The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility
Abstract
:1. Introduction
2. Overview of the Y Chromosome Evolution and Structure
3. Mosaics and Y Chromosome Structural Anomalies
3.1. Mosaics
3.2. Chromosome Rings and Isodicentric Chromosomes
3.3. Chromosome Translocations
4. Y Chromosome Aneuploidies
4.1. Disomy of the Y
4.2. Sex Chromosomes Multisomy
5. The PAR Regions
6. The Sex-Determining Region of the Y (SRY)
7. The MSY Euchromatic (MSYe) Region
7.1. Overview of the MSYe Region
7.2. Spermatogenesis-Related Genes in the Yp
7.3. Yq Chromosome Microdeletions and the Azoospermia Factor (AZF) Regions
8. The MSY Heterochromatic Region (MSYh)
9. Discussion
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Infertility Definitions and Terminology; WHO: Geneva, Switzerland, 2016; Available online: http://www.who.int/reproductivehealth/topics/infertility/definitions/en/ (accessed on 24 November 2017).
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadis, F.; Adonakis, G.; Kaponis, A.; Mamoulakis, C.; Takenaka, A.; Sofikitis, N. Pre-Testicular, Testicular, and Post-Testicular Causes of Male Infertility; Springer: Cham, Switzerland, 2017; pp. 1–47. [Google Scholar]
- Tournaye, H.; Krausz, C.; Oates, R.D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017, 5, 544–553. [Google Scholar] [CrossRef]
- European Association of Urology (EAU). Guidelines—Male Infertility. Available online: http://uroweb.org/guideline/male-infertility/ (accessed on 7 November 2017).
- Hamada, A.; Esteves, S.; Agarwal, A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics 2013, 68, 39–60. [Google Scholar] [CrossRef]
- Wosnitzer, M.S.; Goldstein, M. Obstructive azoospermia. Urol. Clin. North Am. 2014, 41, 83–95. [Google Scholar] [CrossRef]
- Barazani, Y.; Katz, B.F.; Nagler, H.M.; Stember, D.S. Lifestyle, Environment, and Male Reproductive Health. Urol. Clin. North Am. 2014, 41, 55–66. [Google Scholar] [CrossRef]
- Cooper, T.G.; Noonan, E.; von Eckardstein, S.; Auger, J.; Baker, H.W.G.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T.; et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef]
- Johnson, S.L.; Dunleavy, J.; Gemmell, N.J.; Nakagawa, S. Consistent age-dependent declines in human semen quality: A systematic review and meta-analysis. Ageing Res. Rev. 2015, 19, 22–33. [Google Scholar] [CrossRef]
- Joffe, M. Time trends in biological fertility in Britain. Lancet 2000, 355, 1961–1965. [Google Scholar] [CrossRef]
- Bachtrog, D. Y-chromosome evolution: Emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 2013, 14, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.T.; Grafham, D.V.; Coffey, A.J.; Scherer, S.; McLay, K.; Muzny, D.; Platzer, M.; Howell, G.R.; Burrows, C.; Bird, C.P.; et al. The DNA sequence of the human X chromosome. Nature 2005, 434, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.F.; Page, D.C. The Biology and Evolution of Mammalian Y Chromosomes. Annu. Rev. Genet. 2015, 49, 507–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellott, D.W.; Page, D.C. Reconstructing the Evolution of Vertebrate Sex Chromosomes. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Gulía, C.; Baldassarra, S.; Zangari, A.; Briganti, V.; Gigli, S.; Gaffi, M.; Signore, F.; Vallone, C.; Nucciotti, R.; Costantini, F.M.; et al. Androgen insensitivity syndrome. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3873–3887. [Google Scholar] [PubMed]
- Hallast, P.; Jobling, M.A. The Y chromosomes of the great apes. Hum. Genet. 2017, 136, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.F.; Skaletsky, H.; Koutseva, N.; Pyntikova, T.; Page, D.C. Sex chromosome-to-autosome transposition events counter Y-chromosome gene loss in mammals. Genome Biol. 2015, 16, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellott, D.W.; Hughes, J.F.; Skaletsky, H.; Brown, L.G.; Pyntikova, T.; Cho, T.-J.; Koutseva, N.; Zaghlul, S.; Graves, T.; Rock, S.; et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014, 508, 494–499. [Google Scholar] [CrossRef]
- Krausz, C.; Casamonti, E. Spermatogenic failure and the Y chromosome. Hum. Genet. 2017, 136, 637–655. [Google Scholar] [CrossRef]
- Graves, J.A. The origin and function of the mammalian Y chromosome and Y-borne genes—An evolving understanding. Bioessays 1995, 17, 311–320. [Google Scholar] [CrossRef]
- Quintana-Murci, L.; Fellous, M. The Human Y Chromosome: The Biological Role of a Functional Wasteland. J. Biomed. Biotechnol. 2001, 1, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Poznik, G.D.; Xue, Y.; Mendez, F.L.; Willems, T.F.; Massaia, A.; Wilson Sayres, M.A.; Ayub, Q.; McCarthy, S.A.; Narechania, A.; Kashin, S.; et al. Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat. Genet. 2016, 48, 593–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucotte, E.A.; Skov, L.; Jensen, J.M.; Macià, M.C.; Munch, K.; Schierup, M.H. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations. Genetics 2018, 209, 907–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naqvi, S.; Bellott, D.W.; Lin, K.S.; Page, D.C. Conserved microRNA targeting reveals preexisting gene dosage sensitivities that shaped amniote sex chromosome evolution. Genome Res. 2018, 28, 474–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellott, D.W.; Skaletsky, H.; Cho, T.-J.; Brown, L.; Locke, D.; Chen, N.; Galkina, S.; Pyntikova, T.; Koutseva, N.; Graves, T.; et al. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat. Genet. 2017, 49, 387–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Roman, A.K.; Page, D.C. A strategic research alliance: Turner syndrome and sex differences. Am. J. Med. Genet. C. Semin. Med. Genet. 2019, 181, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Haseltine, P.; Michael, E.; McClure, M.; Goldberg, E. Genetic Markers of Sex Differentiation, 1st ed.; Springer: New York, NY, USA, 1987; ISBN 978-1-4899-1965-6. [Google Scholar]
- Layman, L.C.; Tho, S.P.T.; Clark, A.D.; Kulharya, A.; McDonough, P.G. Phenotypic spectrum of 45,X/46,XY males with a ring Y chromosome and bilaterally descended testes. Fertil. Steril. 2009, 91, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Reindollar, R.H.; Byrd, J.R.; Hahn, D.H.; Haseltine, F.P.; McDonough, P.G. A cytogenetic and endocrinologic study of a set of monozygotic isokaryotic 45,X/46,XY twins discordant for phenotypic sex: Mosaicism versus chimerism. Fertil. Steril. 1987, 47, 626–633. [Google Scholar] [CrossRef]
- Quilter, C.; Nathwani, N.; Conway, G.; Stanhope, R.; Ralph, D.; Bahadur, G.; Serhal, P.; Taylor, K.; Delhanty, J. A comparative study between infertile males and patients with Turner syndrome to determine the influence of sex chromosome mosaicism and the breakpoints of structurally abnormal Y chromosomes on phenotypic sex. J. Med. Genet. 2002, 39, e80. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.S.; Sulcova, V. Pathogenetics of 45,X/46,XY gonadal mosaicism. Cytogenet. Genome Res. 1998, 82, 52–57. [Google Scholar] [CrossRef]
- Beaulieu Bergeron, M.; Brochu, P.; Lemyre, E.; Lemieux, N. Correlation of intercentromeric distance, mosaicism, and sexual phenotype: Molecular localization of breakpoints in isodicentric Y chromosomes. Am. J. Med. Genet. A 2011, 155A, 2705–2712. [Google Scholar] [CrossRef]
- Gantt, P.A.; Byrd, J.R.; Greenblatt, R.B.; McDonough, P.G. A clinical and cytogenetic study of fifteen patients with 45,X/46XY gonadal dysgenesis. Fertil. Steril. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Tho, S.P.; Layman, L.C.; Lanclos, K.D.; Plouffe, L.; Byrd, J.R.; McDonough, P.G. Absence of the testicular determining factor gene SRY in XX true hermaphrodites and presence of this locus in most subjects with gonadal dysgenesis caused by Y aneuploidy. Am. J. Obstet. Gynecol. 1992, 167, 1794–1802. [Google Scholar] [CrossRef]
- Telvi, L.; Lebbar, A.; Del Pino, O.; Barbet, J.P.; Chaussain, J.L. 45,X/46,XY mosaicism: Report of 27 cases. Pediatrics 1999, 104, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Ly, P.; Teitz, L.S.; Kim, D.H.; Shoshani, O.; Skaletsky, H.; Fachinetti, D.; Page, D.C.; Cleveland, D.W. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 2017, 19, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghezraoui, H.; Piganeau, M.; Renouf, B.; Renaud, J.-B.; Sallmyr, A.; Ruis, B.; Oh, S.; Tomkinson, A.E.; Hendrickson, E.A.; Giovannangeli, C.; et al. Chromosomal Translocations in Human Cells Are Generated by Canonical Nonhomologous End-Joining. Mol. Cell 2014, 55, 829–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henegariu, O.; Pescovitz, O.H.; Vance, G.H.; Verbrugge, J.; Heerema, N.A. A case with mosaic di-, tetra-, and octacentric ring Y chromosomes. Am. J. Med. Genet. 1997, 71, 426–429. [Google Scholar] [CrossRef]
- Arnedo, N.; Nogués, C.; Bosch, M.; Templado, C. Mitotic and meiotic behaviour of a naturally transmitted ring Y chromosome: Reproductive risk evaluation. Hum. Reprod. 2005, 20, 462–468. [Google Scholar] [CrossRef]
- Schellberg, R.; Schwanitz, G.; Schweikert, H.-U.; Raff, R. Chromosome Mosaicism in Patients with Normal and Abnormal Y-Chromosome. Int. J. Hum. Genet. 2002, 2, 213–221. [Google Scholar] [CrossRef]
- Lange, J.; Skaletsky, H.; van Daalen, S.K.M.; Embry, S.L.; Korver, C.M.; Brown, L.G.; Oates, R.D.; Silber, S.; Repping, S.; Page, D.C. Isodicentric Y Chromosomes and Sex Disorders as Byproducts of Homologous Recombination that Maintains Palindromes. Cell 2009, 138, 855–869. [Google Scholar] [CrossRef] [Green Version]
- Lange, J.; Noordam, M.J.; van Daalen, S.K.M.; Skaletsky, H.; Clark, B.A.; Macville, M.V.; Page, D.C.; Repping, S. Intrachromosomal homologous recombination between inverted amplicons on opposing Y-chromosome arms. Genomics 2013, 102, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.Y. Phenotype/karyotype correlations of Y chromosome aneuploidy with emphasis on structural aberrations in postnatally diagnosed cases. Am. J. Med. Genet. 1994, 53, 108–140. [Google Scholar] [CrossRef] [PubMed]
- Hughes, I.A.; Houk, C.; Ahmed, S.F.; Lee, P.A.; LWPES/ESPE Consensus Group. Consensus statement on management of intersex disorders. Arch. Dis. Child. 2005, 91, 554–563. [Google Scholar] [CrossRef] [PubMed]
- De la Chapelle, A. Analytic review: nature and origin of males with XX sex chromosomes. Am. J. Hum. Genet. 1972, 24, 71–105. [Google Scholar] [PubMed]
- De la Chapelle, A. The etiology of maleness in XX men. Hum. Genet. 1981, 58, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Ergun-Longmire, B.; Vinci, G.; Alonso, L.; Matthew, S.; Tansil, S.; Lin-Su, K.; McElreavey, K.; New, M.I. Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J. Pediatr. Endocrinol. Metab. 2005, 18, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Vorona, E.; Zitzmann, M.; Gromoll, J.; Schüring, A.N.; Nieschlag, E. Clinical, endocrinological, and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J. Clin. Endocrinol. Metab. 2007, 92, 3458–3465. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Page, D.C.; de la Chapelle, A. Chromosome Y-specific DNA is transferred to the short arm of X chromosome in human XX males. Science 1986, 233, 786–788. [Google Scholar] [CrossRef]
- Morales, C.; Soler, A.; Bruguera, J.; Madrigal, I.; Alsius, M.; Obon, M.; Margarit, E.; Sánchez, A. Pseudodicentric 22;Y translocation transmitted through four generations of a large family without phenotypic repercussion. Cytogenet. Genome Res. 2007, 116, 319–323. [Google Scholar] [CrossRef]
- Uçan, B.; Özbek, M.; Topaloğlu, O.; Yeşilyurt, A.; Güngüneş, A.; Demirci, T.; Delibaşı, T. 46,XX Male Syndrome. Turk. J. Endocrinol. Metab. 2013, 17, 46–48. [Google Scholar] [CrossRef]
- Kusz, K.; Kotecki, M.; Wojda, A.; Szarras-Czapnik, M.; Latos-Bielenska, A.; Warenik-Szymankiewicz, A.; Ruszczynska-Wolska, A.; Jaruzelska, J. Incomplete masculinisation of XX subjects carrying the SRY gene on an inactive X chromosome. J. Med. Genet. 1999, 36, 452–456. [Google Scholar]
- Abusheikha, N.; Lass, A.; Brinsden, P. XX males without SRY gene and with infertility. Hum. Reprod. 2001, 16, 717–718. [Google Scholar] [CrossRef] [PubMed]
- Rajender, S.; Rajani, V.; Gupta, N.; Chakravarty, B.; Singh, L.; Thangaraj, K. SRY-negative 46,XX male with normal genitals, complete masculinization and infertility. Mol. Hum. Reprod. 2006, 12, 341–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, O.; Mehmet, E. A 46, XX SRY—negative man with infertility, and co-existing with chronic autoimmune thyroiditis. Gynecol. Endocrinol. 2010, 26, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Vetro, A.; Dehghani, M.R.; Kraoua, L.; Giorda, R.; Beri, S.; Cardarelli, L.; Merico, M.; Manolakos, E.; Parada-Bustamante, A.; Castro, A.; et al. Testis development in the absence of SRY: Chromosomal rearrangements at SOX9 and SOX3. Eur. J. Hum. Genet. 2015, 23, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Grinspon, R.P.; Rey, R.A. Disorders of Sex Development with Testicular Differentiation in SRY-Negative 46,XX Individuals: Clinical and Genetic Aspects. Sex. Dev. 2016, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Genetics Home Reference. Available online: https://ghr.nlm.nih.gov/ (accessed on 7 December 2017).
- Kim, I.W.; Khadilkar, A.C.; Ko, E.Y.; Sabanegh, E.S. 47,XYY Syndrome and Male Infertility. Rev. Urol. 2013, 15, 188–196. [Google Scholar] [PubMed]
- Jacobs, P.A.; Melville, M.; Ratcliffe, S.; Keay, A.J.; Syme, J. A cytogenetic survey of 11,680 newborn infants. Ann. Hum. Genet. 1974, 37, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Hann, M.C.; Lau, P.E.; Tempest, H.G. Meiotic recombination and male infertility: From basic science to clinical reality? Asian J. Androl. 2011, 13, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harton, G.L.; Tempest, H.G. Chromosomal disorders and male infertility. Asian J. Androl. 2012, 14, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tempest, H.G.; Homa, S.T.; Dalakiouridou, M.; Christopikou, D.; Wright, D.; Zhai, X.P.; Griffin, D.K. The association between male infertility and sperm disomy: Evidence for variation in disomy levels among individuals and a correlation between particular semen parameters and disomy of specific chromosome pairs. Reprod. Biol. Endocrinol. 2004, 2, 82. [Google Scholar] [CrossRef] [Green Version]
- Chatziparasidou, A.; Christoforidis, N.; Samolada, G.; Nijs, M. Sperm aneuploidy in infertile male patients: A systematic review of the literature. Andrologia 2015, 47, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Boisen, E.; Rasmussen, L. Tremor in XYY and XXY men. Acta Neurol. Scand. 1978, 58, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.A.; Jane, A.; Hamerton, J.L.; John, L.; Robinson, A. March of Dimes Birth Defects Foundation. Children and young adults with sex chromosome aneuploidy: Follow-up, clinical, and molecular studies. In Proceedings of the 5th International Workshop on Sex, Chromosome Anomalies held at Minaki, ON, Canada, 7–10 June 1989; Wiley-Liss: Hoboken, NJ, USA, 1991; ISBN 0-471568-465. [Google Scholar]
- Brown, W.M. Males with an XYY sex chromosome complement. J. Med. Genet. 1968, 5, 341–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theilgaard, A. A psychological study of the personalities of XYY- and XXY-men. Acta Psychiatr. Scand. Suppl. 1984, 315, 1–133. [Google Scholar] [PubMed]
- Abdel-Razic, M.M.; Abdel-Hamid, I.A.; ElSobky, E.S. Nonmosaic 47,XYY syndrome presenting with male infertility: Case series. Andrologia 2012, 44, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Egozcue, J.; Vidal, F. Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies (47,XXY, mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization. Hum. Reprod. 2001, 16, 887–892. [Google Scholar] [CrossRef] [Green Version]
- Moretti, E.; Anichini, C.; Sartini, B.; Collodel, G. Sperm ultrastructure and meiotic segregation in an infertile 47, XYY man. Andrologia 2007, 39, 229–234. [Google Scholar] [CrossRef]
- Rives, N.; Milazzo, J.P.; Miraux, L.; North, M.-O.; Sibert, L.; Mace, B. From spermatocytes to spermatozoa in an infertile XYY male. Int. J. Androl. 2005, 28, 304–310. [Google Scholar] [CrossRef]
- Wong, E.C.; Ferguson, K.A.; Chow, V.; Ma, S. Sperm aneuploidy and meiotic sex chromosome configurations in an infertile XYY male. Hum. Reprod. 2008, 23, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Royo, H.; Polikiewicz, G.; Mahadevaiah, S.K.; Prosser, H.; Mitchell, M.; Bradley, A.; de Rooij, D.G.; Burgoyne, P.S.; Turner, J.M.A. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr. Biol. 2010, 20, 2117–2123. [Google Scholar] [CrossRef] [Green Version]
- Linden, M.G.; Bender, B.G.; Robinson, A. Sex chromosome tetrasomy and pentasomy. Pediatrics 1995, 96, 672–682. [Google Scholar] [PubMed]
- Frühmesser, A.; Kotzot, D. Chromosomal Variants in Klinefelter Syndrome. Sex. Dev. 2011, 5, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Tartaglia, N.; Ayari, N.; Howell, S.; D’Epagnier, C.; Zeitler, P. 48,XXYY, 48,XXXY and 49,XXXXY syndromes: Not just variants of Klinefelter syndrome. Acta Paediatr. 2011, 100, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, K.; Nielsen, J.; Jacobsen, P.; Rølle, T. The 48,XXYY syndrome. J. Ment. Defic. Res. 1978, 22, 197–205. [Google Scholar]
- Tartaglia, N.; Davis, S.; Hench, A.; Nimishakavi, S.; Beauregard, R.; Reynolds, A.; Fenton, L.; Albrecht, L.; Ross, J.; Visootsak, J.; et al. A new look at XXYY syndrome: Medical and psychological features. Am. J. Med. Genet. A 2008, 146A, 1509–1522. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, V.K.; Tsagaris, K.C.; Attinger, C.E. Leg ulcers associated with Klinefelter’s syndrome: A case report and review of the literature. Int. Wound J. 2012, 9, 104–107. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T.; Delozier, C.D.; Cohen, M.P.; Kasselberg, A.G.; Engel, E.; Rabin, D. Genetic and endocrine findings in a 48,XXYY male. J. Clin. Endocrinol. Metab. 1980, 50, 740–743. [Google Scholar] [CrossRef]
- Roche, C.; Sonigo, C.; Benmiloud-Tandjaoui, N.; Boujenah, J.; Benzacken, B.; Poncelet, C.; Hugues, J.-N. Azoospermie et tétrasomie 48,XXYY: Quelle prise en charge de l’infertilité? Gynécologie Obs. Fertil. 2014, 42, 528–532. [Google Scholar] [CrossRef]
- Hunter, H.; Quaife, R. A 48,XYYY male: A somatic and psychiatric description. J. Med. Genet. 1973, 10, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Shanske, A.; Sachmechi, I.; Patel, D.K.; Bishnoi, A.; Rosner, F. An adult with 49,XYYYY karyotype: Case report and endocrine studies. Am. J. Med. Genet. 1998, 80, 103–106. [Google Scholar] [CrossRef]
- Paoloni-Giacobino, A.; Lespinasse, J. Chromosome Y polysomy: A non-mosaic 49,XYYYY case. Clin. Dysmorphol. 2007, 16, 65–66. [Google Scholar] [CrossRef] [PubMed]
- Demily, C.; Poisson, A.; Peyroux, E.; Gatellier, V.; Nicolas, A.; Rigard, C.; Schluth-Bolard, C.; Sanlaville, D.; Rossi, M. Autism spectrum disorder associated with 49,XYYYY: Case report and review of the literature. BMC Med. Genet. 2017, 18, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Berghe, H.; Verresen, H.; Cassiman, J.J. Letters to the Editor: A Male with 4 Y-Chromosomes. J. Clin. Endocrinol. Metab. 1968, 28, 1370–1372. [Google Scholar] [CrossRef] [PubMed]
- Bichile, D.; Kharkar, A.; Menon, P.; Potnis-Lele, M.; Bankar, M.; Shroff, G. Y chromosome: Structure and biological functions. Indian J. Basic Appl. Med. Res. 2014, 3, 152–160. [Google Scholar]
- Dhanoa, J.K.; Mukhopadhyay, C.S.; Arora, J.S. Y-chromosomal genes affecting male fertility: A review. Vet. World 2016, 9, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Kauppi, L.; Barchi, M.; Baudat, F.; Romanienko, P.J.; Keeney, S.; Jasin, M. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 2011, 331, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Ellison, J.W.; Wardak, Z.; Young, M.F.; Gehron Robey, P.; Laig-Webster, M.; Chiong, W. PHOG, a candidate gene for involvement in the short stature of Turner syndrome. Hum. Mol. Genet. 1997, 6, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Rao, E.; Weiss, B.; Fukami, M.; Rump, A.; Niesler, B.; Mertz, A.; Muroya, K.; Binder, G.; Kirsch, S.; Winkelmann, M.; et al. Pseudoautosomal deletions encompassing a novel homeobox gene cause growth failure in idiopathic short stature and Turner syndrome. Nat. Genet. 1997, 16, 54–63. [Google Scholar] [CrossRef]
- Lencz, T.; Morgan, T.V.; Athanasiou, M.; Dain, B.; Reed, C.R.; Kane, J.M.; Kucherlapati, R.; Malhotra, A.K. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol. Psychiatr. 2007, 12, 572–580. [Google Scholar] [CrossRef]
- Flaquer, A.; Jamra, R.A.; Etterer, K.; Díaz, G.O.; Rivas, F.; Rietschel, M.; Cichon, S.; Nöthen, M.M.; Strauch, K. A new susceptibility locus for bipolar affective disorder in PAR1 on Xp22.3/Yp11.3. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2010, 153B, 1110–1114. [Google Scholar] [CrossRef]
- Helena Mangs, A.; Morris, B.J. The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr. Genom. 2007, 8, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel-Robez, O.; Rumpler, Y.; Ratomponirina, C.; Petit, C.; Levilliers, J.; Croquette, M.F.; Couturier, J. Deletion of the pseudoautosomal region and lack of sex-chromosome pairing at pachytene in two infertile men carrying an X;Y translocation. Cytogenet. Cell Genet. 1990, 54, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Mohandas, T.K.; Speed, R.M.; Passage, M.B.; Yen, P.H.; Chandley, A.C.; Shapiro, L.J. Role of the pseudoautosomal region in sex-chromosome pairing during male meiosis: Meiotic studies in a man with a deletion of distal Xp. Am. J. Hum. Genet. 1992, 51, 526–533. [Google Scholar] [PubMed]
- Hassold, T.J.; Sherman, S.L.; Pettay, D.; Page, D.C.; Jacobs, P.A. XY chromosome nondisjunction in man is associated with diminished recombination in the pseudoautosomal region. Am. J. Hum. Genet. 1991, 49, 253–260. [Google Scholar] [PubMed]
- Shi, Q.; Martin, R.H. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction 2001, 121, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Kauppi, L.; Jasin, M.; Keeney, S. The tricky path to recombining X and Y chromosomes in meiosis. Ann. N. Y. Acad. Sci. 2012, 1267, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veerappa, A.M.; Padakannaya, P.; Ramachandra, N.B. Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome. Funct. Integr. Genom. 2013, 13, 285–293. [Google Scholar] [CrossRef]
- Colaco, S.; Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018, 16, 14. [Google Scholar] [CrossRef] [Green Version]
- Jorgez, C.J.; Weedin, J.W.; Sahin, A.; Tannour-Louet, M.; Han, S.; Bournat, J.C.; Mielnik, A.; Cheung, S.W.; Nangia, A.K.; Schlegel, P.N.; et al. Aberrations in pseudoautosomal regions (PARs) found in infertile men with Y-chromosome microdeletions. J. Clin. Endocrinol. Metab. 2011, 96, E674–E679. [Google Scholar] [CrossRef]
- Chianese, C.; Lo Giacco, D.; Tüttelmann, F.; Ferlin, A.; Ntostis, P.; Vinci, S.; Balercia, G.; Ars, E.; Ruiz-Castañé, E.; Giglio, S.; et al. Y-chromosome microdeletions are not associated with SHOX haploinsufficiency. Hum. Reprod. 2013, 28, 3155–3160. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Rodríguez, F.; Flórez, M.; López, P.; Curotto, B.; Martínez, D.; Maturana, A.; Lardone, M.C.; Palma, C.; Mericq, V.; et al. Pseudoautosomal abnormalities in terminal AZFb+c deletions are associated with isochromosomes Yp and may lead to abnormal growth and neuropsychiatric function. Hum. Reprod. 2017, 32, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- She, Z.-Y.; Yang, W.-X. Sry and SoxE genes: How they participate in mammalian sex determination and gonadal development? Semin. Cell Dev. Biol. 2017, 63, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Kashimada, K.; Koopman, P. Sry: the master switch in mammalian sex determination. Development 2010, 137, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.H.; Besikoglu, B.; Bettendorf, M.; Frank-Herrmann, P.; Zimmer, J.; Bender, U.; Knauer-Fischer, S.; Choukair, D.; Sinn, P.; Lau, Y.-F.C.; et al. Gonadoblastoma Y locus genes expressed in germ cells of individuals with dysgenetic gonads and a Y chromosome in their karyotypes include DDX3Y and TSPY. Hum. Reprod. 2019, 34, 770–779. [Google Scholar] [CrossRef]
- Hersmus, R.; van Bever, Y.; Wolffenbuttel, K.P.; Biermann, K.; Cools, M.; Looijenga, L.H.J. The biology of germ cell tumors in disorders of sex development. Clin. Genet. 2017, 91, 292–301. [Google Scholar] [CrossRef] [Green Version]
- Kido, T.; Lau, Y.-F.C. Roles of the Y chromosome genes in human cancers. Asian J. Androl. 2015, 17, 373–380. [Google Scholar]
- Anık, A.; Çatlı, G.; Abacı, A.; Böber, E. 46,XX male disorder of sexual development:a case report. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 258–260. [Google Scholar]
- Bashamboo, A.; Rahman, M.M.; Prasad, A.; Chandy, S.P.; Ahmad, J.; Ali, S. Fate of SRY, PABY, DYS1, DYZ3 and DYZ1 loci in Indian patients harbouring sex chromosomal anomalies. Mol. Hum. Reprod. 2005, 11, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Dehghani, M.; Rossi, E.; Vetro, A.; Russo, G.; Hashemian, Z.; Zuffardi, O. A newborn with ambiguous genitalia and a complex X;Y rearrangement. Iran. J. Reprod. Med. 2014, 12, 351–356. [Google Scholar]
- Premi, S.; Srivastava, J.; Chandy, S.P.; Ahmad, J.; Ali, S. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation. MHR Basic Sci. Reprod. Med. 2006, 12, 113–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, A.; Yadav, S.K.; Misro, M.M.; Ahmad, J.; Ali, S. Copy number variation and microdeletions of the Y chromosome linked genes and loci across different categories of Indian infertile males. Sci. Rep. 2015, 5, 17780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jangravi, Z.; Alikhani, M.; Arefnezhad, B.; Sharifi Tabar, M.; Taleahmad, S.; Karamzadeh, R.; Jadaliha, M.; Mousavi, S.A.; Ahmadi Rastegar, D.; Parsamatin, P.; et al. A fresh look at the male-specific region of the human Y chromosome. J. Proteome Res. 2013, 12, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Massaia, A.; Xue, Y. Human Y chromosome copy number variation in the next generation sequencing era and beyond. Hum. Genet. 2017, 136, 591–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, M.M.; Van Geystelen, A.; Larmuseau, M.H.D.; Djurovic, S.; Andreassen, O.A.; Agartz, I.; Jazin, E. Microarray Analysis of Copy Number Variants on the Human Y Chromosome Reveals Novel and Frequent Duplications Overrepresented in Specific Haplogroups. PLoS ONE 2015, 10, e0137223. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-M.; Cooper, D.N.; Chuzhanova, N.; Férec, C.; Patrinos, G.P. Gene conversion: Mechanisms, evolution and human disease. Nat. Rev. Genet. 2007, 8, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Rosser, Z.H.; Balaresque, P.; Jobling, M.A. Gene Conversion between the X Chromosome and the Male-Specific Region of the Y Chromosome at a Translocation Hotspot. Am. J. Hum. Genet. 2009, 85, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, B.; Sellitto, D.; Scozzari, R.; Cruciani, F. Inter- and intraspecies phylogenetic analyses reveal extensive X-Y gene conversion in the evolution of gametologous sequences of human sex chromosomes. Mol. Biol. Evol. 2014, 31, 2108–2123. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, B.; D’Atanasio, E.; Cruciani, F. Patterns of Inter-Chromosomal Gene Conversion on the Male-Specific Region of the Human Y Chromosome. Front. Genet. 2017, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Trombetta, B.; Cruciani, F. Y chromosome palindromes and gene conversion. Hum. Genet. 2017, 136, 605–619. [Google Scholar] [CrossRef]
- Trombetta, B.; Fantini, G.; D’Atanasio, E.; Sellitto, D.; Cruciani, F. Evidence of extensive non-allelic gene conversion among LTR elements in the human genome. Sci. Rep. 2016, 6, 28710. [Google Scholar] [CrossRef] [PubMed]
- Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.; Chan, D.C.; Brown, L.G.; Alagappan, R.; Pettay, D.; Disteche, C.; McGillivray, B.; de la Chapelle, A.; Page, D.C. Reconstructing hominid Y evolution: X-homologous block, created by X-Y transposition, was disrupted by Yp inversion through LINE-LINE recombination. Hum. Mol. Genet. 1998, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukulmez, O. Genetic Aspects of Male Infertility. In Male Infertility; Springer: New York, NY, USA, 2012; pp. 171–189. [Google Scholar]
- Rozen, S.; Marszalek, J.D.; Alagappan, R.K.; Skaletsky, H.; Page, D.C. Remarkably Little Variation in Proteins Encoded by the Y Chromosome’s Single-Copy Genes, Implying Effective Purifying Selection. Am. J. Hum. Genet. 2009, 85, 923–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.; Kalsi, A.K.; Kumar, P.; Halder, A. The Human Y Chromosome. In Basics of Human Andrology: A Textbook; Kumar, A., Sharma, M., Eds.; Springer: Singapore, 2017; pp. 77–98. ISBN 978-981-10-3695-8. [Google Scholar]
- Jobling, M.A.; Lo, I.C.C.; Turner, D.J.; Bowden, G.R.; Lee, A.C.; Xue, Y.; Carvalho-Silva, D.; Hurles, M.E.; Adams, S.M.; Chang, Y.M.; et al. Structural variation on the short arm of the human Y chromosome: Recurrent multigene deletions encompassing Amelogenin, Y. Hum. Mol. Genet. 2007, 16, 307–316. [Google Scholar] [CrossRef]
- Repping, S.; van Daalen, S.K.M.; Brown, L.G.; Korver, C.M.; Lange, J.; Marszalek, J.D.; Pyntikova, T.; van der Veen, F.; Skaletsky, H.; Page, D.C.; et al. High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat. Genet. 2006, 38, 463–467. [Google Scholar] [CrossRef]
- Skov, L.; Schierup, M.H.; Schierup, M.H. Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion. PLoS Genet. 2017, 13, e1006834. [Google Scholar] [CrossRef] [Green Version]
- Teitz, L.S.; Pyntikova, T.; Skaletsky, H.; Page, D.C. Selection Has Countered High Mutability to Preserve the Ancestral Copy Number of Y Chromosome Amplicons in Diverse Human Lineages. Am. J. Hum. Genet. 2018, 103, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, B.K.; Satta, Y.; Takahata, N. The origin and evolution of human ampliconic gene families and ampliconic structure. Genome Res. 2007, 17, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Ye, D.; Zaidi, A.A.; Tomaszkiewicz, M.; Anthony, K.; Liebowitz, C.; DeGiorgio, M.; Shriver, M.D.; Makova, K.D. High Levels of Copy Number Variation of Ampliconic Genes across Major Human Y Haplogroups. Genome Biol. Evol. 2018, 10, 1333–1350. [Google Scholar] [CrossRef]
- Decarpentrie, F.; Vernet, N.; Mahadevaiah, S.K.; Longepied, G.; Streichemberger, E.; Aknin-Seifer, I.; Ojarikre, O.A.; Burgoyne, P.S.; Metzler-Guillemain, C.; Mitchell, M.J. Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential. Hum. Mol. Genet. 2012, 21, 2631–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakasuji, T.; Ogonuki, N.; Chiba, T.; Kato, T.; Shiozawa, K.; Yamatoya, K.; Tanaka, H.; Kondo, T.; Miyado, K.; Miyasaka, N.; et al. Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction. PLoS Genet. 2017, 13, e1006578. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.; Kirkels, V.G.; Scheres, J.M. Absence of Turner stigmata in a 46,XYp-female. Hum. Genet. 1992, 90, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, D.J.; Qiu, Y.; Kido, T.; Lau, Y.-F.C. The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants. Hum. Mol. Genet. 2017, 26, 901–912. [Google Scholar] [CrossRef]
- Krausz, C.; Giachini, C.; Forti, G. TSPY and Male Fertility. Genes 2010, 1, 308–316. [Google Scholar] [CrossRef]
- Giachini, C.; Nuti, F.; Turner, D.J.; Laface, I.; Xue, Y.; Daguin, F.; Forti, G.; Tyler-Smith, C.; Krausz, C. TSPY1 Copy Number Variation Influences Spermatogenesis and Shows Differences among Y Lineages. J. Clin. Endocrinol. Metab. 2009, 94, 4016–4022. [Google Scholar] [CrossRef]
- Yang, X.; Leng, X.; Tu, W.; Liu, Y.; Xu, J.; Pei, X.; Ma, Y.; Yang, D.; Yang, Y. Spermatogenic phenotype of testis-specific protein, Y-encoded, 1 (TSPY1) dosage deficiency is independent of variations in TSPY-like 1 (TSPYL1) and TSPY-like 5 (TSPYL5): A case-control study in a Han Chinese population. Reprod. Fertil. Dev. 2018, 30, 555–562. [Google Scholar] [CrossRef]
- Vogt, P.H.; Edelmann, A.; Kirsch, S.; Henegariu, O.; Hirschmann, P.; Kiesewetter, F.; Köhn, F.M.; Schill, W.B.; Farah, S.; Ramos, C.; et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 1996, 5, 933–943. [Google Scholar] [CrossRef]
- Kent-First, M.; Muallem, A.; Shultz, J.; Pryor, J.; Roberts, K.; Nolten, W.; Meisner, L.; Chandley, A.; Gouchy, G.; Jorgensen, L.; et al. Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Mol. Reprod. Dev. 1999, 53, 27–41. [Google Scholar] [CrossRef]
- Krausz, C.; Hoefsloot, L.; Simoni, M.; Tüttelmann, F.; European Academy of Andrology; European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: State-of-the-art 2013. Andrology 2014, 2, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Colaco, S.; Modi, D. Consequences of Y chromosome microdeletions beyond male infertility. J. Assist. Reprod. Genet. 2019, 36, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Maan, A.A.; Eales, J.; Akbarov, A.; Rowland, J.; Xu, X.; Jobling, M.A.; Charchar, F.J.; Tomaszewski, M. The Y chromosome: A blueprint for men’s health? Eur. J. Hum. Genet. 2017, 25, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
- Rozen, S.G.; Marszalek, J.D.; Irenze, K.; Skaletsky, H.; Brown, L.G.; Oates, R.D.; Silber, S.J.; Ardlie, K.; Page, D.C. AZFc Deletions and Spermatogenic Failure: A Population-Based Survey of 20,000 Y Chromosomes. Am. J. Hum. Genet. 2012, 91, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Repping, S.; Skaletsky, H.; Brown, L.; van Daalen, S.K.M.; Korver, C.M.; Pyntikova, T.; Kuroda-Kawaguchi, T.; de Vries, J.W.A.; Oates, R.D.; Silber, S.; et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat. Genet. 2003, 35, 247–251. [Google Scholar] [CrossRef]
- Cram, D.S.; Osborne, E.; McLachlan, R.I. Y chromosome microdeletions: Implications for assisted conception. Med. J. Aust. 2006, 185, 433–434. [Google Scholar] [CrossRef]
- Sun, C.; Skaletsky, H.; Rozen, S.; Gromoll, J.; Nieschlag, E.; Oates, R.; Page, D.C. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum. Mol. Genet. 2000, 9, 2291–2296. [Google Scholar] [CrossRef] [Green Version]
- Kuroda-Kawaguchi, T.; Skaletsky, H.; Brown, L.G.; Minx, P.J.; Cordum, H.S.; Waterston, R.H.; Wilson, R.K.; Silber, S.; Oates, R.; Rozen, S.; et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat. Genet. 2001, 29, 279–286. [Google Scholar] [CrossRef]
- Repping, S.; Skaletsky, H.; Lange, J.; Silber, S.; van der Veen, F.; Oates, R.D.; Page, D.C.; Rozen, S. Recombination between Palindromes P5 and P1 on the Human Y Chromosome Causes Massive Deletions and Spermatogenic Failure. Am. J. Hum. Genet. 2002, 71, 906–922. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Skaletsky, H.; Birren, B.; Devon, K.; Tang, Z.; Silber, S.; Oates, R.; Page, D.C. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat. Genet. 1999, 23, 429–432. [Google Scholar] [CrossRef]
- Ginalski, K.; Rychlewski, L.; Baker, D.; Grishin, N. V Protein structure prediction for the male-specific region of the human Y chromosome. Proc. Natl. Acad. Sci. USA 2004, 101, 2305–2310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargent, C.A.; Boucher, C.A.; Kirsch, S.; Brown, G.; Weiss, B.; Trundley, A.; Burgoyne, P.; Saut, N.; Durand, C.; Levy, N.; et al. The critical region of overlap defining the AZFa male infertility interval of proximal Yq contains three transcribed sequences. J. Med. Genet. 1999, 36, 670–677. [Google Scholar] [PubMed]
- Lee, K.H.; Song, G.J.; Kang, I.S.; Kim, S.W.; Paick, J.-S.; Chung, C.H.; Rhee, K. Ubiquitin-specific protease activity of USP9Y, a male infertility gene on the Y chromosome. Reprod. Fertil. Dev. 2003, 15, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Luddi, A.; Margollicci, M.; Gambera, L.; Serafini, F.; Cioni, M.; De Leo, V.; Balestri, P.; Piomboni, P. Spermatogenesis in a Man with Complete Deletion of USP9Y. N. Engl. J. Med. 2009, 360, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Foresta, C.; Ferlin, A.; Moro, E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum. Mol. Genet. 2000, 9, 1161–1169. [Google Scholar] [CrossRef]
- Ditton, H.J.; Zimmer, J.; Kamp, C.; Rajpert-De Meyts, E.; Vogt, P.H. The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum. Mol. Genet. 2004, 13, 2333–2341. [Google Scholar] [CrossRef] [Green Version]
- Nailwal, M.; Chauhan, J.B. Computational Analysis of High Risk Missense Variant in Human UTY Gene: A Candidate Gene of AZFa Sub-region. J. Reprod. Infertil. 2017, 18, 298–306. [Google Scholar]
- Lee, M.G.; Norman, J.; Shilatifard, A.; Shiekhattar, R. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 2007, 128, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Akimoto, C.; Kitagawa, H.; Matsumoto, T.; Kato, S. Spermatogenesis-specific association of SMCY and MSH5. Genes Cells 2008, 13, 623–633. [Google Scholar] [CrossRef]
- Fan, Y.; Silber, S.J. Y Chromosome Infertility; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Lopes, A.M.; Miguel, R.N.; Sargent, C.A.; Ellis, P.J.; Amorim, A.; Affara, N.A. The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis. BMC Mol. Biol. 2010, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Andrés, O.; Kellermann, T.; López-Giráldez, F.; Rozas, J.; Domingo-Roura, X.; Bosch, M. RPS4Y gene family evolution in primates. BMC Evol. Biol. 2008, 8, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahn, B.T.; Page, D.C. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum. Mol. Genet. 2000, 9, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic dissection of the AZF regions of the human Y chromosome: Thriller or filler for male (in)fertility? J. Biomed. Biotechnol. 2010, 2010, 936569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kichine, E.; Rozé, V.; Di Cristofaro, J.; Taulier, D.; Navarro, A.; Streichemberger, E.; Decarpentrie, F.; Metzler-Guillemain, C.; Lévy, N.; Chiaroni, J.; et al. HSFY genes and the P4 palindrome in the AZFb interval of the human Y chromosome are not required for spermatocyte maturation. Hum. Reprod. 2012, 27, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.J.; Millar, M.R.; Oghene, K.; Ross, A.; Kiesewetter, F.; Pryor, J.; McIntyre, M.; Hargreave, T.B.; Saunders, P.T.; Vogt, P.H.; et al. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc. Natl. Acad. Sci. USA 1997, 94, 3848–3853. [Google Scholar] [CrossRef] [Green Version]
- Tsuei, D.-J.; Hsu, H.-C.; Lee, P.-H.; Jeng, Y.-M.; Pu, Y.-S.; Chen, C.-N.; Lee, Y.-C.; Chou, W.-C.; Chang, C.-J.; Ni, Y.-H.; et al. RBMY, a male germ cell-specific RNA-binding protein, activated in human liver cancers and transforms rodent fibroblasts. Oncogene 2004, 23, 5815–5822. [Google Scholar] [CrossRef] [Green Version]
- Elliott, D.J. RBMY genes and AZFb deletions. J. Endocrinol. Invest. 2000, 23, 652–658. [Google Scholar] [CrossRef]
- Venables, J.P.; Elliott, D.J.; Makarova, O.V.; Makarov, E.M.; Cooke, H.J.; Eperon, I.C. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2beta and affect splicing. Hum. Mol. Genet. 2000, 9, 685–694. [Google Scholar] [CrossRef]
- Lingenfelter, P.A.; Delbridge, M.L.; Thomas, S.; Hoekstra, H.E.; Mitchell, M.J.; Graves, J.A.; Disteche, C.M. Expression and conservation of processed copies of the RBMX gene. Mamm. Genome 2001, 12, 538–545. [Google Scholar] [CrossRef]
- Chai, N.N.; Salido, E.C.; Yen, P.H. Multiple functional copies of the RBM gene family, a spermatogenesis candidate on the human Y chromosome. Genomics 1997, 45, 355–361. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, X.; Liu, Y.; Shen, Y.; Tu, W.; Dong, Q.; Yang, D.; Ma, Y.; Yang, Y. Copy number variation of functional RBMY1 is associated with sperm motility: An azoospermia factor-linked candidate for asthenozoospermia. Hum. Reprod. 2017, 32, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Tessari, A.; Salata, E.; Ferlin, A.; Bartoloni, L.; Slongo, M.L.; Foresta, C. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol. Hum. Reprod. 2004, 10, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Shinka, T.; Sato, Y.; Chen, G.; Naroda, T.; Kinoshita, K.; Unemi, Y.; Tsuji, K.; Toida, K.; Iwamoto, T.; Nakahori, Y. Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol. Reprod. 2004, 71, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Raicu, F.; Popa, L.; Popa, O.; Cocos, R.; McElreavey, K. A deletion of a novel heat shock gene on the Y chromosome associated with azoospermia. Mol. Hum. Reprod. 2005, 11, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yoshida, K.; Shinka, T.; Nozawa, S.; Nakahori, Y.; Iwamoto, T. Altered expression pattern of heat shock transcription factor, Y chromosome (HSFY) may be related to altered differentiation of spermatogenic cells in testes with deteriorated spermatogenesis. Fertil. Steril. 2006, 86, 612–618. [Google Scholar] [CrossRef]
- Kinoshita, K.; Shinka, T.; Sato, Y.; Kurahashi, H.; Kowa, H.; Chen, G.; Umeno, M.; Toida, K.; Kiyokage, E.; Nakano, T.; et al. Expression analysis of a mouse orthologue of HSFY, a candidate for the azoospermic factor on the human Y chromosome. J. Med. Invest. 2006, 53, 117–122. [Google Scholar] [CrossRef] [Green Version]
- Halder, A.; Kumar, P.; Jain, M.; Iyer, V.K. Copy number variations in testicular maturation arrest. Andrology 2017, 5, 460–472. [Google Scholar] [CrossRef] [Green Version]
- Tahmasbpour, E.; Balasubramanian, D.; Agarwal, A. A multi-faceted approach to understanding male infertility: Gene mutations, molecular defects and assisted reproductive techniques (ART). J. Assist. Reprod. Genet. 2014, 31, 1115–1137. [Google Scholar] [CrossRef] [Green Version]
- Stouffs, K.; Lissens, W.; Van Landuyt, L.; Tournaye, H.; Van Steirteghem, A.; Liebaers, I. Characterization of the genomic organization, localization and expression of four PRY genes (PRY1, PRY2, PRY3 and PRY4). Mol. Hum. Reprod. 2001, 7, 603–610. [Google Scholar] [CrossRef]
- Stouffs, K.; Lissens, W.; Verheyen, G.; Van Landuyt, L.; Goossens, A.; Tournaye, H.; Van Steirteghem, A.; Liebaers, I. Expression pattern of the Y-linked PRY gene suggests a function in apoptosis but not in spermatogenesis. Mol. Hum. Reprod. 2004, 10, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.H. Human chromosome deletions in Yq11, AZF candidate genes and male infertility: History and update. Mol. Hum. Reprod. 1998, 4, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Ferlin, A.; Raicu, F.; Gatta, V.; Zuccarello, D.; Palka, G.; Foresta, C. Male infertility: Role of genetic background. Reprod. Biomed. Online 2007, 14, 734–745. [Google Scholar] [CrossRef]
- O’Flynn O’Brien, K.L.; Varghese, A.C.; Agarwal, A. The genetic causes of male factor infertility: A review. Fertil. Steril. 2010, 93, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lahn, B.T.; Tang, Z.L.; Zhou, J.; Barndt, R.J.; Parvinen, M.; Allis, C.D.; Page, D.C. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 8707–8712. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.H. Azoospermia factor (AZF) in Yq11: Towards a molecular understanding of its function for human male fertility and spermatogenesis. Reprod. Biomed. Online 2005, 10, 81–93. [Google Scholar] [CrossRef]
- Machev, N.; Saut, N.; Longepied, G.; Terriou, P.; Navarro, A.; Levy, N.; Guichaoua, M.; Metzler-Guillemain, C.; Collignon, P.; Frances, A.-M.; et al. Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J. Med. Genet. 2004, 41, 814–825. [Google Scholar] [CrossRef] [Green Version]
- Ghorbel, M.; Baklouti-Gargouri, S.; Keskes, R.; Chakroun, N.; Sellami, A.; Fakhfakh, F.; Ammar-Keskes, L. Deletion of CDY1b copy of Y chromosome CDY1 gene is a risk factor of male infertility in Tunisian men. Gene 2014, 548, 251–255. [Google Scholar] [CrossRef]
- Zou, S.W.; Zhang, J.C.; Zhang, X.D.; Miao, S.Y.; Zong, S.D.; Sheng, Q.; Wang, L.F. Expression and localization of VCX/Y proteins and their possible involvement in regulation of ribosome assembly during spermatogenesis. Cell Res. 2003, 13, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Lahn, B.T.; Page, D.C. Functional coherence of the human Y chromosome. Science 1997, 278, 675–680. [Google Scholar] [CrossRef]
- Wong, E.Y.; Tse, J.Y.; Yao, K.-M.; Tam, P.-C.; Yeung, W.S. VCY2 protein interacts with the HECT domain of ubiquitin-protein ligase E3A. Biochem. Biophys. Res. Commun. 2002, 296, 1104–1111. [Google Scholar] [CrossRef]
- Lu, C.; Jiang, J.; Zhang, R.; Wang, Y.; Xu, M.; Qin, Y.; Lin, Y.; Guo, X.; Ni, B.; Zhao, Y.; et al. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. MHR Basic Sci. Reprod. Med. 2014, 20, 836–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, J.Y.M.; Wong, E.Y.M.; Cheung, A.N.Y.; O, W.S.; Tam, P.C.; Yeung, W.S.B. Specific expression of VCY2 in human male germ cells and its involvement in the pathogenesis of male infertility. Biol. Reprod. 2003, 69, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, E.Y.M.; Tse, J.Y.M.; Yao, K.-M.; Lui, V.C.H.; Tam, P.-C.; Yeung, W.S.B. Identification and Characterization of Human VCY2-Interacting Protein: VCY2IP-1, a Microtubule-Associated Protein-Like Protein. Biol. Reprod. 2004, 70, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.F.; Skaletsky, H.; Page, D.C. Sequencing of rhesus macaque Y chromosome clarifies origins and evolution of the DAZ (Deleted in AZoospermia) genes. Bioessays 2012, 34, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, R.; Brown, L.G.; Hawkins, T.; Alagappan, R.K.; Skaletsky, H.; Reeve, M.P.; Reijo, R.; Rozen, S.; Dinulos, M.B.; Disteche, C.M.; et al. The DAZ gene cluster on the human Y chromosome arose from an autosomal gene that was transposed, repeatedly amplified and pruned. Nat. Genet. 1996, 14, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.-F.; Cheng, S.-F.; Wang, L.-Q.; Yin, S.; De Felici, M.; Shen, W. DAZ Family Proteins, Key Players for Germ Cell Development. Int. J. Biol. Sci. 2015, 11, 1226–1235. [Google Scholar] [CrossRef] [Green Version]
- Moro, E.; Ferlin, A.; Yen, P.H.; Franchi, P.G.; Palka, G.; Foresta, C. Male infertility caused by a de novo partial deletion of the DAZ cluster on the Y chromosome. J. Clin. Endocrinol. Metab. 2000, 85, 4069–4073. [Google Scholar] [CrossRef]
- Menke, D.B.; Mutter, G.L.; Page, D.C. Expression of DAZ, an azoospermia factor candidate, in human spermatogonia. Am. J. Hum. Genet. 1997, 60, 237–241. [Google Scholar]
- Kee, K.; Angeles, V.T.; Flores, M.; Nguyen, H.N.; Reijo Pera, R.A. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009, 462, 222–225. [Google Scholar] [CrossRef]
- Habermann, B.; Mi, H.F.; Edelmann, A.; Bohring, C.; Bäckert, I.T.; Kiesewetter, F.; Aumüller, G.; Vogt, P.H. DAZ (Deleted in AZoospermia) genes encode proteins located in human late spermatids and in sperm tails. Hum. Reprod. 1998, 13, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.; de Vries, J.W.; Repping, S.; Alagappan, R.K.; Skaletsky, H.; Brown, L.G.; Ma, P.; Chen, E.; Hoovers, J.M.; Page, D.C. Four DAZ genes in two clusters found in the AZFc region of the human Y chromosome. Genomics 2000, 67, 256–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reijo, R.; Lee, T.-Y.; Salo, P.; Alagappan, R.; Brown, L.G.; Rosenberg, M.; Rozen, S.; Jaffe, T.; Straus, D.; Hovatta, O.; et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nat. Genet. 1995, 10, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, C.-Y.; A, Z.-C.; Zhang, S.-Z.; Li, X.; Zhang, S.-X. DAZ1/DAZ2 cluster deletion mediated by gr/gr recombination per se may not be sufficient for spermatogenesis impairment: A study of Chinese normozoospermic men. Asian J. Androl. 2006, 8, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-W.; Hsu, L.C.-L.; Kuo, P.-L.; Huang, W.J.; Chiang, H.-S.; Yeh, S.-D.; Hsu, T.-Y.; Yu, Y.-H.; Hsiao, K.-N.; Cantor, R.M.; et al. Partial duplication at AZFc on the Y chromosome is a risk factor for impaired spermatogenesis in Han Chinese in Taiwan. Hum. Mutat. 2007, 28, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Noordam, M.J.; Westerveld, G.H.; Hovingh, S.E.; van Daalen, S.K.M.; Korver, C.M.; van der Veen, F.; van Pelt, A.M.M.; Repping, S. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count. Hum. Mol. Genet. 2011, 20, 2457–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Ma, L.; Yang, L.; Wang, J.; Wang, Y.; Guo, H.; Gong, N.; Nie, W.; Zhao, S. Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China. J. Zhejiang Univ. Sci. B 2013, 14, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wang, Y.; Zhang, F.; Lu, F.; Xu, M.; Qin, Y.; Wu, W.; Li, S.; Song, L.; Yang, S.; et al. DAZ duplications confer the predisposition of Y chromosome haplogroup K* to non-obstructive azoospermia in Han Chinese populations. Hum. Reprod. 2013, 28, 2440–2449. [Google Scholar] [CrossRef] [Green Version]
- Manz, E.; Alkan, M.; Bühler, E.; Schmidtke, J. Arrangement of DYZ1 and DYZ2 repeats on the human Y-chromosome: A case with presence of DYZ1 and absence of DYZ2. Mol. Cell. Probes 1992, 6, 257–259. [Google Scholar] [CrossRef]
- Cooke, H. Repeated sequence specific to human males. Nature 1976, 262, 182–186. [Google Scholar] [CrossRef]
- Unnérus, V.; Fellman, J.; De la Chapelle, A. The length of the human Y chromosome. Cytogenetics 1967, 6, 213–227. [Google Scholar] [CrossRef]
- Akkari, Y.; Lawce, H.; Kelson, S.; Smith, C.; Davis, C.; Boyd, L.; Magenis, R.E.; Olson, S. Y chromosome heterochromatin of differing lengths in two cell populations of the same individual. Prenat. Diagn. 2005, 25, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Norton, M.E. Y chromosome heterochromatin variation detected at prenatal diagnosis. Prenat. Diagn. 2005, 25, 1062–1063. [Google Scholar] [CrossRef] [PubMed]
- Bobrow, M.; Pearson, P.L.; Pike, M.C.; El-Alfi, O.S. Length variation in the quinacrine-binding segment of human Y chromosomes of different sizes. Cytogenetics 1971, 10, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Laberge, C.; Gagne, R. Quinacrine mustard staining solves the length variations of the human Y chromosome. Johns Hopkins Med. J. 1971, 128, 79–83. [Google Scholar] [PubMed]
- Lau, Y.F.; Schonberg, S. A male-specific DNA probe detects heterochromatin sequences in a familial Yq- chromosome. Am. J. Hum. Genet. 1984, 36, 1394–1396. [Google Scholar] [PubMed]
- Schmid, M.; Guttenbach, M.; Nanda, I.; Studer, R.; Epplen, J.T. Organization of DYZ2 repetitive DNA on the human Y chromosome. Genomics 1990, 6, 212–218. [Google Scholar] [CrossRef]
- Cooke, H.J.; Noel, B. Confirmation of Y/autosome translocation using recombinant DNA. Hum. Genet. 1979, 50, 39–44. [Google Scholar] [CrossRef]
- Yan, J.; Fan, L.; Zhao, Y.; You, L.; Wang, L.; Zhao, H.; Li, Y.; Chen, Z.-J. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 159, 371–374. [Google Scholar] [CrossRef]
- Malaspina, P.; Persichetti, F.; Novelletto, A.; Iodice, C.; Terrenato, L.; Wolfe, J.; Ferraro, M.; Prantera, G. The human Y chromosome shows a low level of DNA polymorphism. Ann. Hum. Genet. 1990, 54, 297–305. [Google Scholar] [CrossRef]
- Babcock, M.; Yatsenko, S.; Stankiewicz, P.; Lupski, J.R.; Morrow, B.E. AT-rich repeats associated with chromosome 22q11.2 rearrangement disorders shape human genome architecture on Yq12. Genome Res. 2007, 17, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Mathias, N. Y chromosome DNA polymorphisms and human evolution. Ph.D. Thesis, University of Oxford, Oxford, UK, 2013. [Google Scholar]
- Jehan, Z.; Vallinayagam, S.; Tiwari, S.; Pradhan, S.; Singh, L.; Suresh, A.; Reddy, H.M.; Ahuja, Y.R.; Jesudasan, R.A. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res. 2007, 17, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Blanco, M.A. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J. Clin. Invest. 2003, 112, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Nazarenko, S.A.; Puzyrev, V.P.; Protasov, K.T.; Ostrovskaia, M.G. Heterochromatin of the Y-chromosome and variability of human morphophysiological traits. Genetika 1989, 25, 1286–1293. [Google Scholar] [PubMed]
- Yakin, K.; Balaban, B.; Urman, B. Is there a possible correlation between chromosomal variants and spermatogenesis? Int. J. Urol. 2005, 12, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Costa, P.; Plancha, C.E. Heterochromatin: the hidden epigenetic geography of the Y chromosome. Hum. Reprod. Update 2011, 17, 434. [Google Scholar] [CrossRef]
- Lemos, B.; Branco, A.T.; Hartl, D.L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl. Acad. Sci. USA 2010, 107, 15826–15831. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Gu, W.; Hurles, M.E.; Lupski, J.R. Copy Number Variation in Human Health, Disease, and Evolution. Annu. Rev. Genomics Hum. Genet. 2009, 10, 451–481. [Google Scholar] [CrossRef] [Green Version]
- Lopes, A.M.; Aston, K.I.; Thompson, E.; Carvalho, F.; Gonçalves, J.; Huang, N.; Matthiesen, R.; Noordam, M.J.; Quintela, I.; Ramu, A.; et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013, 9, e1003349. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.; Wen, Y.; Guo, X.; Li, Z.; Dai, J.; Ni, B.; Yu, J.; Lin, Y.; Zhou, W.; Yao, B.; et al. A Screen for Genomic Disorders of Infertility Identifies MAST2 Duplications Associated with Nonobstructive Azoospermia in Humans. Biol. Reprod. 2015, 93, 61. [Google Scholar] [CrossRef] [Green Version]
- Eggers, S.; DeBoer, K.D.; van den Bergen, J.; Gordon, L.; White, S.J.; Jamsai, D.; McLachlan, R.I.; Sinclair, A.H.; O’Bryan, M.K. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil. Steril. 2015, 103, 214–219. [Google Scholar] [CrossRef]
- Ji, J.; Qin, Y.; Wang, R.; Huang, Z.; Zhang, Y.; Zhou, R.; Song, L.; Ling, X.; Hu, Z.; Miao, D.; et al. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis. Oncotarget 2016, 7, 78532–78540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Miyado, M.; Saito, K.; Katsumi, M.; Nakamura, A.; Kobori, Y.; Tanaka, Y.; Ishikawa, H.; Yoshida, A.; Okada, H.; et al. Next-generation sequencing for patients with non-obstructive azoospermia: implications for significant roles of monogenic/oligogenic mutations. Andrology 2017, 5, 824–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tüttelmann, F.; Ruckert, C.; Röpke, A. Disorders of spermatogenesis. Med. Genet. 2018, 30, 12–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi Rastegar, D.; Sharifi Tabar, M.; Alikhani, M.; Parsamatin, P.; Sahraneshin Samani, F.; Sabbaghian, M.; Sadighi Gilani, M.A.; Mohammad Ahadi, A.; Mohseni Meybodi, A.; Piryaei, A.; et al. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients. J. Proteome Res. 2015, 14, 3595–3605. [Google Scholar] [CrossRef] [PubMed]
Traditional Classification | Examples |
---|---|
Pre-testicular causes | Hypogonadotropic hypogonadism Pituitary diseases Coital disorders |
Testicular causes | Varicocele Cryptorchidism Noonan Syndrome Vanishing Testis Syndrome Myotonic dystrophy 46,XX testicular disorders of sex development 47,XYY Syndrome Klinefelter’s Syndrome Y chromosome microdeletions Sertoli Cell-Only Syndrome (germ cell aplasia) Gonadotoxins Systemic diseases Testis injury Idiopathic infertility |
Post-testicular causes | Male reproductive tract obstruction Disorders of sperm function or sperm motility Disorders of coitus |
Clinically Based Classification | Examples (Top: Genetic Causes; Bottom: Non-Genetic or Mixed Causes) |
Hypothalamic–pituitary axis | Kallmann’s Syndrome |
Ablative treatments (e.g., surgery or radiation); pituitary adenomas; tumors of the CNS; infection; infiltrative disease; empty sella syndrome; autoimmune hypophysitis; abuse of anabolic steroids; testosterone-replacement therapy; use or abuse of opiates and their analogues | |
Quantitative Spermatogenesis (i.e., affecting the production and numbers of sperm) | Gross chromosomal/karyotype anomalies; submicroscopic deletions (such as AZF deletions); Klinefelter’s Syndrome (47,XXY); 46,XX male syndrome; isodicentric Y chromosome; structural aberrations of the autosomes; X-linked genetic anomalies (such as AR or TEX11 gene mutations) |
Varicocele; previous cytotoxic chemotherapy or radiotherapy; mumps; viral orchitis; testicular torsion; gonadal malignancy; severe scrotal trauma; some common medications; severe systemic illness; cryptorchidism | |
Qualitative Spermatogenesis (i.e., affecting the characteristics of sperm, such as motility, fertilization, and genetic competency) | Globozoospermia (e.g., SPATA16, PICK1, DPY19L2 gene mutations); macrozoospermia (e.g., AURKC gene mutations); ageing |
Oxidative stress; inflammation; infection; autoimmune reaction against the spermatozoa; phospholipase C ζ deficiencies | |
Ductal obstruction or dysfunction | Congenital bilateral absence of the vas deferens (CBAVD) (e.g., CFTR gene mutations) |
Vasectomy; epididymal occlusion; previous inguinal hernia repair with inadvertent interruption or scarring of the vasa; spinal cord injury affecting ejaculation; retrograde ejaculation; erectile dysfunction; Young’s Syndrome |
Parameter | Value (Interval) |
---|---|
Time to pregnancy (TTP) | 12 months (upper limit) |
Semen volume | 1.5 mL (1.4–1.7) |
Total spermatozoa number | 39 million per ejaculate (33–46) |
Spermatozoa concentration | 15 million per mL (12–16) |
Vitality | 58% live (55–63) |
Progressive motility | 32% (31–34) |
Total motility (progressive + non-progressive) | 40% (38–42) |
Morphologically normal forms | 4.0% (3.0–4.0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signore, F.; Gulìa, C.; Votino, R.; De Leo, V.; Zaami, S.; Putignani, L.; Gigli, S.; Santini, E.; Bertacca, L.; Porrello, A.; et al. The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes 2020, 11, 40. https://doi.org/10.3390/genes11010040
Signore F, Gulìa C, Votino R, De Leo V, Zaami S, Putignani L, Gigli S, Santini E, Bertacca L, Porrello A, et al. The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes. 2020; 11(1):40. https://doi.org/10.3390/genes11010040
Chicago/Turabian StyleSignore, Fabrizio, Caterina Gulìa, Raffaella Votino, Vincenzo De Leo, Simona Zaami, Lorenza Putignani, Silvia Gigli, Edoardo Santini, Luca Bertacca, Alessandro Porrello, and et al. 2020. "The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility" Genes 11, no. 1: 40. https://doi.org/10.3390/genes11010040
APA StyleSignore, F., Gulìa, C., Votino, R., De Leo, V., Zaami, S., Putignani, L., Gigli, S., Santini, E., Bertacca, L., Porrello, A., & Piergentili, R. (2020). The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes, 11(1), 40. https://doi.org/10.3390/genes11010040