Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. RNA Isolation
2.3. Microarrays
2.4. Data Analysis
2.5. Quantitative Real-Time PCR
3. Results
3.1. Differential Changes in Endometrial Transcriptome
3.2. Comparison between Pregnancy-Induced and Seminal Plasma-Induced Changes in Endometrial Transcriptome
3.3. Analysis of Biological Processes, Pathways, and Upstream Regulators of Identified DEGs
3.4. qRT-PCR Validation of Microarray Results
4. Discussion
4.1. Immune Regulation
4.2. Cell Death and Survival
4.3. Oxidation Stress
4.4. Lipid Metabolism
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geisert, R.D.; Johnson, G.A.; Burghardt, R.C. Implantation and Establishment of Pregnancy in the Pig. Adv. Anat. Embryol. Cell Biol. 2015, 216, 137–163. [Google Scholar] [PubMed]
- Simon, C.; Moreno, C.; Remohi, J.; Pellicer, A. Molecular interactions between embryo and uterus in the adhesion phase of human implantation. Human Reprod. 1998, 13, 219–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, E.; Arnold, G.; Bauersachs, S.; Beier, H.; Blum, H.; Einspanier, R.; Frohlich, T.; Herrler, A.; Hiendleder, S.; Kolle, S.; et al. Embryo-maternal communication in bovine—Strategies for deciphering a complex cross-talk. Reprod. Domest. Anim. 2003, 38, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.; Johnson, G.; Bazer, F.; Burghardt, R.; Palmarini, M. Pregnancy recognition and conceptus implantation in domestic ruminants: Roles of progesterone, interferons and endogenous retroviruses. Reprod. Fert. Dev. 2007, 19, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Alminana, C.; Heath, P.; Wilkinson, S.; Sanchez-Osorio, J.; Cuello, C.; Parrilla, I.; Gil, M.; Vazquez, J.; Vazquez, J.; Roca, J.; et al. Early developing pig embryos mediate their own environment in the maternal tract. PLoS ONE 2012, 7, e33625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrup, E.; Bauersachs, S.; Blum, H.; Wolf, E.; Hyttel, P. Differential endometrial gene expression in pregnant and nonpregnant sows. Biol. Reprod. 2010, 83, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Samborski, A.; Graf, A.; Krebs, S.; Kessler, B.; Reichenbach, M.; Reichenbach, H.; Ulbrich, S.; Bauersachs, S.B. Transcriptome changes in the porcine endometrium during the preattachment phase. Biol. Reprod. 2013, 89, 1–16. [Google Scholar] [CrossRef]
- Samborski, A.; Graf, A.; Krebs, S.; Kessler, B.; Bauersachs, S. Deep sequencing of the porcine endometrial transcriptome on day 14 of pregnancy. Biol. Reprod. 2013, 88, 1–13. [Google Scholar] [CrossRef]
- Ziecik, A.; Waclawik, A.; Kaczmarek, M.; Blitek, A.; Jalali, B.; Andronowska, A. Mechanisms for the establishment of pregnancy in the pig. Reprod. Domest. Anim. 2011, 46, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S. Seminal fluid signaling in the female reproductive tract: Lessons from rodents and pigs. J. Anim. Sci. 2007, 85, E36–E44. [Google Scholar] [CrossRef]
- Flowers, W.; Esbenshade, K. Optimizing management of natural and artificial mating in Swine. J. Reprod. Fertil. 1993, 52, 217–228. [Google Scholar]
- Murray, F.; Grifo, A.; Parker, C. Increased litter size in gilts by intrauterine infusion of seminal and sperm antigens before breeding. J. Anim. Sci. 1983, 56, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Almlid, T. Does enhanced entigenicity of semen increase the litter size in pigs. Z. Fur Tierz. Und Zucht. J. Anim. Breed. Genet. 1981, 98, 1–10. [Google Scholar]
- Rozeboom, K.; Troedsson, M.; Crabo, B. Characterization of uterine leukocyte infiltration in gilts after artificial insemination. J. Reprod. Fert. 1998, 114, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, H.; Croy, B.; King, G. Role of uterine immune cells in early pregnancy in pigs. J. Reprod. Fertil. 1997, 52, 115–131. [Google Scholar] [CrossRef]
- Letterio, J.; Roberts, A. Regulation of immune responses by TGF-β. Ann. Rev. Immunol. 1998, 16, 137–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.C.; Johnson, B.A.; Erikson, D.W.; Piltonen, T.T.; Barragan, F.; Chu, S.; Kohgadai, N.; Irwin, J.C.; Greene, W.C.; Giudice., L.C.; et al. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts. Hum. Reprod. 2014, 29, 1255–1270. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, S.; Jasper, M.; Warnes, G.; Armstrong, D.; Robertson, S. Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 2004, 128, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, M.; Krawczynski, K.; Blitek, A.; Kiewisz, J.; Schams, D.; Ziecik, A. Seminal plasma affects prostaglandin synthesis in the porcine oviduct. Theriogenology 2010, 74, 1207–1220. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Krawczynski, K.; Filant, J. Seminal Plasma Affects Prostaglandin Synthesis and Angiogenesis in the Porcine Uterus. Biol. Reprod. 2013, 88, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalali, B.; Kitewska, A.; Wasielak, M.; Bodek, G.; Bogacki, M. Effects of seminal plasma and the presence of a conceptus on regulation of lymphocyte- cytokine network in porcine endometrium. Mol. Reprod. Dev. 2014, 81, 270–281. [Google Scholar] [CrossRef]
- Altschul, S.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Waberski, D.; Schäfer, J.; Bölling, A.; Scheld, M.; Henning, H.; Hambruch, N.; Schuberth, H.J.; Pfarrer, C.; Wrenzycki, C.; Hunter, R.H.F. Seminal plasma modulates the immunecytokine network in the porcine uterine tissue and pre-ovulatory follicles. PLoS ONE 2018, 28, e0202654. [Google Scholar]
- Mateo-Otero, Y.; Fernández-López, P.; Gil-Caballero, S.; Fernandez-Fuertes, B.; Bonet, S.; Barranco, I.; Yeste, M. 1H Nuclear magnetic resonance of pig seminal plasma reveals intra-ejaculate variation in metabolites. Biomolecules 2020, 15, 906. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, M.; Martinez, C.A.; Wright, D.; Rodríguez-Martinez, H. The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci. Rep. 2020, 5061, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Rodriguez, M.; Atikuzzaman, M.; Venhoranta, H.; Wright, D.; Rodriguez-Martinez, H. Expression of immune regulatory genes in the porcine internal genital tract is differentially triggered by spermatozoa and seminal plasma. Int. J. Mol. Sci. 2019, 20, 513. [Google Scholar] [CrossRef] [Green Version]
- Martinez, C.A.; Cambra, J.M.; Parrilla, I.; Roca, J.; Ferreira-Dias, G.; Pallares, F.J.; Lucas, X.; Vazquez, J.M.; Martinez, E.A.; Gil, M.A.; et al. Seminal Plasma Modifies the Transcriptional Pattern of the Endometrium and Advances Embryo Development in Pigs. Front. Vet Sci. 2019, 6, 465. [Google Scholar] [CrossRef] [Green Version]
- Liew, F.Y.; McInnes, I.B. Role of interleukin 15 and interleukin 18 in inflammatory response. Ann. Rheum. Dis. 2002, 61, ii100–ii102. [Google Scholar] [CrossRef]
- Chaix, J.; Tessmer, M.S.; Hoebe, K.; Fuse´ri, N.; Ryffel, B.; Dalod, M.; Alexopoulou, L.; Beutler, B.; Brossay, L.; Vivier, E.; et al. Priming of natural killer cells by interleukin-18. J. Immunol. 2008, 181, 1627–1631. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, J. Granzyme A activates another way to die. Immunol. Rev. 2010, 235, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.; Bae, H.; Bazer, F.W.; Song, G. Stimulatory effects of fibroblast growth factor 2 on proliferation and migration of uterine luminal epithelial cells during early pregnancy. Biol. Reprod. 2017, 96, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Elbaz, M.; Hadas, R.; Bilezikjian, L.M.; Gershon, E. Uterine Foxl2 regulates the adherence of the Trophectoderm cells to the endometrial epithelium. Reprod. Biol. Endocrinol. 2018, 16, 12. [Google Scholar] [CrossRef]
- Park, D.W.; Yang, K.M. Hormonal regulation of uterine chemokines and immune cells. Clin. Experim. Reprod. Med. 2011, 38, 179–185. [Google Scholar] [CrossRef]
- Hofer, E.; Schweighofer, B. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb. Haemost. 2007, 97, 355–363. [Google Scholar]
- Funasaka, T.; Raz, A.; Nangia-Makker, P. Galectin-3 in angiogenesis and metastasis. Glycobiology 2014, 24, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Blois, S.M.; Conrad, M.L.; Freitag, N.; Barrientos, G. Galectins in angiogenesis: Consequences for gestation. J. Reprod. Immunol. 2015, 108, 33–41. [Google Scholar] [CrossRef]
- Stavréus-Evers, A.; Masironi, B.; Landgren, B.M.; Holmgren, A.; Eriksson, H.; Sahlin, L. Immunohistochemical localization of glutaredoxin andthioredoxin in human endometrium: A possible association with pinnipeds. Mol. Hum. Reprod. 2002, 8, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Sakamoto, K. Reactive oxygen species up-regulates cyclooxygenase-2, p53, and Bax mRNA expression in bovine luteal cells. Bioch. Biophys. Res. Commun. 2001, 284, 203–210. [Google Scholar] [CrossRef]
- Wang, X.; Dyson, M.T.; Jo, Y.; Stocco, D.M. Inhibition of cyclooxygenase-2 activity enhances steroidogenesis and steroidogenic acute regulatory gene expression in MA-10 mouse Leydig cells. Endocrinology 2003, 144, 3368–3375. [Google Scholar] [CrossRef]
- Abidi, P.; Zhang, H.; Zaidi, S.M.; Shen, W.J.; Leers-Sucheta, S.; Cortez, Y.; Han, J.; Azhar, S. Oxidative stress-induced inhibition of adrenal steroidogenesis requires participation of p38 mitogen-activated protein kinase signaling pathway. J. Endocrinol. 2008, 198, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Vallet, J.L.; Christenson, R.K. Effect of progesterone, mifepristone, and estrogen treatment during early pregnancy on conceptus development and uterine capacity in Swine. Biol. Reprod. 2004, 70, 92–98. [Google Scholar] [CrossRef]
Gene Symbol | Gene Name | Test ID | Entrez Gene ID |
---|---|---|---|
ACTB * | Actin, β | Ss03376081_ u1 | 397653 |
TGFA | Transforming growth factor, α | Ss03383643_u1 | 397484 |
S100A12 | S100 calcium binding protein A12 | Ss04246259_g1 | 100301483 |
S100A8 | S100 calcium binding protein A8 | Ss04246257_g1 | 100127488 |
CCR3 | Chemokine (C-C motif) receptor 3 | Ss03378176_u1 | 414373 |
CXCL11 | Chemokine (C-X-C motif) ligand 11 | Ss03648934_m1 | 100169744 |
HPRT * | Hypoxanthine phosphoribosyltransferase 1 | Ss03388273_m1 | 397351 |
SLA-DQA1 | MHC class II histocompatibility antigen SLA-DQA | Ss03389952_m1 | 100153387 |
IL18 | Interleukin 18 | Ss03391204_m1 | 397057 |
LGALS1 | Galectin 1 | Ss03388270_m1 | 396491 |
PDCD10 | Programmed cell death 10 | Ss03820202_s1 | 100157978 |
LY96 | Lymphocyte antigen 96 | Ss03389453_m1 | 100125555 |
Gene Symbol | qPCR | Microarray | ||
---|---|---|---|---|
Fc | p-Value | Fc | p Corr | |
6DP | ||||
IL18 | −3.52 | 0.002 | −3.7 | 0.036 |
LGALS1 | −1.75 | 0.020 | −2.89 | 0.046 |
LY96 | −2.32 | 0.023 | −3.22 | 0.034 |
PDCD10 | −1.85 | 0.026 | −2.16 | 0.047 |
S100A12 | −4.69 | 0.026 | −5.43 | 0.049 |
S100A8 | −5.29 | 0.014 | −9.45 | 0.041 |
SLA-DQA1 | −6.56 | 0.002 | −5.16 | 0.041 |
6DPI | ||||
CCR3 | −6.80 | 0.011 | −8.59 | 0.003 |
CXCL11 | −2.38 | 0.009 | −2.22 | 0.003 |
TGFA | 2.25 | 0.007 | 2.64 | 0.006 |
IL18 | −3.64 | 0.002 | −3.54 | 0.003 |
S100A8 | −6.71 | 0.004 | −12.18 | 0.003 |
S100A12 | −6.80 | 0.011 | −5.98 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogacki, M.; Jalali, B.M.; Wieckowska, A.; Kaczmarek, M.M. Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium. Genes 2020, 11, 1302. https://doi.org/10.3390/genes11111302
Bogacki M, Jalali BM, Wieckowska A, Kaczmarek MM. Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium. Genes. 2020; 11(11):1302. https://doi.org/10.3390/genes11111302
Chicago/Turabian StyleBogacki, Marek, Beenu Moza Jalali, Anna Wieckowska, and Monika M. Kaczmarek. 2020. "Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium" Genes 11, no. 11: 1302. https://doi.org/10.3390/genes11111302
APA StyleBogacki, M., Jalali, B. M., Wieckowska, A., & Kaczmarek, M. M. (2020). Prolonged Effect of Seminal Plasma on Global Gene Expression in Porcine Endometrium. Genes, 11(11), 1302. https://doi.org/10.3390/genes11111302