PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Dataset
2.2. Structural Features
2.2.1. Accessible Surface Area (ASA)
2.2.2. Secondary Structure
2.2.3. Local Backbone Torsion Angles
2.3. Feature Extraction for Lysine Residues
2.4. Support Vector Machine for Classification
3. Results
3.1. Performance Measures
3.2. Evaluation Strategy
- Partition data samples randomly into n parts of roughly equal size with roughly similar negative and positive samples on each fold.
- Take out one-fold as test set or validation data and the remaining n-1 folds as training data.
- Use the training data set to fine-tune the parameters of the predictor.
- Use the test set to compute the five statistical metrics.
- Repeat Step 1 to Step 4 for the remaining n folds and calculate the average of each performance metric.
3.3. Filtering Out the Imbalance Data
3.4. PupStruct vs. Other Existing Predictors
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haj-Yahya, M.; Lashuel, H.A. Protein semisynthesis provides access to tau disease-associated post-translational modifications (PTMs) and paves the way to deciphering the tau PTM code in health and diseased states. J. Am. Chem. Soc. 2018, 140, 6611–6621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, M.; Jensen, O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003, 21, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Deribe, Y.L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010, 17, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Hart, G.W.; Ball, L.E. Post-translational Modifications: A Major Focus for the Future of Proteomics. Mol. Cell. Proteom. 2013, 12, 3443. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.T.; Garneau-Tsodikova, S.; Gatto Jr, G.J. Protein posttranslational modifications: The chemistry of proteome diversifications. Angew. Chem. Int. Ed. 2005, 44, 7342–7372. [Google Scholar] [CrossRef]
- Qiu, W.-R.; Xiao, X.; Lin, W.-Z.; Chou, K.-C. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model. J. Biomol. Struct. Dyn. 2015, 33, 1731–1742. [Google Scholar] [CrossRef]
- Liu, Z.; Xiao, X.; Qiu, W.-R.; Chou, K.-C. iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition. Anal. Biochem. 2015, 474, 69–77. [Google Scholar] [CrossRef]
- Lan, F.; Shi, Y. Epigenetic regulation: Methylation of histone and non-histone proteins. Sci. China Ser. C Life Sci. 2009, 52, 311–322. [Google Scholar] [CrossRef]
- Hou, T.; Zheng, G.; Zhang, P.; Jia, J.; Li, J.; Xie, L.; Wei, C.; Li, Y. LAceP: Lysine acetylation site prediction using logistic regression classifiers. PLoS ONE 2014, 9, e89575. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Wulf, G.; Finn, G.; Suizu, F.; Lu, K.P. Phosphorylation-specific prolyl isomerization: Is there an underlying theme? Nat. Cell Biol. 2005, 7, 435–441. [Google Scholar] [CrossRef] [PubMed]
- López, Y.; Sharma, A.; Dehzangi, A.; Lal, S.P.; Taherzadeh, G.; Sattar, A.; Tsunoda, T. Success: Evolutionary and structural properties of amino acids prove effective for succinylation site prediction. BMC Genom. 2018, 19, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C. pSuc-Lys: Predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach. J. Theor. Biol. 2016, 394, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Liu, Z.; Xiao, X.; Liu, B.; Chou, K.-C. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem. 2016, 497, 48–56. [Google Scholar] [CrossRef]
- Zhao, X.; Ning, Q.; Chai, H.; Ma, Z. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique. J. Theor. Biol. 2015, 374, 60–65. [Google Scholar] [CrossRef]
- Park, J.; Chen, Y.; Tishkoff, D.X.; Peng, C.; Tan, M.; Dai, L.; Xie, Z.; Zhang, Y.; Zwaans, B.M.; Skinner, M.E. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 2013, 50, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Luo, H.; Lee, S.; Jin, F.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.; Rousseaux, S.; Rajagopal, N. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011, 146, 1016–1028. [Google Scholar] [CrossRef] [Green Version]
- Chandra, A.; Sharma, A.; Dehzangi, A.; Ranganathan, S.; Jokhan, A.; Chou, K.-C.; Tsunoda, T. PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Sci. Rep. 2018, 8, 17923. [Google Scholar] [CrossRef]
- Striebel, F.; Imkamp, F.; Özcelik, D.; Weber-Ban, E. Pupylation as a signal for proteasomal degradation in bacteria. Biochim. et Biophys. Acta (BBA) Bioenerg. 2014, 1843, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.M.; Khatun, M.S. Recent progress and challenges for protein pupylation sites prediction. EC Proteom. Bioinform. 2017, 2, 36–45. [Google Scholar]
- Tamura, N.; Yun, H.; Tamura, T. Ubiquitin-like protein involved in proteasomal protein degradation in bacteria. Seikagaku. J. Jpn. Biochem. Soc. 2009, 81, 896. [Google Scholar]
- Pearce, M.J.; Mintseris, J.; Ferreyra, J.; Gygi, S.P.; Darwin, K.H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 2008, 322, 1104–1107. [Google Scholar] [CrossRef] [Green Version]
- Sutter, M.; Striebel, F.; Damberger, F.F.; Allain, F.H.-T.; Weber-Ban, E. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett. 2009, 583, 3151–3157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, K.E.; Liu, W.-T.; Boshoff, H.I.; Dorrestein, P.C.; Barry, C.E. Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J. Biol. Chem. 2009, 284, 3069–3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Solomon, W.C.; Kang, Y.; Cerda-Maira, F.; Darwin, K.H.; Walters, K.J. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J. Mol. Biol. 2009, 392, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, G.V.; Zhang, S.; Merkx, R.; Schiesswohl, C.; Chatterjee, C.; Darwin, K.H.; Ovaa, H. Discovery and Optimization of Inhibitors for the Pup Proteasome System in Mycobacterium tuberculosis. bioRxiv 2019. [Google Scholar] [CrossRef]
- Burns, K.E.; Darwin, K.H. Pupylation versus ubiquitylation: Tagging for proteasome-dependent degradation. Cell. Microbiol. 2010, 12, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Imkamp, F.; Striebel, F.; Sutter, M.; Özcelik, D.; Zimmermann, N.; Sander, P.; Weber-Ban, E. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep. 2010, 11, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.E.; Cerda-Maira, F.A.; Wang, T.; Li, H.; Bishai, W.R.; Darwin, K.H. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 2010, 39, 821–827. [Google Scholar] [CrossRef] [Green Version]
- Barandun, J.; Delley, C.L.; Weber-Ban, E. The pupylation pathway and its role in mycobacteria. BMC Biol. 2012, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, C.; Akhter, Y.; Jeon, A.H.W.; Schmitt-Ulms, G.; Meyer, H.E.; Stefanski, A.; Stühler, K.; Wilmanns, M.; Song, Y.H. Proteome-wide identification of mycobacterial pupylation targets. Mol. Syst. Biol. 2010, 6, 386. [Google Scholar] [CrossRef] [PubMed]
- Striebel, F.; Imkamp, F.; Sutter, M.; Steiner, M.; Mamedov, A.; Weber-Ban, E. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat. Struct. Mol. Biol. 2009, 16, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, Q.; Cao, J.; Gao, X.; Ren, J.; Xue, Y. GPS-PUP: Computational prediction of pupylation sites in prokaryotic proteins. Mol. BioSyst. 2011, 7, 2737–2740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, J.; Ning, Q.; Sun, P.; Ma, Z.; Yin, M. Identification of protein pupylation sites using bi-profile Bayes feature extraction and ensemble learning. Math. Probl. Eng. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, J.; Ning, Q.; Ma, Z.; Yin, M.; Sun, P. Position-specific analysis and prediction of protein pupylation sites based on multiple features. BioMed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, Z.; Gu, H. Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm. Anal. Biochem. 2016, 507, 1–6. [Google Scholar] [CrossRef]
- Hasan, M.M.; Zhou, Y.; Lu, X.; Li, J.; Song, J.; Zhang, Z. Computational identification of protein pupylation sites by using profile-based composition of k-spaced amino acid pairs. PLoS ONE 2015, 10, e0129635. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Cao, J.-Z. Positive-Unlabeled learning for pupylation sites prediction. BioMed Res. Int. 2016, 2016, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tung, C.-W. Prediction of pupylation sites using the composition of k-spaced amino acid pairs. J. Theor. Biol. 2013, 336, 11–17. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, J.-D.; Shi, S.-P.; Suo, S.-B.; Liang, R.-P. Systematic analysis and prediction of pupylation sites in prokaryotic proteins. PLoS ONE 2013, 8, e74002. [Google Scholar] [CrossRef]
- Nan, X.; Bao, L.; Zhao, X.; Zhao, X.; Sangaiah, A.; Wang, G.-G.; Ma, Z. EPuL: An enhanced positive-unlabeled learning algorithm for the prediction of pupylation sites. Molecules 2017, 22, 1463. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; You, Z.-H.; Huang, D.-S. CIPPN: Computational identification of protein pupylation sites by using neural network. Oncotarget 2017, 8, 108867–108879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Sharma, A.; Chandra, A.; Dehzangi, A.; Shigemizu, D.; Tsunoda, T. Computational Prediction of Lysine Pupylation Sites in Prokaryotic Proteins Using Position Specific Scoring Matrix into Bigram for Feature Extraction. In Proceedings of the Public-Key Cryptography—PKC 2018, Rio De Janeiro, Brazil, 25–29 March 2018; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp. 488–500. [Google Scholar]
- Tung, C.-W. PupDB: A database of pupylated proteins. BMC Bioinform. 2012, 13, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, K.-C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273, 236–247. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Wen, H.; Lin, Y.; Hu, Y.; Zhang, Y.; Xia, Q.; Lin, Z. QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids. Comb. Chem. High. Throughput Screen. 2012, 15, 347–353. [Google Scholar] [CrossRef]
- López, Y.; Dehzangi, A.; Lal, S.P.; Taherzadeh, G.; Michaelson, J.; Sattar, A.; Tsunoda, T.; Sharma, A. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids. Anal. Biochem. 2017, 527, 24–32. [Google Scholar] [CrossRef]
- Heffernan, R.; Paliwal, K.; Lyons, J.; Dehzangi, A.; Sharma, A.; Wang, J.; Sattar, A.; Yang, Y.; Zhou, Y. Improving prediction of secondary structure, local backbone angles and solvent accessible surface area of proteins by iterative deep learning. Sci. Rep. 2015, 5, 11476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Heffernan, R.; Paliwal, K.; Lyons, J.; Dehzangi, A.; Sharma, A.; Wang, J.; Sattar, A.; Zhou, Y. SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area, and Main-Chain Torsional Angles by Deep Neural Networks. In Methods in Molecular Biology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; Volume 1484, pp. 55–63. [Google Scholar]
- Lyons, J.; Dehzangi, A.; Heffernan, R.; Sharma, A.; Paliwal, K.; Sattar, A.; Zhou, Y.; Yang, Y. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem. 2014, 35, 2040–2046. [Google Scholar] [CrossRef] [Green Version]
- Heffernan, R.; Dehzangi, A.; Lyons, J.; Paliwal, K.; Sharma, A.; Wang, J.; Sattar, A.; Zhou, Y.; Yang, Y. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins. Bioinformatics 2015, 32, 843–849. [Google Scholar] [CrossRef]
- Ooi, T.; Oobatake, M.; Nemethy, G.; Scheraga, H.A. Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides. Proc. Natl. Acad. Sci. USA 1987, 84, 3086–3090. [Google Scholar]
- Wodak, S.J.; Janin, J. Analytical approximation to the accessible surface area of proteins. Proc. Natl. Acad. Sci. USA 1980, 77, 1736–1740. [Google Scholar]
- Faraggi, E.; Zhang, T.; Yang, Y.; Kurgan, L.; Zhou, Y. SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comput. Chem. 2012, 33, 259–267. [Google Scholar] [CrossRef] [Green Version]
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404–405. [Google Scholar] [CrossRef] [PubMed]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Kuhlman, B.; Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Shang, Y.; Xu, D. Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 16, 1020–1028. [Google Scholar] [CrossRef]
- Xu, G.; Wang, Q.; Ma, J. OPUS-TASS: A protein backbone torsion angles and secondary structure predictor based on ensemble neural networks. Bioinformatics 2020. [Google Scholar] [CrossRef]
- Gao, J.; Yang, Y.; Zhou, Y. Grid-based prediction of torsion angle probabilities of protein backbone and its application to discrimination of protein intrinsic disorder regions and selection of model structures. BMC Bioinform. 2018, 19, 29. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Hou, J.; Adhikari, B.; Lyu, Q.; Cheng, J. Deep learning methods for protein torsion angle prediction. BMC Bioinform. 2017, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Raicar, G.; Tsunoda, T.; Patil, A.; Sharma, A. OPAL: Prediction of MoRF regions in intrinsically disordered protein sequences. Bioinformatics 2018, 34, 1850–1858. [Google Scholar] [CrossRef] [Green Version]
- Reddy, H.M.; Sharma, A.; Dehzangi, A.; Shigemizu, D.; Chandra, A.A.; Tsunoda, T. GlyStruct: Glycation prediction using structural properties of amino acid residues. BMC Bioinform. 2019, 19, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Shamim, M.T.A.; Anwaruddin, M.; Nagarajaram, H. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics 2007, 23, 3320–3327. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.-B.; Yang, F.; Ye, Y.; Wu, Q.; Li, C.; Huber, T.; Su, X.-C. 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy. Chem. Commun. 2016, 52, 10237–10240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lins, L.; Thomas, A.; Brasseur, R. Analysis of accessible surface of residues in proteins. Protein Sci. 2003, 12, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
- Tarafder, S.; Ahmed, T.; Iqbal, S.; Hoque, T.; Rahman, M. RBSURFpred: Modeling protein accessible surface area in real and binary space using regularized and optimized regression. J. Theor. Biol. 2018, 441, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Dehzangi, A.; López, Y.; Lal, S.P.; Taherzadeh, G.; Sattar, A.; Tsunoda, T.; Sharma, A. Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams. PLoS ONE 2018, 13, e0191900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehzangi, A.; López, Y.; Taherzadeh, G.; Sharma, A.; Tsunoda, T. SumSec: Accurate prediction of Sumoylation sites using predicted secondary structure. Molecules 2018, 23, 3260. [Google Scholar] [CrossRef] [Green Version]
- Faraggi, E.; Yang, Y.; Zhang, S.; Zhou, Y. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure 2009, 17, 1515–1527. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Dor, O.; Faraggi, E.; Zhou, Y. Real-value prediction of backbone torsion angles. Proteins Struct. Funct. Bioinform. 2008, 72, 427–433. [Google Scholar] [CrossRef]
- Dor, O.; Zhou, Y. Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties. Proteins: Struct. Funct. Bioinform. 2007, 68, 76–81. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Mayr, L.M.; Minor, D.L.; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. Identification of D-Peptide Ligands Through Mirror-Image Phage Display. Science 1996, 271, 1854–1857. [Google Scholar] [CrossRef] [Green Version]
- Meinnel, T.; Dian, C.; Giglione, C. Myristoylation, an Ancient Protein Modification Mirroring Eukaryogenesis and Evolution. Trends Biochem. Sci. 2020, 45, 619–632. [Google Scholar] [CrossRef]
- Guptasarma, P. Reversal of peptide backbone direction may result in the mirroring of protein structure. FEBS Lett. 1992, 310, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Leisch, F.; Hornik, K. Benchmarking Support Vector Machines; WU Vienna University of Economics and Business: Vienna, Austria, 2002. [Google Scholar]
- Mangasarian, O.L.; Musicant, D.R. Active support vector machine classification. In Proceedings of Advances in Neural Information Processing Systems; Neural Information Processing Systems (NIPS): Denver, CO, USA, 2001; pp. 577–583. [Google Scholar]
- Byvatov, E.; Schneider, G. Support vector machine applications in bioinformatics. Appl. Bioinform. 2003, 2, 67–77. [Google Scholar]
- Wang, J.-Y. Application of Support. Vector Machines in Bioinformatics; National Taiwan University: Taipei, Taiwan, 2002. [Google Scholar]
- Huang, S.; Cai, N.; Pacheco, P.P.; Narrandes, S.; Wang, Y.; Xu, W. Applications of Support Vector Machine (SVM) Learning in Cancer Genomics. Cancer Genom. Proteom. 2018, 15, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Amari, S.-i.; Wu, S. Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 1999, 12, 783–789. [Google Scholar] [CrossRef]
- Tharwat, A. Parameter investigation of support vector machine classifier with kernel functions. Knowl. Inf. Syst. 2019, 61, 1269–1302. [Google Scholar] [CrossRef]
- Control, C.F.D. Prevention, Antibiotic Resistance. US Department of Health & Human Services. 2013. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 3 July 2019).
- Bao, W.; Jiang, Z. Prediction of Lysine Pupylation Sites with Machine Learning Methods. In Proceedings of the International Conference on Intelligent Computing; Springer: Cham, Switzerland, 2017; pp. 408–417. [Google Scholar]
- Hajisharifi, Z.; Piryaiee, M.; Beigi, M.M.; Behbahani, M.; Mohabatkar, H. Predicting anticancer peptides with Chou′s pseudo amino acid composition and investigating their mutagenicity via Ames test. J. Theor. Biol. 2014, 341, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.P.; Lombardi, A.; DeGrado, W.F. Analysis and design of three-stranded coiled coils and three-helix bundles. Fold. Des. 1998, 3, R29–R40. [Google Scholar] [CrossRef] [Green Version]
- Ausaf Ali, S.; Hassan, I.; Islam, A.; Ahmad, F. A Review of Methods Available to Estimate Solvent-Accessible Surface Areas of Soluble Proteins in the Folded and Unfolded States. Curr. Protein Pept. Sci. 2014, 15, 456–476. [Google Scholar] [CrossRef]
Fold | Predictor | Sensitivity | Specificity | Precision | Accuracy | MCC |
---|---|---|---|---|---|---|
6 | PUL-PUP | 0.5586 | 0.7547 | 0.6897 | 0.6586 | 0.3219 |
IMP-PUP | 0.7785 | 0.8611 | 0.8407 | 0.8205 | 0.6437 | |
PupStruct | 0.9228 | 0.9309 | 0.9317 | 0.9270 | 0.8563 | |
8 | PUL-PUP | 0.5753 | 0.7919 | 0.7308 | 0.6856 | 0.3826 |
IMP-PUP | 0.7767 | 0.8610 | 0.8422 | 0.8197 | 0.6423 | |
PupStruct | 0.9234 | 0.9359 | 0.9349 | 0.9296 | 0.8616 | |
10 | PUL-PUP | 0.6082 | 0.7190 | 0.6946 | 0.6646 | 0.3380 |
IMP-PUP | 0.7784 | 0.8611 | 0.8429 | 0.8203 | 0.6441 | |
PupStruct | 0.9173 | 0.9409 | 0.9398 | 0.9296 | 0.8611 |
Feature | Sn (%) | Sp (%) | Pre (%) | Acc (%) | MCC (%) |
---|---|---|---|---|---|
ASA | 86.70251 | 87.83602 | 87.60489 | 87.26766 | 0.74812 |
Ph, Pe, Pc (SSPre) | 81.75627 | 92.89773 | 91.29129 | 87.56934 | 0.754546 |
Helix (Ph) | 65.08961 | 93.59879 | 90.65543 | 79.61739 | 0.615526 |
Strand (Pe) | 43.15412 | 95.39141 | 91.2274 | 70.2561 | 0.461857 |
Coil (Pc) | 81.72043 | 89.78495 | 89.19853 | 85.81879 | 0.723357 |
Local Torsion angle | 75.71685 | 69.80843 | 71.79877 | 72.77045 | 0.457679 |
Phi | 76.73835 | 78.88889 | 78.17483 | 77.80965 | 0.560354 |
Psi | 75.66308 | 76.88172 | 76.33012 | 76.26917 | 0.526891 |
Theta | 61.21864 | 81.49425 | 77.14761 | 71.3354 | 0.438473 |
Tau | 80.10753 | 81.1828 | 80.70276 | 80.64075 | 0.615214 |
ASA + Sspre | 77.921147 | 88.25605 | 86.53159 | 83.18623 | 0.66673 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Sharma, A.; Dehzangi, A.; Tsunoda, T. PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes 2020, 11, 1431. https://doi.org/10.3390/genes11121431
Singh V, Sharma A, Dehzangi A, Tsunoda T. PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes. 2020; 11(12):1431. https://doi.org/10.3390/genes11121431
Chicago/Turabian StyleSingh, Vineet, Alok Sharma, Abdollah Dehzangi, and Tatushiko Tsunoda. 2020. "PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids" Genes 11, no. 12: 1431. https://doi.org/10.3390/genes11121431
APA StyleSingh, V., Sharma, A., Dehzangi, A., & Tsunoda, T. (2020). PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes, 11(12), 1431. https://doi.org/10.3390/genes11121431