrossRef]
- Gulya, T.J.; Markell, S. Sunflower rust status-2008 race frequency across the Midwest and resistance among commercial hybrids. In Proceedings of the 31st Sunflower Research Forum, Fargo, ND, USA, 13–14 January 2009; Available online: https://www.sunflowernsa.com/uploads/15/gulya_ruststatus_09.pdf (accessed on 20 November 2019).
- Friskop, A.J.; Gulya, T.J.; Harveson, R.H.; Humann, R.M.; Acevedo, M.; Markell, S.G. Phenotypic diversity of Puccinia helianthi (sunflower rust) in the United States from 2011 and 2012. Plant Dis. 2015, 99, 1604–1609. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.L.; Gulya, T.J.; Seiler, G.J.; Hulke, B.S.; Vick, B.A. Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 2011, 101, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Gulya, T.J.; Markell, S.G.; Hulke, B.S.; Qi, L.L. Genetic mapping of rust resistance genes in confection sunflower line HA-R6 and oilseed line RHA 397. Theor. Appl. Genet. 2013, 126, 2039–2049. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Z.; Jan, C.C. Molecular mapping of a rust resistance gene R14 in cultivated sunflower line PH3. Mol. Breed. 2016, 36, 32. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Ma, G.J.; Seiler, G.J.; Jan, C.C.; Qi, L.L. Molecular mapping of the downy mildew and rust resistance genes in a sunflower germplasm line TX16R. Mol. Breed. 2019, 39, 19. [Google Scholar] [CrossRef]
- Hittalmani, S.; Parco, A.; Mew, T.V.; Zeigler, R.S.; Huang, N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor. Appl. Genet. 2000, 100, 1121–1128. [Google Scholar] [CrossRef]
- Singh, S.; Sidhu, J.S.; Huang, N.; Vikal, Y.; Li, Z.; Brar, D.S.; Dhaliwal, H.S.; Khush, G.S. Pyramiding three bacterial blight resistance genes (xa5; xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 2001, 102, 1011–1015. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Mizukami, Y.; Koga, H.; Yamanouchi, U.; Yoshioka, Y.; Hayashi, N.; Ebana, K.; Mizobuchi, R.; Yano, M. Gene pyramiding enhances durable blast disease resistance in rice. Sci. Rep. 2015, 5, 7773. [Google Scholar] [CrossRef] [Green Version]
- Kloppers, F.J.; Pretorious, Z.A. Effects of combinations amongst genes Lr13; Lr34 and Lr37 on components of resistance in wheat to leaf rust. Plant Pathol. 1997, 46, 737–750. [Google Scholar] [CrossRef]
- Liu, J.; Liu, D.; Tao, W.; Li, W.; Wang, S.; Chen, P.; Cheng, S.; Gao, D. Molecular marker-facilitated pyramiding of different genes for powdery mildew resistance in wheat. Plant Breed. 2000, 119, 21–24. [Google Scholar] [CrossRef]
- Samsampour, D.; Zanjani, M.; Singh, A.; Pallavi, J.K.; Prabhu, K.V. Marker assisted selection to pyramid seedling resistance gene Lr24 and adult plant resistance gene Lr48 for leaf rust resistance in wheat. Ind. J. Genet. Plant Breed. 2009, 69, 1–9. [Google Scholar]
- Mago, R.; Lawrence, G.J.; Ellis, J.G. The application of DNA marker and doubled-haploid technology for stacking multiple stem rust resistance genes in wheat. Mol. Breed. 2011, 27, 329–335. [Google Scholar] [CrossRef]
- Singh, M.; Mallick, N.; Chand, S.; Kumari, P.; Sharma, J.B.; Sivasamy, M.; Jayaprakash, P.; Prabhu, K.V.; Jha, S.K. Vinod Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733. J. Genet. 2017, 96, 951–957. [Google Scholar] [CrossRef]
- Werner, K.; Friedt, W.; Ordon, F. Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV; BaYMV; BaYMV-2). Mol. Breed. 2005, 16, 45–55. [Google Scholar] [CrossRef]
- Shi, A.L.; Chen, P.Y.; Li, D.X.; Zheng, C.M.; Zhang, B.; Hou, A.F. Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol. Breed. 2009, 23, 113–124. [Google Scholar] [CrossRef]
- Hanson, P.; Lu, S.F.; Wang, J.F.; Chen, W.; Kenyon, L.; Tan, C.W.; Tee, K.L.; Wang, Y.Y.; Hsu, Y.C.; Schafleitner, R.; et al. Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci. Hort. 2016, 201, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.L.; Ma, G.J.; Long, Y.M.; Hulke, B.S.; Markell, S.G. Relocation of a rust resistance gene R2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2015, 128, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.L.; Talukder, Z.I.; Hulke, B.S.; Foley, M.E. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes PlArg and Pl8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.). Mol. Genet. Genom. 2017, 292, 551–563. [Google Scholar] [CrossRef]
- Qi, L.L.; Hulke, B.S.; Vick, B.A.; Gulya, T.J. Molecular mapping of the rust resistance gene R4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theor. Appl. Genet. 2011, 123, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.L.; Gulya, T.J.; Hulke, B.S.; Vick, B.A. Chromosome location, DNA markers and rust resistance of the sunflower gene R5. Mol. Breed. 2012, 30, 745–756. [Google Scholar] [CrossRef]
- Qi, L.L.; Long, Y.M.; Ma, G.J.; Markell, S.G. Map saturation and SNP marker development for the rust resistance genes (R4, R5, R13a, and R13b) in sunflower (Helianthus annuus L.). Mol. Breed. 2015, 35, 196. [Google Scholar] [CrossRef]
- Gong, L.; Hulke, B.S.; Gulya, T.J.; Markell, S.G.; Qi, L.L. Molecular tagging of a novel rust resistance gene R12 in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2013, 126, 93–99. [Google Scholar] [CrossRef]
- Dußle, C.M.; Hahn, V.; Knapp, S.J.; Bauer, E. PlArg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor. Appl. Genet. 2004, 109, 1083–1086. [Google Scholar] [CrossRef]
- Gascuel, Q.; Martinez, Y.; Boniface, M.-C.; Vear, F.; Pichon, M.; Godiard, L. The sunflower downy mildew pathogen Plasmopara halstedii. Mol. Plant Pathol. 2015, 16, 109–122. [Google Scholar] [CrossRef]
- Talukder, Z.I.; Gong, L.; Hulke, B.S.; Pegadaraju, V.; Song, Q.J.; Schultz, Q.; Qi, L.L. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12. PLoS ONE 2014, 9, e98628. [Google Scholar] [CrossRef] [PubMed]
- Gilley, M.A.; Markell, S.G.; Gulya, T.J.; Misar, C.G. Prevalence and virulence of Plasmopara halstedii (downy mildew) in sunflowers. In Proceedings of the 38th Sunflower Research Forum, Fargo, ND, USA, 12–13 January 2016; Available online: http//www.sunflowernsa.com/uploads/research/1277/Prevalence.Downey_Gilley.etal_2016.rev.pdf (accessed on 20 November 2019).
- Saintenac, C.; Falque, M.; Martin, O.C.; Paux, E.; Feuillet, C.; Sourdille, P. Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 2009, 181, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulya, T.J. Registration of five disease-resistant sunflower germplasms. Crop Sci. 1985, 25, 719–720. [Google Scholar] [CrossRef]
- Miller, J.F.; Gulya, T.J. Registration of eight maintainer (HA 393; HA 394 and HA 402 to HA 407) and seven restorer (RHA 395 to RHA 401) sunflower germplasm lines. Crop Sci. 1997, 37, 1988–1989. [Google Scholar] [CrossRef]
- Miller, J.F.; Gulya, T.J. Registration of three rust resistant sunflower germplasm populations. Crop Sci. 2011, 41, 601. [Google Scholar] [CrossRef]
- Hulke, B.S.; Miller, J.F.; Gulya, T.J. Registration of the restorer oilseed sunflower germplasm RHA 464 processing genes for resistance to downy mildew and sunflower rust. J. Plant Reg. 2010, 4, 249–254. [Google Scholar] [CrossRef]
- Qi, L.L.; Foley, M.E.; Cai, X.W.; Gulya, T.J. Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2016, 129, 741–752. [Google Scholar] [CrossRef]
- Gulya, T.J.; Miller, J.F.; Viranyi, F.; Sackston, W.E. Proposed internationally standardized methods for race identification of Plasmopara halstedii. Helia 1991, 14, 11–20. [Google Scholar]
- Gulya, T.J.; Markell, S.; McMullen, M.; Harveson, B.; Osborne, L. New virulent races of downy mildew, distribution; status of DM resistant hybrids; and USDA sources of resistance. In Proceedings of the 33rd Sunflower Research Forum, Fargo, ND, USA, 12–13 January 2011; Available online: http//www.sunflowernsa.com/uploads/resources/575/gulya_virulentracesdownymildew.pdf (accessed on 20 November 2019).
- Yang, S.M.; Antonelli, E.F.; Luciano, A.; Luciani, N.D. Reactions of Argentine and Australian sunflower rust differentials to four North American cultures of Puccinia helianthi from North Dakota. Plant Dis. 1986, 70, 883–886. [Google Scholar] [CrossRef]
- Gulya, T.J.; Venette, R.; Venette, J.R.; Lamey, H.A. Sunflower Rust; NDSU Experimental Service: Fargo, ND, USA, 1990; Available online: https//library.ndsu.edu/ir/bitstream/handle/10365/5283/pp998.pdf?sequence=1&isAllowed=y (accessed on 20 November 2019).
- Joshi, R.K.; Nayak, S. Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol. Mol. Biol. Rev. 2010, 5, 51–60. [Google Scholar]
- Sedcole, J.R. Number of plants necessary to recover a trait. Crop Sci. 1977, 17, 667–668. [Google Scholar]
- Seiler, G.J. Registration of 13 downy mildew tolerant interspecific sunflower germplasm lines derived from wild annual species. Crop Sci. 1991, 31, 1714–1716. [Google Scholar]
- Wieckhorst, S.; Bachlava, E.; Dußle, C.M.; Tang, S.; Gao, W.; Saski, C.; Knapp, S.J.; Schön, C.C.; Hahn, V.; Bauer, E. Fine mapping of the sunflower resistance locus PlARG introduced from the wild species Helianthus argophyllus. Theor. Appl. Genet. 2010, 121, 1633–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Markers/Genes | Marker Type | Chromosome/Linkage Group | Position (cM) | Reference |
---|---|---|---|---|
ORS316 | SSR | 13 | 3.5 | [28] |
SFW05240 | SNP | 3.5 | ||
R4 | 4.1 | |||
SFW01497 | SNP | 4.8 | ||
ORS1197 | SSR | 2 | 12.2 | [28] |
NSA_001605 | SNP | 14.4 | ||
SFW03654 | SNP | 14.9 | ||
R5 | 15.5 | |||
NSA_000267 | SNP | 16.7 | ||
NSA_000064 | SNP | 11 | 44.6 | [32] |
R12 | 45.4 | |||
NSA_001392 | SNP | 46.8 | ||
NSA_001570 | SNP | 46.8 | ||
ORS316 | SSR | 13 | 5.9 | [28] |
NSA_000187 | SNP | 5.9 | ||
NSA_005565 | SNP | 5.9 | ||
NSA_006846 | SNP | 5.9 | ||
R13b | 6.8 | |||
HT382 | SSR | 14.4 | ||
SUN398 | SSR | 8 | 17.7 | [5], present study |
SUN406 | SSR | 17.7 | ||
R15 | 18.1 | |||
ORS610 | SSR | 1 | 29.4 | [25] |
PlArg | 29.7 | |||
NSA_002851 | SNP | 29.7 | ||
NSA_002798 | SNP | 29.7 | ||
NSA_001835 | SNP | 30.0 | ||
NSA_006530 | SNP | 30.5 |
SNP ID | Recombination between Markers a | Genetic Position (cM) a | Physical Position (bp) in HA 412-HO Assembly | |
---|---|---|---|---|
Start | End | |||
NSA_002208 | 29.68 | 105,999,004 | 105,999,300 | |
NSA_000630 | 0 | 29.68 | 108,193,829 | 108,194,264 |
NSA_004149 | 0 | 29.68 | 109,941,814 | 109,942,141 |
NSA_005423 | 0 | 29.68 | 110,935,770 | 110,936,060 |
NSA_005063 | 0 | 29.68 | 123,281,156 | 123,281,926 |
PlArg | 0 | 29.69 | ||
NSA_002851 | 0 | 29.68 | 124,006,083 | 124,006,420 |
NSA_002867 | 0 | 29.68 | 129,149,732 | 129,150,065 |
NSA_005624 | 0 | 29.68 | 132,990,525 | 132,990,886 |
NSA_002798 | 0 | 29.68 | 135,732,577 | 135,733,004 |
NSA_002131 | 0 | 29.68 | 135,852,458 | 135,852,909 |
NSA_008037 | 0 | 29.68 | 137,830,356 | 137,830,737 |
NSA_007595 | 0 | 29.68 | 140,507,251 | 140,507,591 |
NSA_001835 | 1 | 30.00 | 143,343,690 | 143,344,747 |
NSA_006530 | 1 | 30.52 | 143,859,036 | 143,859,455 |
Plant No. | Genes/Pyramided Genes | Materials | DM Score (Race 734) | Rust Score (Race 336) | ||||
---|---|---|---|---|---|---|---|---|
No. of Plants Tested | S | R | No. of Plants Tested | IT | Severity | |||
2008 GH | - | HA 89 (S-control) | 12 | 12 | 0 | 12 | 4 | 40 |
2014 GH | R4 | HA-R3 | 24 | 24 | 0 | 12 | 1 | 0.1 |
15-2076 | R12/PlArg | RHA 464 | 12 | 0 | 12 | 12 | 1 | 0.1 |
16-069-18 | R4/R12/PlArg | HA-R3 × RHA 464 F3 | 36 | 0 | 36 | 36 | 0 | 0 |
16-069-46 | 60 | 0 | 60 | 60 | 0 | 0 | ||
16-069-121 | 53 | 0 | 53 | 53 | 0 | 0 | ||
16-069-288 | 60 | 0 | 60 | 60 | 0 | 0 | ||
2008 GH | - | HA 89 (S-control) | 12 | 12 | 0 | 12 | 4 | 40 |
2012 GH | R5 | HA-R2 | 20 | 20 | 0 | 12 | 2 | 0.5 |
15-2076 | R12/PlArg | RHA464 | 12 | 0 | 12 | 12 | 1 | 0.1 |
14-22-693 | R5/R12/PlArg | HA-R2 × RHA 464 F3 | 54 | 0 | 54 | 54 | 1 | 0.1 |
14-22-694 | 46 | 0 | 46 | 46 | 1 | 0.1 | ||
14-22-737 | 68 | 0 | 68 | 68 | 1 | 0.1 | ||
14-22-786 | 64 | 0 | 64 | 64 | 1 | 0.1 | ||
2008 GH | - | HA 89 (S-control) | 12 | 12 | 0 | 12 | 4 | 40 |
10-002-2 | R13b | RHA 397 | 16 | 16 | 0 | 12 | 1 | 0.1 |
15-2076 | R12/PlArg | RHA 464 | 12 | 0 | 12 | 12 | 1 | 0.1 |
14-21-129 | R13b/R12/PlArg | RHA 397 × RHA 46 F3 | 48 | 0 | 48 | 48 | 0 | 0 |
14-21-319 | 72 | 0 | 72 | 72 | 0 | 0 | ||
14-21-413 | 60 | 0 | 60 | 60 | 0 | 0 | ||
2008 GH | - | HA 89 (S-control) | 12 | 12 | 0 | 12 | 4 | 40 |
2012 GH | R15 | HA-R8 | 28 | 28 | 0 | 12 | 1 | 0.1 |
15-2076 | R12/PlArg | RHA 464 | 12 | 0 | 12 | 12 | 1 | 0.1 |
16-46-202 | R15/R12 | RHA 464 × HA-R8 F3 | 32 | 32 | 0 | 44 | 0 | 0 |
16-46-329 | 28 | 28 | 0 | 48 | 0 | 0 | ||
2008 GH | - | HA 89 (S-control) | - | - | - | 32 | 4 | 40 |
2012 GH | R15 | HA-R8 | - | - | - | 16 | 1 | 0.1 |
10-002-2 | R13b | RHA 397 | - | - | - | 16 | 1 | 0.1 |
16-043-13 | R13b/R15 | RHA 397 × HA-R8 F3 | - | - | - | 48 | 0 | 0 |
16-043-115 | - | - | - | 48 | 0 | 0 | ||
16-044-81 | - | - | - | 48 | 0 | 0 | ||
16-044-181 | - | - | - | 48 | 0 | 0 |
Selected F2 Plants | F3 DM Phenotype | PlArg SNP Marker | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NSA_002208 | NSA_000630 | NSA_004149 | NSA_005423 | NSA_005063 | NSA_002851 | NSA_002867 | NSA_005624 | NSA_002798 | NSA_002131 | NSA_008037 | NSA_007595 | NSA_001835 | NSA_006530 | ||
RHA397 | S | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RHA464 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-21-129 | R | B | B | B | B | B | B | B | B | B | B | B | H | H | H |
14-21-319 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-21-413 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
HA-R2 | S | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RHA464 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-22-693 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-22-694 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-22-737 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
14-22-786 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
HA-R3 | S | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RHA464 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
16-69-18 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
16-69-46 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
16-69-121 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
16-69-288 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
HA-R8 | S | A | A | A | A | A | A | A | A | A | A | A | A | A | A |
RHA464 | R | B | B | B | B | B | B | B | B | B | B | B | B | B | B |
16-46-202 | S | A | A | A | A | A | B | B | B | B | B | B | B | B | B |
16-46-329 | S | A | A | A | A | A | B | B | B | B | B | B | B | B | B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Ma, G. Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower (Helianthus annuus L.). Genes 2020, 11, 10. https://doi.org/10.3390/genes11010010
Qi L, Ma G. Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower (Helianthus annuus L.). Genes. 2020; 11(1):10. https://doi.org/10.3390/genes11010010
Chicago/Turabian StyleQi, Lili, and Guojia Ma. 2020. "Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower (Helianthus annuus L.)" Genes 11, no. 1: 10. https://doi.org/10.3390/genes11010010
APA StyleQi, L., & Ma, G. (2020). Marker-Assisted Gene Pyramiding and the Reliability of Using SNP Markers Located in the Recombination Suppressed Regions of Sunflower (Helianthus annuus L.). Genes, 11(1), 10. https://doi.org/10.3390/genes11010010