Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals?
Abstract
:1. Introduction
2. Cytogenetics
3. Genetic Markers
4. Genomics
5. Identification by Genetic Methods
6. Population Genetics and Phylogeography
Study | Genetic Markers |
---|---|
Michaux et al. [8] | Mvi072, Mvi075, Mer009, Mer022, Mer41 |
Korablev et al. [83] | GenBank accession codes: AJ548805-AJ548807, AJ548812, AJ548814, AJ548817 |
Cabria et al. [30] | Mlut04, Mlut20, Mlut25, Mlut32, Mlut35, Mer09, Mer22, Mer41, Mvi022, Mvi072, Mvi075 |
Lodé [14] | fragments of the genes for AAT-1 and AAT-2—E.C. 2.6.1.1, ACO-1 and ACO-2—E.C. 4.2.1.3, ADA E.C. 3.5.4.4, AK E.C. 2.7.4.3, CK-1 and CK-2—E.C. 2.7.3.2, DDH-1 and DDH-2—E.C. 1.8.1.4, EST-1 and EST-2—E.C. 3.1.1.1, FUMH—E.C. 4.2.1.2, Gly2DH—E.C. 1.1.1.29, G6PDH—E.C. 1.1.1.49, GPI—E.C. 5.3.1.9, HK-1, HK-2 and HK-3—E.C. 2.7.1.1, IDH-1 and IDH-2—E.C. 1.1.1.42, LDH-1 and LDH-2—E.C. 1.1.1.27, MDH-1 and MDH-2—E.C. 1.1.1.37, ME-1 and ME-2—E.C. 1.1.1.40, MPI—E.C. 5.3.1.8, PEP-1 and PEP-2—E.C. 3.4.11.1, PGDH—E.C. 1.1.1.44, PGM-2—E.C. 2.7.5.1, PNP—E.C. 2.4.2.1, SDH—E.C. 1.1.1.14, SOD—E.C. 1.15.1.1, TPI—E.C. 5.3.1.1, and two non-specific proteins |
Peltier and Lodé [45] | Mvi002, Mvi020, Mvi072, Mvi389, Mvi1843, Mvi054, Mvi111, PutFK1 |
Lodé et al. [49]—population genetics | Mvi002, Mvi020, Mvi027, Mvi054, Mvi072, Mvi075, Mvi099, Mvi111, Mvi389, Mvi1843, PutFK1 |
Lodé et al. [49]—M. lutreola × M. putorius hybrids | allozymic loci: Ada, Est-2, Mdh-1, Me-1, Pep-2, microsatellite loci: Mvi002, Mvi020, Mvi075, Mvi1843 |
Cabria et al. [47] | Mlut04, Mlut20, Mlut25, Mlut27, Mlut32, Mlut35, Mvi22, Mvi72, Mvi75, Mvi99, Mer09, Mer22, Mer41 |
7. Phylogenetics
8. Molecular Ecology
9. Conservation Genetics
10. Conclusions
- Establishing a karyotype reference standard;
- Initiation and completion of the whole-genome sequencing project (an improved scaffolded genome of M. putorius GenBank assembly accession GCA_902207235.1, and a platinum quality genome available for M. erminea, RefSeq assembly accession GCF_009829155.1, could be used for reference-based assembly or designing primers for any genomic location for targeted sequencing);
- Development of a genome-scale (mitogenome-scale) SNPs panel, optimal for the study of inter- and intrapopulation genetic diversity, and the species phylogeny (possible revision of taxonomic status at the genus level) and phylogeography.
- 4.
- Resolving the issue of undertaking conservation actions (including translocations) of wild persisting populations (scientifically-informed decisions regarding whether to treat them as a single or separate management units, which is especially relevant given the plans for the inclusion of the Spanish breeding program in the EEP program and plans for obtaining new founders from the wild Romanian population [12,164]);
- 5.
- Assessment of the impact of the breeding process on the development of traits essential for survival in the wild (adaptation to captivity) and the role of (re)introduced individuals in shaping the gene pools of wild populations (potential outbreeding and loss of unique adaptations, which could be assessed using captive-breeding experiments, in which individuals from distinct populations are hybridized to check if a loss of fitness is occurring);
- 6.
- Phylogeographic reconstruction in terms of origin of the French–Spanish population.
- 7.
- Encouraging the scientific community to undertake research related to European mink genetics, as well as its promotion and popularization (e.g., in the context of scientific social responsibility (SSR));
- 8.
- Scientific cooperation and networking (including sharing experiences, sharing samples, mentorship, and transfer of research results to conservation practice);
- 9.
Funding
Acknowledgments
Conflicts of Interest
References
- Maran, T. Conservation Biology of European mink, Mustela Lutreola (Linnaeus 1761): Decline and Causes of Extinction. Ph.D. Thesis, Tallinn University, Tallinn, Estonia, 2007. [Google Scholar]
- Maran, T.; Skumatov, D.; Gomez, A.; Põdra, M.; Abramov, A.V.; Dinets, V. Mustela lutreola, 2016. The IUCN Red List of Threatened Species 2016. Available online: https://www.iucnredlist.org/species/14018/45199861; http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14018A45199861.en (accessed on 12 September 2020).
- Harrington, L.A.; Põdra, M.; Gómez, A.; Maran, T. Raising awareness of the plight of the critically endangered European mink in Spain is not miscommunication: A response to Melero. Biodivers. Conserv. 2018, 27, 269–271. [Google Scholar] [CrossRef]
- Maran, T. European mink: Setting of goal for conservation and Estonian case study. Galemys 2003, 15, 1–11. [Google Scholar]
- Witkowski, Z.J.; Król, W.; Solarz, W. (Eds.) Carpathian List of Endangered Species; WWF and Institute of Nature Conservation: Vienna, Austria; Polish Academy of Sciences: Kraków, Poland, 2003; p. 25. [Google Scholar]
- NCBI—National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 15 September 2020).
- Michaux, J.R.; Libois, R.; Davison, A.; Chevret, P.; Rosoux, R. Is the western population of the European mink, (Mustela lutreola), a distinct Management Unit for conservation? Biol. Conserv. 2004, 15, 357–367. [Google Scholar] [CrossRef]
- Michaux, J.R.; Hardy, O.J.; Justy, F.; Fournier, P.; Kranz, A.; Cabria, M.; Davison, A.; Rosoux, R.; Libois, R. Conservation genetics and population history of the threatened European mink Mustela lutreola, with an emphasis on the west European population. Mol. Ecol. 2005, 14, 2373–2388. [Google Scholar] [CrossRef] [PubMed]
- Cabria, M.T.; Gonzalez, E.G.; Gómez-Moliner, B.J.; Zardoya, R. Microsatellite markers for the endangered European mink (Mustela lutreola) and closely related mustelids. Mol. Ecol. Notes 2007, 7, 1185–1188. [Google Scholar] [CrossRef] [Green Version]
- Arthur, C.; Aulagnier, S.; des Neiges de Bellefroid, M.; Delas, G.; Fournier, P.; Gourreau, J.-M.; Lodé, T.; Michaux, J.; Rosoux, R.; Ruette, S. Deuxième Plan National de Restauration du Vison d’Europe (Mustela lutreola) 2007–2011; Ministère de l’Ecologie, du Développement et de l’Aménagement Durables: Paris, France, 2007; pp. 1–102. [Google Scholar]
- Zuberogoitia, I.; Põdra, M.; Palazón, S.; Gómez, A.; Zabala, N.; Zabala, J. Misleading interpretation of shifting baseline syndrome in the conservation of European mink. Biodivers. Conserv. 2016, 25, 1795–1800. [Google Scholar] [CrossRef]
- Maran, T.; Fienieg, E.; Schad, K. Long-Term Management Plan for European Mink (Mustela lutreola) European Endangered Species Programme (EEP); Tallinn Zoo and European Association of Zoos: Tallinn, Estonia; Amsterdam, The Netherlands, 2017; pp. 1–46. [Google Scholar]
- Gilpin, M.E.; Soulé, M.E. Minimum viable populations: Processes of extinction. In Conservation Biology: The Science of Scarcity and Diversity; Soulé, M.E., Ed.; Sinauer Associates: Sunderland, UK, 1986; pp. 19–34. [Google Scholar]
- Lodé, T. Genetic bottleneck in the threatened western population of European mink Mustela lutreola. Ital. J. Zool. 1999, 66, 351–353. [Google Scholar] [CrossRef] [Green Version]
- Lodé, T.; Peltier, D. Genetic neighbourhood and effective population size in the endangered European mink Mustela lutreola. Biodivers. Conserv. 2005, 14, 251–259. [Google Scholar] [CrossRef]
- Volobuev, V.T.; Ternovsky, D.V. Comparative study of karyotypes of the European and American minks (Lutreola lutreola L. Vison). Zool. Zhurnal 1974, 53, 1579–1580. [Google Scholar]
- Volobuev, V.T.; Graphodatsky, A.S.; Ternovsky, D.V. Comparative karyotype studies in European and American minks (Carnivora-Mustelidae). Mamm. Chromosom. Newsl. 1974, 15, 6–7. [Google Scholar]
- Graphodatsky, A.S.; Volobuev, V.T.; Ternovsky, D.V.; Radjabli, S.I. G-staining of chromosomes of seven mustelid species (Carnivora Mustelidae). Zool. Zhurnal 1976, 55, 1704–1711. [Google Scholar]
- Graphodatsky, A.S.; Ternovsky, D.V.; Isaenko, A.A.; Radhzabli, S.I. Constitutive heterochromatin and DNA content in some mustelidae (Mustelidae Carnivora). Genetika 1977, 13, 2123–2128. [Google Scholar]
- Graphodatsky, A.S.; Radjabli, S.I. Nucleolar organizer regions in chromosomes of nine species of mustelids. Dokl. Akad. Nauk SSSR 1980, 255, 1487–1489. [Google Scholar]
- O’Brien, S.J.; Womack, J.E.; Lyons, L.A.; Moore, K.J.; Jenkins, N.A.; Copeland, N.G. Anchored reference loci for comparative genome mapping in mammals. Nat. Genet. 1993, 3, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, T.; Suzuki, H.; Harada, M.; Tsuchiya, K.; Han, S.H.; Zhang, Y.; Kryukov, A.P.; Lin, L.K. Evolutionary trends of the mitochondrial lineage differentiation in species of genera Martes and Mustela. Genes Genet. Syst. 2000, 75, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurose, N.; Masuda, R.; Aoi, T.; Watanabe, S. Karyological differentiation between two closely related mustelids the Japanese weasel Mustela itatsi and the Siberian weasel Mustela siberica. Caryologia 2000, 53, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Sato, J.J.; Hosoda, T.; Wolsan, M.; Tsuchiya, K.; Yamamoto, M.; Suzuki, H. Phylogenetic relationships and divergence times among mustelids (Mammalia: Carnivora) based on nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein and mitochondrial cytochrome b genes. Zool. Sci. 2003, 20, 243–264. [Google Scholar] [CrossRef] [Green Version]
- Marmi, J.; López-Giráldez, J.F.; Domingo-Roura, X. Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zool. Scr. 2004, 33, 481–499. [Google Scholar] [CrossRef]
- Koepfli, K.P.; Deere, K.A.; Slater, G.J.; Begg, C.; Begg, K.; Grassman, L.; Lucherini, M.; Veron, G.; Wayne, R.K. Multigene phylogeny of the Mustelidae: Resolving relationships tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol. 2008, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Moliner, B.; Cabria, M.; Rubines, J.; Garin, I.; Madeira, M.; Elejalde, M.A.; Aihartza, J.; Fournier, P.; Palazón, S. PCR-RFLP identification of mustelid species: European mink (Mustela lutreola), American mink (M. vison) and polecat (M. putorius) by analysis of excremental DNA. J. Zool. 2004, 262, 311–316. [Google Scholar] [CrossRef]
- Davison, A.; Griffiths, H.I.; Brookes, R.C.; Maran, T.; Macdonald, D.W.; Sidorovich, V.E.; Kitchener, A.C.; Irizar, I.; Villate, I.; González-Esteban, J.; et al. Mitochondrial DNA and palaeontological evidence for the origins of endangered European mink, Mustela lutreola. Anim. Conserv. 2000, 3, 345–355. [Google Scholar] [CrossRef]
- Cabria, M.T. Desarrollo y Aplicacion de Marcadores Moleculares para el Studio de la Biologia y la Conservacion del Vison Europeo Mustela lutreola (Linnaeus 1761). Ph.D. Thesis, Universidad del País Vasco, Leioa, Spain, 2009. [Google Scholar]
- Cabria, M.T.; Gonzalez, E.G.; Gomez-Moliner, B.J.; Michaux, J.R.; Skumatov, D.; Kranz, A.; Fournier, P.; Palazon, S.; Zardoya, R. Patterns of genetic variation in the endangered European mink (Mustela lutreola L., 1761). BMC Evol. Biol. 2015, 15, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.J.; Finarelli, J.A.; Zehr, S.; Hsu, J.; Nedbal, M.A. Molecular phylogeny of the carnivora (mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Syst. Biol. 2005, 54, 317–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorupski, J.; Panicz, R.; Śmietana, P.; Napora-Rutkowski, Ł.; Soroka, M.; Kolek, L.; Budniak, M.; Wąsowicz, B.; Keszka, S.; Kempf, M.; et al. Conservation Genetics in Poland—Theory and Practice; Polish Society for Conservation Genetics LUTREOLA & Faculty of Biology, University of Szczecin: Szczecin, Poland, 2017; pp. 13–15, 197–204. [Google Scholar]
- Gherman, C.M.; Sándor, A.D.; Kalmár, Z.; Marinov, M.; Mihalca, A.D. First report of Borrelia burgdorferi sensu lato in two threatened carnivores: The marbled polecat, Vormela peregusna and European mink, Mustela lutreola (Mammalia: Mustelidae). BMC Vet. Res. 2012, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Bodewes, R.; Ruiz-Gonzalez, A.; Schapendonk, C.M.E.; van den Brand, J.M.A.; Osterhaus, A.D.M.E.; Smits, S.L. Viral metagenomic analysis of feces of wild small carnivores. Virol. J. 2014, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Leimann, A.; Knuuttila, A.; Maran, T.; Vapalahti, O.; Saarma, U. Molecular epidemiology of Aleutian mink disease virus (AMDV) in Estonia, and a global phylogeny of AMDV. Virus Res. 2015, 199, 56–61. [Google Scholar] [CrossRef]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.-P.; Pfenning, A.R.; Zhao, H.; et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. USA 2020, 117, 22311–22322. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, J.D.; Briscoe, D.A. A Primer of Conservation Genetics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Youngman, P.M. A Bibliography of Mustelids; Part IX: European Mink. Syllogeus 66; Canadian Museum of Nature: Ottawa, ON, Canada, 1991. [Google Scholar]
- Graphodatsky, A.S. Mustela lutreola (European Mink). In Atlas of Mammalian Chromosomes; O’Brien, S.J., Menninger, J.C., Nash, W.G., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 487. [Google Scholar]
- Franco-de-Sá, J.F.O.; Rosas, F.C.W.; Feldberg, E. Cytogenetic study of the giant otter Pteronura brasiliensis Zimmermann 1780 (Carnivora Mustelidae Lutrinae). Genet. Mol. Biol. 2007, 30, 1093–1096. [Google Scholar] [CrossRef]
- Ewer, R.F. The Carnivores; Cornell University Press: New York, NY, USA, 1973. [Google Scholar]
- Kurose, N.; Abramov, A.V.; Masuda, R. Molecular phylogeny and taxonomy of the genus Mustela (Mustelidae Carnivora) inferred from mitochondrial DNA sequences: New perspectives on phylogenetic status of the back-striped weasel and American mink. Mamm. Study 2008, 33, 25–33. [Google Scholar] [CrossRef]
- Graphodatsky, A.S.; Yang, F.; Serdukova, N.; Perelman, P.; Zhdanova, N.S.; Ferguson-Smith, M.A. Dog chromosome-specific paints reveal evolutionary inter- and intrachromosomal rearrangements in the American mink and human. Cytogenet. Cell Genet. 2000, 90, 275–278. [Google Scholar] [CrossRef]
- Graphodatsky, A.S.; Yang, F.; Perelman, P.; O’Brien, P.C.M.; Serdukova, N.A.; Milne, B.S.; Biltueva, L.S.; Fu, B.; Vorobieva, N.V.; Kawada, S.I.; et al. Comparative molecular cytogenetic studies in the order Carnivora: Mapping chromosomal rearrangements onto the phylogenetic tree. Cytogenet. Genome Res. 2002, 96, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Peltier, D.; Lodé, T. Molecular survey of genetic diversity in the endangered European mink Mustela lutreola. C R Biol. 2003, 325, S49–S53. [Google Scholar] [CrossRef]
- López-Giráldez, F.; Gómez-Moliner, B.J.; Marmi, J.; Domingo-Roura, X. Genetic distinction of American and European mink (Mustela vison and M. lutreola) and European polecat (M. putorius) hair samples by detection of a species-specific SINE and a RFLP assay. J. Zool. 2005, 265, 405–410. [Google Scholar] [CrossRef]
- Cabria, M.T.; Michaux, J.R.; Gómez-Moliner, B.J.; Skumatov, D.; Maran, T.; Fournier, P.; López de Luzuriaga, J.; Zardoya, R. Bayesian analysis of hybridization and introgression between the endangered european mink (Mustela lutreola) and the polecat (Mustela putorius). Mol. Ecol. 2011, 20, 1176–1190. [Google Scholar] [CrossRef] [PubMed]
- Veale, A.J.; Clout, M.N.; Gleeson, D.M. Genetic population assignment reveals a long-distance incursion to an island by a stoat (Mustela erminea). Biol. Invasions 2012, 14, 735–742. [Google Scholar] [CrossRef]
- Lodé, T.; Guiral, G.; Peltier, D. European mink-polecat hybridization events: Hazards from natural process? J. Hered. 2005, 96, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, L.; Nieberg, C.; Jahreis, K.; Peters, E. MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)—Consequences for species conservation. Immunogenetics 2009, 61, 281–288. [Google Scholar] [CrossRef]
- Nishita, Y.; Abramov, A.V.; Kosintsev, P.A.; Lin, L.K.; Watanabe, S.; Yamazaki, K.; Kaneko, Y.; Masuda, R. Genetic variation of the MHC class II DRB genes in the Japanese weasel, Mustela itatsi, endemic to Japan, compared with the Siberian weasel, Mustela sibirica. Tissue Antigens 2015, 86, 431–442. [Google Scholar] [CrossRef]
- Nishita, Y.; Kosintsev, P.A.; Haukisalmi, V.; Väinölä, R.; Raichev, G.G.; Murakami, T.; Abramov, A.V.; Kaneko, Y.; Masuda, R. Diversity of MHC class II DRB alleles in the Eurasian population of the least weasel, Mustela nivalis (Mustelidae: Mammalia). Biol. J. Linn. Soc. 2017, 121, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Mouton, A.; Fournier-Chambrillon, C.; Fournier, P.; Marchand, I.; Urra Maya, F.; Michaux, J. Genomics and European mink: A new avenue for the species’ conservation? In Proceedings of the 4th Annual Meeting in Conservation Genetics 2020—From Genomes to Application; von Thaden, A., Nowak, C., Prost, S., Eds.; Senckenberg Research Institute and Natural History Museum Frankfurt am Main: Frankfurt, Germany, 2020; p. 100. [Google Scholar]
- GenBank (NCBI). Available online: https://www.ncbi.nlm.nih.gov/genbank/ (accessed on 15 September 2020).
- Lushnikova, T.P.; Grafodatskiĭ, A.S.; Romashchenko, A.G.; Radzhabli, S.I. Chromosomal localization and evolutionary age of satellite DNAs of Mustelidae. Genetika 1988, 24, 2134–2140. [Google Scholar]
- Lushnikova, T.P.; Grafodatskiy, A.S.; Ivanov, S.V.; Romashchenko, A.G.; Ternovskiy, L.V.; Ternovskaya, I.G.; Radzhabli, S.I. EcoRI- and BamHI-families of repeated sequences in mustelids. Genetika 1989, 25, 1449–1461. [Google Scholar] [PubMed]
- Lushnikova, T.P.; Omelyanchuk, L.V.; Graphodatsky, A.S.; Radjabli, S.I.; Ternovskaya, Y.G.; Ternovsky, D.V. Phylogenetic relationships of closely related species (Mustelidae). Interspecific variability of blot-hybridization patterns of BamHI repeats. Genetika 1989, 25, 1089–1094. [Google Scholar] [PubMed]
- Peng, X.; Alföldi, J.; Gori, K.; Eisfeld, A.J.; Tyler, S.R.; Tisoncik-Go, J.; Brawand, D.; Law, G.L.; Skunca, N.; Hatta, M.; et al. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat. Biotechnol. 2014, 32, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Skorupski, J.; University of Szczecin: Szczecin, Poland. Personal communication, 2019.
- Oliveira, R.; Castro, D.; Godinho, R.; Luikart, G.; Alves, P.C. Species identification using a small nuclear gene fragment: Application to sympatric wild carnivores from South-western Europe. Conserv. Genet. 2010, 11, 1023–1032. [Google Scholar] [CrossRef]
- The Vincent Wildlife Trust. Available online: https://www.vwt.org.uk/species/european-mink/ (accessed on 15 September 2020).
- European Mink Project—Wildlife Conservation Research Unit. Available online: https://www.wildcru.org/research/european-mink-project/ (accessed on 15 September 2020).
- Sidorovich, V.E.; Kruuk, H.; Macdonald, D.W. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J. Zool. 1999, 248, 521–527. [Google Scholar] [CrossRef]
- Fournier, P.; Maizeret, C.; Jimenez, D.; Chusseau, J.-P.; Aulagnier, S.; Spitz, F. Habitat utilization by sympatric European mink Mustela lutreola and polecats Mustela putorius in south-western France. Acta Theriol. 2007, 52, 1–12. [Google Scholar] [CrossRef]
- Maran, T.; Põdra, M.; Harrington, L.A.; Macdonald, D.W. European mink: Restoration attempts for a species on the brink of extinction. In Biology and Conservation of Musteloids; Macdonald, D.W., Newman, C., Harrington, L.A., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 370–388. [Google Scholar] [CrossRef]
- Põdra, M.; Gómez, A. Rapid expansion of the American mink poses a serious threat to European mink in Spain. Mammalia 2018, 82, 1–9. [Google Scholar] [CrossRef]
- Domingo-Roura, X. Genetic distinction of marten species by the fixation of a microsatellite region. J. Mammal. 2002, 83, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Monterroso, P.; Godinho, R.; Oliveira, T.; Ferreras, P.; Kelly, M.J.; Morin, D.J.; Waits, L.P.; Alves, P.C.; Mills, L.S. Feeding ecological knowledge: The underutilised power of faecal DNA approaches for carnivore diet analysis. Mam. Rev. 2019, 49, 97–112. [Google Scholar] [CrossRef]
- Kiseleva, N.V.; Sorokin, P.A. Study of the distribution of Mustelids over the Southern Urals Using Noninvasive Methods. Contemp. Probl. Ecol. 2013, 6, 300–305. [Google Scholar] [CrossRef]
- Fernandes, C.A.; Ginja, C.; Pereira, I.; Tenreiro, R.; Bruford, M.W.; Santos-Reis, M. Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv. Genet. 2008, 9, 681–690. [Google Scholar] [CrossRef]
- Larson, S.; Jameson, R.; Bodkin, J.; Staedler, M.; Bentzen, P. Microsatellite DNA and mitochondrial DNA variation in remnant and translocated sea otter (Enhydra lutris) populations. J. Mammal. 2002, 83, 893–906. [Google Scholar] [CrossRef]
- Marmi, J.; Lopez-Giraldez, F.; Macdonald, D.W.; Calafell, F.; Zholnerovskaya, E.; Domingo-Roura, X. Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Mol. Ecol. 2006, 15, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Pertoldi, C.; Breyne, P.; Cabria, M.T.; Halfmaerten, D.; Jansman, H.A.H.; Van Den Berge, K.; Madsen, A.B.; Loeschcke, V. Genetic structure of the European polecat (Mustela putorius) and its implication for conservation strategies. J. Zool. 2006, 270, 102–115. [Google Scholar] [CrossRef]
- Aguilar, A.; Jessup, D.A.; Estes, J.; Garza, J.C. The distribution of nuclear genetic variation and historical demography of sea otters. Anim. Conserv. 2008, 11, 35–45. [Google Scholar] [CrossRef]
- Lecis, R.; Ferrando, A.; Ruiz-Olmo, J.; Mañas, S.; Domingo-Roura, X. Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain based on microsatellite variation. Conserv. Genet. 2008, 9, 1149–1161. [Google Scholar] [CrossRef]
- Lebarbenchon, C.; Poitevin, F.; Montgelard, C. Genetic variation of the weasel (Mustela nivalis) in Corsica based on mitochondrial control region sequences. Mamm. Biol. 2006, 71, 164–171. [Google Scholar] [CrossRef]
- Frantz, A.C.; Pope, L.C.; Etherington, T.R.; Wilson, G.J.; Burke, T. Using isolation-by-distance-based approaches to assess the barrier effect of linear landscape elements on badger (Meles meles) dispersal. Mol. Ecol. 2010, 19, 1663–1674. [Google Scholar] [CrossRef]
- Mucci, N.; Arrendal, J.; Ansorge, H.; Bailey, M.; Bodner, M.; Delibes, M.; Ferrando, A.; Fournier, P.; Fournier, C.; Godoy, J.A.; et al. Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe. Conserv. Genet. 2010, 11, 583–599. [Google Scholar] [CrossRef]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [PubMed]
- Wright, S. Coefficients of inbreeding and relationships. Am. Nat. 1992, 56, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Ji, Y.-J.; Zhang, D.-X. Statistical measures of genetic differentiation of populations: Rationales, history and current states. Curr. Zool. 2015, 61, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Korablev, M.P.; Korablev, P.N.; Korablev, N.P.; Tumanov, I.L. Polymorphism of the Endangered European Mink (Mustela lutreola, Carnivora, Mustelidae) Population in the Central Forest Reserve and Neighboring Areas. Biol. Bull. Russ. Acad. Sci. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Korablev, N.P.; Korablev, M.P.; Korablev, P.N. Phene pool dynamics as an index of mortality in commercial mammal species. In Theriofauna of Russia and Neighboring Countries: Proceedings of the International Conference and IX Congress of the Theriological Society of Russian Academy of Sciences; KMK: Moscow, Russia, 2011; p. 243. [Google Scholar]
- Lodé, T. Genetic heterozygosity in polecat Mustela putorius populations from western France. Hereditas 1998, 129, 259–261. [Google Scholar] [CrossRef]
- Novikov, G.A. The European Mink; Izd. Leningradskogo Gos. Univ.: Leningrad, Russia, 1939. [Google Scholar]
- Wilson, D.E.; Reeder, D.M. (Eds.) Mammal Species of the World. A Taxonomic and Geographic Reference; Johns Hopkins University Press: Baltimore, MA, USA, 2005. [Google Scholar]
- Clavero, M. Shifting baselines and the conservation of non-native species. Conserv. Biol. 2014, 28, 1434–1436. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, R. Managing Spanish European mink populations: Moving from a precautionary approach towards knowledge-based management. J. Nat. Conserv. 2015, 25, 58–61. [Google Scholar] [CrossRef]
- Clavero, M. Non-Native species as conservation priorities: Response to Díez-León et al. Conserv. Biol. 2015, 29, 957–959. [Google Scholar] [CrossRef] [Green Version]
- Díez-León, M.; Miranda, R.; Ariño, A.H.; Galicia, D. Setting priorities for existing conservation needs of crayfish and mink. Conserv. Biol. 2015, 29, 599–601. [Google Scholar] [CrossRef]
- Melero, Y. Communication of flagship species in conservation: Lessons from invasive management projects. Biodivers. Conserv. 2017, 26, 2973–2978. [Google Scholar] [CrossRef] [Green Version]
- Zuberogoitia, I.; Põdra, M.; Palazón, S.; Gómez, A.; Zabala, N.; Zabala-Albizua, J. Facing Extinction, Last Call for the European Mink. Ann. Rev. Resear. 2018, 2, 555581. [Google Scholar]
- Davison, A.; Birks, J.D.S.; Griffiths, H.I.; Kitchener, A.C.; Biggins, D.; Butlin, R.K. Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain. Biol. Conserv. 1999, 87, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Abramov, A.V.; Meschersky, I.G.; Aniskin, V.M.; Rozhnov, V.V. The mountain weasel Mustela kathiah (Carnivora: Mustelidae): Molecular and Karyological data. Biol. Bull. Russ. Acad. Sci. 2013, 40, 52–60. [Google Scholar] [CrossRef]
- Yonezawa, T.; Nikaido, M.; Kohno, M.; Fukumoto, Y.; Okada, N.; Hasegawa, M. Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene 2007, 396, 1–12. [Google Scholar] [CrossRef]
- Sato, J.J.; Hosada, T.; Wolsan, M.; Suzuki, H. Molecular phylogeny of Arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zool. Sci. 2004, 21, 111–118. [Google Scholar] [CrossRef]
- Fulton, T.L.; Strobeck, C. Molecular phylogeny of the Arctoidea (Carnivora): Effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol. Phylogenet. Evol. 2006, 41, 165–181. [Google Scholar] [CrossRef]
- Abramov, A.V. A taxonomic review of the genus Mustela (Mammalia Carnivora). Zoosyst. Ross. 2000, 8, 357–364. [Google Scholar]
- Harding, L.E.; Smith, F.A. Mustela or Vison? Evidence for the taxonomic status of the American mink and a distinct biogeographic radiation of American weasels. Mol. Phylogenet. Evol. 2009, 52, 632–642. [Google Scholar] [CrossRef]
- Rowe, G.; Sweet, M.; Beebee, T.J.C. An Introduction to Molecular Ecology, 3rd ed.; Oxford University Press: Oxford, UK, 2017; p. 1. [Google Scholar]
- Mañas, S.; Ceña, J.C.; Ruiz-Olmo, J.; Palazón, S.; Domingo, M.; Wolfinbarger, J.B.; Bloom, M.E. Aleutian mink disease parvovirus in wild riparian carnivores in Spain. J. Wildl. Dis. 2001, 37, 138–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moinet, M. Etude Comparative de la Leptospirose Chez le Vison d’Europe (Mustela lutreola) et les Autres Petits Carnivores Sauvages du Sud-Ouest de la France. Ph.D. Thesis, Ecole Nationale Veterinaire de Nantes, Nantes, France, 2008. [Google Scholar]
- Padgett-Stewart, T.M.; Wilcox, T.M.; Carim, K.J.; McKelvey, K.S.; Young, M.K.; Schwartz, M.K. An eDNA assay for river otter detection: A tool for surveying a semi-aquatic mammal. Conserv. Genet. Resour. 2016, 8, 5–7. [Google Scholar] [CrossRef]
- Sales, N.; Mckenzie, M.; Drake, J.; Harper, L.; Browett, S.; Coscia, I.; Wangensteen, O.; Baillie, C.; Bryce, E.; Dawson, D.; et al. Fishing for mammals: Landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 2020, 57, 707–716. [Google Scholar] [CrossRef]
- Witzenberger, K.A.; Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 2011, 20, 1843–1861. [Google Scholar] [CrossRef]
- Attard, C.R.; Möller, L.M.; Sasaki, M.; Hammer, M.P.; Bice, C.M.; Brauer, C.J.; Carvalho, D.C.; Harris, J.O.; Beheregaray, L.B. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv. Biol. 2016, 30, 1060–1069. [Google Scholar] [CrossRef] [PubMed]
- Amstislavsky, S.; Lindeberg, H.; Aalto, J.; Kennedy, M.W. Conservation of European mink (Mustela lutreola): Focus on reproduction and reproductive technologies. Reprod. Domest. Anim. 2008, 43, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Ryder, O. Species conservation and systematics: The dilemma of subspecies. Trends Ecol. Evol. 1986, 1, 9–10. [Google Scholar] [CrossRef]
- Lynch, M. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 1991, 45, 622–629. [Google Scholar] [CrossRef]
- Fraser, D.; Bernatchez, L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Mol. Ecol. 2001, 10, 2741–2752. [Google Scholar] [CrossRef]
- Saveljev, A.P. Concepts Useful in Management and Conservation of Wildlife Population. Vestn. Udmurt. Univ. 2009, 1, 73–79. [Google Scholar]
- Gippoliti, S. Captive breeding and conservation of European mammal diversity. Hystrix 2004, 15, 35–53. [Google Scholar] [CrossRef]
- Wisely, S.; McDonald, D.; Buskirk, S. Evaluation of the genetic management of the endangered black-footed ferret (Mustela nigripes). Zoo Biol. 2003, 22, 287–298. [Google Scholar] [CrossRef]
- Wisely, S.M.; Santymire, R.M.; Livieri, T.M.; Mueting, S.A.; Howard, J.-G. Genotypic and phenotypic consequences of reintroduction history in the black-footed ferret (Mustela nigripes). Conserv. Genet. 2008, 9, 389–399. [Google Scholar] [CrossRef]
- Cain, C.M.; Livieri, T.M.; Swanson, B.J. Genetic evaluation of a reintroduced population of black-footed ferrets (Mustela nigripes). J. Mamm. 2011, 92, 751–759. [Google Scholar] [CrossRef]
- Wisely, S.M.; Ryder, O.A.; Santymire, R.M.; Engelhardt, J.F.; Novak, B.J. A Road Map for 21st Century Genetic Restoration: Gene Pool Enrichment of the Black-Footed Ferret. J. Hered. 2015, 106, 581–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodé, T. The European Mink’s Paradox: Near Extinction but Colonizing New Habitats. JSM Biol. 2017, 2, 1011. [Google Scholar]
- Excoffier, L.; Foll, M.; Petit, R. Genetic Consequences of Range Expansions. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 481–501. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and Power Analysis of Two Tests for Detecting Recent Population Bottlenecks from Allele Frequency Data. Genetics 1996, 144, 2001–2014. [Google Scholar]
- Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008, 17, 431–449. [Google Scholar] [CrossRef]
- Palazón, S.; Melero, Y. Status, threats and management actions on the European mink Mustela lutreola (Linnaeus, 1761) in Spain: A review of the studies performed since 1992. Munibe Monogr. Nat. Ser. 2014, 3, 109–115. [Google Scholar] [CrossRef]
- Del Molino, D.; Sánchez-Barreiro, D.; Barnes, F.; Gilbert, I.; Love, M.D. Quantifying Temporal Genomic Erosion in Endangered Species. Trends Ecol. Evol. 2018, 33, 176–185. [Google Scholar] [CrossRef]
- Lopez, L.; Turner, K.G.; Bellis, E.S.; Lasky, J.R. Genomics of natural history collections for understanding evolution in the wild. Mol. Ecol. Resour. 2020, 20, 1153–1160. [Google Scholar] [CrossRef]
- US Fish; Wildlife Service; National Fisheries Service. Policy Regarding the Recognition of Distinct Vertebrate Population Segments under the Endangered Species; Act Federal Register; U.S. Government Publishing Office: Washington, DC, USA, 1996; Volume 61, pp. 4721–4725.
- Wright, S. Evolution in Mendelian populations. Genetics 1931, 16, 97–159. [Google Scholar] [PubMed]
- Kimura, M. Random genetic drift in multi-allelic locus. Evolution 1955, 9, 419–435. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations. In The Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969; Volume 2. [Google Scholar]
- Frankham, R. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 1995, 66, 95–107. [Google Scholar] [CrossRef]
- Kiik, K.; Maran, T.; Nemvalts, K.; Sandre, S.L.; Tammaru, T. Reproductive parameters of critically endangered European mink (Mustela lutreola) in captivity. Anim. Reprod. Sci. 2017, 181, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, N.V. The Current State of the European Mink in Russia; Polish Society for Conservation Genetics LUTREOLA: Szczecin, Poland, 2018. [Google Scholar]
- Ternovsky, D.V.; Ternovskaya, Y.G. Ecology of Mustelids; Nauka (Scientific Siberian Press): Novosibirsk, Russia, 1994. [Google Scholar]
- Kiik, K.; Maran, T.; Nagl, A.; Ashford, K.; Tammaru, T. The causes of the low breeding success of European mink (Mustela lutreola) in captivity. Zoo Biol. 2013, 32, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Mañas, F.; Palazón, S.; Ruiz-Olmo, J.; Maran, T.; Festl, W.; Seebass, C. Captive Breeding Program of European Mink in Spain: El Centre de Port de Suert. In International Conference on the Conservation of the European Mink (Mustela lutreola)—Proceedings Book; Gobierno de La Roja: Logroño, Spain, 2006; pp. 123–129. [Google Scholar]
- Maran, T.; Põdra, M.; Põlma, M.; Macdonald, D.W. The survival of captive-born animals in restoration programmes—Case study of the endangered European mink Mustela lutreola. Biol. Conserv. 2009, 142, 1685–1692. [Google Scholar] [CrossRef]
- Kneidinger, N.; Nagl, A.; Kiik, K.; Schwarzenberger, F.; Maran, T. The individual courtship behaviour of male European mink (Mustela lutreola) is a good indicator for their breeding success. Appl. Anim. Behav. Sci. 2018, 205, 98–106. [Google Scholar] [CrossRef]
- Van Oers, K.; de Jong, G.; van Noordwijk, A.J.; Kempenaers, B.; Drent, P.J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 2005, 142, 1185–1206. [Google Scholar] [CrossRef]
- Haage, M.; Maran, T.; Bergvall, U.A.; Elmhagen, B.; Angerbjörn, A. The influence of spatiotemporal conditions and personality on survival in reintroductions-evolutionary implications. Oecologia 2017, 183, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Amstislavsky, S.; Aalto, J.; Järvinen, M.; Lindeberg, H.; Valtonen, M.; Zudova, G.; Ternovskaya, Y. Transfer of European mink (Mustela lutreola) embryos into hybrid recipients. Theriogenology 2004, 62, 458–467. [Google Scholar] [CrossRef]
- Amstislavsky, S.; Kizilova, E.; Ternovskaya, Y.; Zudova, G.; Lindeberg, H.; Aalto, J.; Valtonen, M. Embryo development and embryo transfer in the European mink (Mustela lutreola), an endangered mustelid species. Reprod. Fertil. Dev. 2006, 18, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Amstislavsky, S.; Lindeberg, H.; Aalto, J.; Järvinen, M.; Valtonen, M.; Kizilova, E.; Zudova, G.; Ternovskaya, Y. Embryo cryopreservation and transfer in Mustelidae: Approaches to ex situ conservation of the endangered European mink. Int. J. Refrig. 2006, 29, 396–402. [Google Scholar] [CrossRef]
- Lin, C.; Tsai, S. The effect of cryopreservation on DNA damage, gene expression and protein abundance in vertebrate. Ital. J. Anim. Sci. 2012, 11, e21. [Google Scholar] [CrossRef] [Green Version]
- Santymire, R. Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reprod. Fertil. Dev. 2016, 28, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R. The loss of diversity: Causes and consequences. In Biodiversity; Wilson, E.O., Ed.; National Academy Press: Washington, DC, USA, 1988; pp. 21–27. [Google Scholar]
- Howard, J.G.; Bush, M.; Morton, C.; Morton, F.; Wildt, D.E. Comparative semen cryopreservation in ferrets (Mustela putorius furo) and pregnancies after laparoscopic intrauterine insemination with frozen–thawed spermatozoa. J. Reprod. Fertil. 1991, 92, 109–118. [Google Scholar] [CrossRef]
- Wisely, S.; Buskirk, S.; Fleming, M.; McDonald, D.; Ostrander, E. Genetic Diversity and Fitness in Black-Footed Ferrets before and during a Bottleneck. J. Hered. 2002, 93, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Wisely, S.M.; Santymire, R.M.; Marinari, P.E.; Kreeger, J.S.; Livieri, T.M.; Wildt, D.E.; Howard, J.G. Environment influences morphology and development of in situ and ex situ populations of the black-footed ferret. Anim. Conserv. 2005, 8, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Howard, J.G.; Wildt, D.E. Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 2009, 71, 130–148. [Google Scholar] [CrossRef]
- Howard, J.G.; Lynch, C.; Santymire, R.; Marinari, P.; Wildt, D.E. Recovery of gene diversity using long-term, cryopreserved spermatozoa in the endangered black-footed ferret. Anim. Conserv. 2016, 19, 102–111. [Google Scholar] [CrossRef]
- WAZA (World Association of Zoos and Aquariums). Building a Future for Wildlife—The World Zoo and Aquarium Conservation Strategy; WAZA: Bern, Switzerland, 2005. [Google Scholar]
- Hughes, A.L. MHC polymorphism and the design of captive breeding programs. Conserv. Biol. 1991, 5, 249–250. [Google Scholar] [CrossRef]
- Tumanov, I.L.; Abramov, A.V. A study of the hybrids between the European Mink Mustela lutreola and the Polecat M. putorius. Small Carniv. Conserv. 2002, 27, 29–31. [Google Scholar]
- Macdonald, D.W.; Sidorovich, V.E.; Maran, T.; Ktuuk, H. European Mink, Mustela lutreola: Analyses for Conservation; WildCRU and Darwin Initiative: Tubney, UK, 2002. [Google Scholar]
- Allendorf, F.W.; Luikart, G.H.; Aitken, S.N. Conservation and the Genetics of Populations, 2nd ed.; Wiley-Blackwell: Oxford, UK, 2013. [Google Scholar]
- Biebach, I.; Leigh, D.M.; Sluzek, K.; Keller, L.F. Genetic Issues in Reintroduction. In Reintroduction of Fish and Wildlife Populations; Jachowski, D.S., Millspaugh, J.J., Angermeier, P.L., Slotow, R., Eds.; University of California Press: Oakland, CA, USA, 2016; pp. 149–183. [Google Scholar]
- Ognev, S.I. Mammals of Eastern Europe and Northern Asia: Carnivorous Mammals; Glavnauka: Moscow, Russia, 1931; Volume 2. [Google Scholar]
- Heptner, V.G.; Naumov, N.P.; Yurgenson, P.B.; Sludskii, A.A.; Chirkova, A.F.; Bannikov, A.G. Mammals of the Soviet Union; Smithsonian Institution Libraries and The National Science Foundation: New Delhi, India, 2001; Volume 2(1b). [Google Scholar]
- Rozhnov, V.V. Extinction of the European mink: Ecological catastrophe or a natural process? Lutreola 1993, 1, 10–16. [Google Scholar]
- Ternovsky, D.V. The Biology of the Mustelids (Mustelidae); Nauka Publ.: Novosibirsk, USSR, 1977. [Google Scholar]
- Allendorf, F.W.; Hohenlohe, P.A.; Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet. 2010, 11, 697–709. [Google Scholar] [CrossRef] [PubMed]
- Ouborg, N.J.; Pertoldi, C.; Loeschcke, V.; Bijlsma, R.; Hedrick, P.W. Conservation genetics in transition to conservation genomics. Trends Genet. 2010, 26, 177–187. [Google Scholar] [CrossRef]
- Pertoldi, C.; Randi, E. The ongoing transition at an exponential speed from Conservation genetics to Conservation genomics. Gen. Biodiv. J. 2018, 2, 47–54. [Google Scholar]
- Khan, S.; Nabi, G.; Ullah, M.; Yousaf, M.; Manan, S.; Siddique, R.; Hou, H. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species. Int. J. Genom. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Stronen, A.V.; Iacolina, L.; Ruiz-Gonzalez, A. Rewilding and conservation genomics: How developments in (re)colonization ecology and genomics can offer mutual benefits for understanding contemporary evolution. Glob. Ecol. Conserv. 2019, 17, e00502. [Google Scholar] [CrossRef]
- Steiner, C.; Putnam, A.; Hoeck, P.; Ryder, O. Conservation Genomics of Threatened Animal Species. Annu. Rev. Anim. Biosci. 2013, 1, 261–281. [Google Scholar] [CrossRef] [Green Version]
- Supple, M.A.; Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 2018, 19, 131. [Google Scholar] [CrossRef]
- Wright, B.; Farquharson, K.A.; McLennan, E.A.; Belov, K.; Hogg, C.J.; Grueber, C.E. From reference genomes to population genomics: Comparing three reference-aligned reduced-representation sequencing pipelines in two wildlife species. BMC Genom. 2019, 20, 453. [Google Scholar] [CrossRef]
- Fuentes-Pardo, A.P.; Ruzzante, D.E. Whole-genome sequencing approaches for conservation biology: Advantages, limitations and practical recommendations. Mol. Ecol. 2017, 26, 5369–5406. [Google Scholar] [CrossRef] [PubMed]
- Brandies, P.; Peel, E.; Hogg, C.J.; Belov, K. The Value of Reference Genomes in the Conservation of Threatened Species. Genes 2019, 10, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campana, M.G.; Parker, L.D.; Hawkins, M.T.; Young, H.S.; Helgen, K.M.; Gunther, M.S.; Woodroffe, R.; Maldonado, J.E.; Fleischer, R.C. Genome sequence, population history, and pelage genetics of the endangered African wild dog (Lycaon pictus). BMC Genom. 2016, 17, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryder, O.A. Conservation genomics: Applying whole genome studies to species conservation efforts. Cytogenet. Genome Res. 2005, 108, 6–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, J.; Liu, X.; Di, D.; Liang, Y.; Feng, Y.; Zhang, S.; Li, B.; Qi, X.-G. A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus roxellana). GigaScience 2019, 8, giz098. [Google Scholar] [CrossRef]
- Van der Valk, T.; Gonda, C.M.; Silegowa, H.; Almanza, S.; Sifuentes-Romero, I.; Hart, T.B.; Hart, J.A.; Detwiler, K.M.; Guschanski, K.; Yoder, A. The Genome of the Endangered Dryas Monkey Provides New Insights into the Evolutionary History of the Vervets. Mol. Biol. Evol. 2020, 37, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Wright, B.R.; Farquharson, K.A.; McLennan, E.A.; Belov, K.; Hogg, C.J.; Grueber, C.E. A demonstration of conservation genomics for threatened species management. Mol. Ecol. Resour. 2020. [Google Scholar] [CrossRef]
- Phillips, J.D.; Gillis, D.J.; Hanner, R.H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. 2019, 9, 2996–3010. [Google Scholar] [CrossRef]
- Nazareno, A.G.; Jump, A.S. Species-genetic diversity correlations in habitat fragmentation can be biased by small sample sizes. Mol. Ecol. 2012, 21, 2847–2849. [Google Scholar] [CrossRef]
- Willing, E.M.; Dreyer, C.; Oosterhout, C.V. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLoS ONE 2012, 7, e42649. [Google Scholar] [CrossRef] [Green Version]
- Hobas, S.; Gaggiotti, O.; Bertorelle, G. Sample planning optimization tool for conservation and population genetics (SPOTG): A software for choosing the appropriate number of markers and samples. Methods Ecol. Evol. 2013, 4, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wanger, H.H.; Fortin, M.J.; Cushman, S.A. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol. Ecol. Res. 2012, 12, 276–284. [Google Scholar] [CrossRef]
- Peery, M.Z.; Kirby, R.; Reid, B.N.; Stoelting, R.; Doucet-Bëer, E.; Robinson, S.; Vásquez-Carrillo, C.; Pauli, J.N.; Palsbøll, P.J. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 2012, 21, 3403–3418. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R.; Ballou, J.D.; Ralls, K.; Eldridge, M.D.B.; Dudash, M.R.; Fenster, C.B.; Lacy, R.C.; Sunnucks, P. Genetic Management of Fragmented Animal and Plant Populations; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Hale, M.L.; Burg, T.M.; Steeves, T.E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 2012, 7, e45170. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, D.L.; Copp, G.H.; Handley, L.L.; Olsén, H.K.; Sayer, C.D.; Hänfling, B. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Biol. Invasions 2016, 25, 2997–3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jongh, A.W.J.J.; Tokar, G.A.; Matvyeyev, A.S.; de Jong, T.; de Jongh-Nesterko, L.V. European mink (Mustela lutreola) still surviving in Ukrainian deltas of the Danube and Dniester. Lutra 2007, 50, 33–36. [Google Scholar]
- Maran, T.; Skumatov, D. Captive breeding and reintroductions—Russia. Eur. Mink Conserv. Actvities Eur. Newsl. 2017, 2017, 6. [Google Scholar]
- Skorupski, J.; Polish Society for Conservation Genetics LUTREOLA, Szczecin, Poland. Personal Communication, 2020.
- Polish Society for Conservation Genetics LUTREOLA. Available online: http://lutreola.pl/aktualnosci/1/31-szy-marca-dniem-norki-europejskiej/ (accessed on 15 September 2020).
Microsatellite Loci | GenBank Accession Code | Repetitive Motif | Number of Alleles Identified |
---|---|---|---|
Mlut04 | EF093582 | (GT)16 | 5 |
Mlut08 | EF093583 | (GT)12 | 4 |
Mlut15 | EF093585 | (GT)14 | 5 |
Mlut20 | EF093587 | (GT)18 | 8 |
Mlut25 | EF093588 | (GT)15 | 6 |
Mlut27 | EF093589 | (GT)8NN(GT)14 | 2 |
Mlut32 | EF093590 | (GT)59 | 8 |
Mlut35 | EF093591 | (GT)15NNNN(GT)4NN(GT)7 | 4 |
Species | Microsatellite Loci | Reference |
---|---|---|
American mink | Mvi002, Mvi020, Mvi022, Mvi054, Mvi072, Mvi075, Mvi111, Mvi389, Mvi1843 | Michaux et al. [8], Cabria et al. [30], Peltier and Lodé [45], Lodé et al. [49] |
European polecat | PutFK1 | Peltier and Lodé [45] |
Stoat | Mer009, Mer022, Mer041 | Michaux et al. [8], Cabria et al. [30] |
Taxon | Similarity [%] | Taxon | Similarity [%] |
---|---|---|---|
Mustela putorius | 99 | Enhydra lutris | 87 |
Mustela putorius furo | 99 | Lutra lutra | 87 |
Mustela evermannii | 99 | Lutra sumatrana | 86 |
Mustela nigripes | 98 | Martes melampus | 86 |
Mustela sibirica | 97 | Martes Americana | 86 |
Mustela itatsi | 95 | Martes martes | 86 |
Mustela altaica | 92 | Martes zibellina | 86 |
Mustela nivalis | 92 | Martes flavigula | 86 |
Mustela ermine | 92 | Martes foina | 86 |
Mustela kathiah | 89 | Martes pennant | 86 |
Mustela frenata | 89 | Gulo gulo | 86 |
Neovison vison | 88 | Melogale moschata | 86 |
Population | N | NA | PA | % PA | A | HO | HE | FIS |
---|---|---|---|---|---|---|---|---|
NE | 107 | 59 | 20 | 33.90 | 5.364 | 0.559 ± 0.153 | 0.613 ± 0.164 | 0.089 |
SE | 44 | 35 | 2 | 5.71 | 3.182 | 0.464 ± 0.170 | 0.496 ± 0.139 | 0.065 |
W | 162 | 32 | 3 | 9.38 | 2.909 | 0.336 ± 0.161 | 0.439 ± 0.201 | 0.236 |
TOTAL | 313 | 64 | - | - | 5.818 | 0.430 ± 0.113 | 0.578 ± 0.148 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupski, J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes 2020, 11, 1332. https://doi.org/10.3390/genes11111332
Skorupski J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes. 2020; 11(11):1332. https://doi.org/10.3390/genes11111332
Chicago/Turabian StyleSkorupski, Jakub. 2020. "Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals?" Genes 11, no. 11: 1332. https://doi.org/10.3390/genes11111332
APA StyleSkorupski, J. (2020). Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes, 11(11), 1332. https://doi.org/10.3390/genes11111332