Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Sample Preparation, Sequencing and Genotyping
2.3. Sample Quality Control and Variant Calling
2.4. Variant Prioritization
2.5. Population Frequencies
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Moller, S.; Unger, R.H.; et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 2016, 315, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, F.R.; Al Olama, A.A.; Berndt, S.I.; Benlloch, S.; Ahmed, M.; Saunders, E.J.; Dadaev, T.; Leongamornlert, D.; Anokian, E.; Cieza-Borrella, C.; et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat. Genet. 2018, 50, 928–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szulkin, R.; Karlsson, R.; Whitington, T.; Aly, M.; Gronberg, H.; Eeles, R.A.; Easton, D.F.; Kote-Jarai, Z.; Al Olama, A.A.; Benlloch, S.; et al. Genome-wide association study of prostate cancer-specific survival. Cancer Epidemiol. Biomarkers Prev. 2015, 24, 1796–1800. [Google Scholar] [CrossRef] [Green Version]
- Jeggo, P.A.; Pearl, L.H.; Carr, A.M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer 2016, 16, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Friedenson, B. The BRCA1/2 pathway prevents hematologic cancers in addition to breast and ovarian cancers. BMC Cancer 2007, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Mijuskovic, M.; Saunders, E.J.; Leongamornlert, D.A.; Wakerell, S.; Whitmore, I.; Dadaev, T.; Cieza-Borrella, C.; Govindasami, K.; Brook, M.N.; Haiman, C.A.; et al. Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease. Br. J. Cancer 2018, 119, 96–104. [Google Scholar] [CrossRef] [Green Version]
- Kote-Jarai, Z.; Jugurnauth, S.; Mulholland, S.; Leongamornlert, D.A.; Guy, M.; Edwards, S.; Tymrakiewitcz, M.; O’Brien, L.; Hall, A.; Wilkinson, R.; et al. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br. J. Cancer 2009, 100, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Paulo, P.; Maia, S.; Pinto, C.; Pinto, P.; Monteiro, A.; Peixoto, A.; Teixeira, M.R. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet. 2018, 14, e1007355. [Google Scholar] [CrossRef] [Green Version]
- Seppala, E.H.; Ikonen, T.; Mononen, N.; Autio, V.; Rokman, A.; Matikainen, M.P.; Tammela, T.L.; Schleutker, J. CHEK2 variants associate with hereditary prostate cancer. Br. J. Cancer 2003, 89, 1966–1970. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Schleutker, J.; Matikainen, M.; Smith, J.; Koivisto, P.; Baffoe-Bonnie, A.; Kainu, T.; Gillanders, E.; Sankila, R.; Pukkala, E.; Carpten, J.; et al. A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland: Frequent HPCX linkage in families with late-onset disease. Clin. Cancer Res. 2000, 6, 4810–4815. [Google Scholar] [PubMed]
- Lindmark, F.; Zheng, S.L.; Wiklund, F.; Bensen, J.; Balter, K.A.; Chang, B.; Hedelin, M.; Clark, J.; Stattin, P.; Meyers, D.A.; et al. H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J. Natl. Cancer Inst. 2004, 96, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinlan, A.R. BEDTools: The swiss-army tool for genome feature analysis. Curr. Protoc. Bioinform. 2014, 47, 11–12. [Google Scholar] [CrossRef] [PubMed]
- PICARD. Available online: http://broadinstitute.github.io/picard/ (accessed on 6 February 2019).
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Lange, S.S.; Takata, K.; Wood, R.D. DNA polymerases and cancer. Nat. Rev. Cancer 2011, 11, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.D.; Mitchell, M.; Lindahl, T. Human DNA repair genes, 2005. Mutat. Res. 2005, 577, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.D.; Mitchell, M.; Sgouros, J.; Lindahl, T. Human DNA repair genes. Science 2001, 291, 1284–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, N.M.; Rothstein, J.H.; Pejaver, V.; Middha, S.; McDonnell, S.K.; Baheti, S.; Musolf, A.; Li, Q.; Holzinger, E.; Karyadi, D.; et al. REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 2016, 99, 877–885. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.N.; Ellingson, M.S.; Schahl, K.; Vedell, P.T.; Carlson, R.E.; Sinnwell, J.P.; Barman, P.; Sicotte, H.; Eckel-Passow, J.E.; Wang, L.; et al. Determining the frequency of pathogenic germline variants from exome sequencing in patients with castrate-resistant prostate cancer. BMJ Open 2016, 6, e010332. [Google Scholar] [CrossRef]
- Na, R.; Zheng, S.L.; Han, M.; Yu, H.; Jiang, D.; Shah, S.; Ewing, C.M.; Zhang, L.; Novakovic, K.; Petkewicz, J.; et al. Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. Eur. Urol. 2017, 71, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Ikonen, T.; Matikainen, M.P.; Syrjakoski, K.; Mononen, N.; Koivisto, P.A.; Rokman, A.; Seppala, E.H.; Kallioniemi, O.P.; Tammela, T.L.; Schleutker, J. BRCA1 and BRCA2 mutations have no major role in predisposition to prostate cancer in Finland. J. Med. Genet. 2003, 40, e98. [Google Scholar] [CrossRef] [Green Version]
- Mayrhofer, M.; De Laere, B.; Whitington, T.; Van Oyen, P.; Ghysel, C.; Ampe, J.; Ost, P.; Demey, W.; Hoekx, L.; Schrijvers, D.; et al. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med. 2018, 10, 85. [Google Scholar] [CrossRef]
- Ewing, C.M.; Ray, A.M.; Lange, E.M.; Zuhlke, K.A.; Robbins, C.M.; Tembe, W.D.; Wiley, K.E.; Isaacs, S.D.; Johng, D.; Wang, Y.; et al. Germline mutations in HOXB13 and prostate-cancer risk. N. Engl. J. Med. 2012, 366, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laitinen, V.H.; Wahlfors, T.; Saaristo, L.; Rantapero, T.; Pelttari, L.M.; Kilpivaara, O.; Laasanen, S.L.; Kallioniemi, A.; Nevanlinna, H.; Aaltonen, L.; et al. HOXB13 G84E mutation in Finland: Population-based analysis of prostate, breast, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Lange, E.M.; Lu, L.; Zheng, S.L.; Wang, Z.; Thibodeau, S.N.; Cannon-Albright, L.A.; Teerlink, C.C.; Camp, N.J.; Johnson, A.M.; et al. HOXB13 is a susceptibility gene for prostate cancer: Results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum. Genet. 2013, 132, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, N.; Roberts, N.J. ATM serine/threonine kinase and its role in pancreatic risk. Genes 2020, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, M.; Kipps, T.; Kurzrock, R. ATM mutations in cancer: Therapeutic implications. Mol. Cancer Ther. 2016, 15, 1781–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guleria, A.; Chandna, S. ATM kinase: Much more than a DNA damage responsive protein. DNA Repair (Amst) 2016, 39, 1–20. [Google Scholar] [CrossRef]
- Xu, L.; Ma, E.; Zeng, T.; Zhao, R.; Tao, Y.; Chen, X.; Groth, J.; Liang, C.; Hu, H.; Huang, J. ATM deficiency promotes progression of CRPC by enhancing Warburg effect. Endocr. Relat. Cancer 2019, 26, 59–71. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, H.; Zheng, S.L.; Na, R.; Mamawala, M.; Landis, T.; Wiley, K.; Petkewicz, J.; Shah, S.; Shi, Z.; et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018, 78, 607–615. [Google Scholar] [CrossRef]
- Anczukow, O.; Ware, M.D.; Buisson, M.; Zetoune, A.B.; Stoppa-Lyonnet, D.; Sinilnikova, O.M.; Mazoyer, S. Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum. Mutat. 2008, 29, 65–73. [Google Scholar] [CrossRef]
- Mateo, J.; Carreira, S.; Sandhu, S.; Miranda, S.; Mossop, H.; Perez-Lopez, R.; Nava Rodrigues, D.; Robinson, D.; Omlin, A.; Tunariu, N.; et al. DNA-Repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 2015, 373, 1697–1708. [Google Scholar] [CrossRef]
- Knudson, A.G., Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 1971, 68, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.H.; Wu, C.F.; Rajasekaran, N.; Shin, Y.K. Loss of tumor suppressor gene function in human cancer: An overview. Cell Physiol. Biochem. 2018, 51, 2647–2693. [Google Scholar] [CrossRef] [PubMed]
- Schroder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 2009, 360, 1320–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Maattanen, L.; Lilja, H.; et al. Screening and prostate cancer mortality: Results of the European randomised study of screening for prostate cancer (ERSPC) at 13 years of follow-up. Lancet 2014, 384, 2027–2035. [Google Scholar] [CrossRef] [Green Version]
Lethal PrCa (n = 122) | Unselected PrCa (n = 60) | |
---|---|---|
Age at diagnosis, median (IQR) | 57.0 (55.1–58.2) | 66.5 (57.8–73.8) |
Diagnostic PSA level (ng/mL), median (IQR) | 56.2 (17.9–247.2) | 10.8 (7.0–18.8) |
Clinical T-stage, n (%) | ||
TX | 2 (1.8) | 0 (0.0) |
T1 | 8 (7.3) | 20 (38.5) |
T2 | 18 (16.4) | 15 (28.8) |
T3 | 61 (55.5) | 15 (28.8) |
T4 | 21 (19.1) | 2 (3.8) |
NA | 12 | 8 |
Clinical N-stage, n (%) | ||
NX | 86 (78.2) | 52 (100.0) |
N0 | 9 (8.2) | 0 (0.0) |
N1 | 15 (13.6) | 0 (0.0) |
NA | 12 | 8 |
Clinical M-stage, n (%) | ||
MX | 11 (10.0) | 14 (26.9) |
M0 | 45 (40.9) | 32 (61.5) |
M1 | 54 (49.1) | 6 (11.5) |
NA | 12 | 8 |
Gleason score, n (%) | ||
2–6 | 11 (10.5) | 16 (47.1) |
7 | 36 (34.3) | 7 (20.6) |
8–10 | 58 (55.2) | 11 (32.4) |
NA | 17 | 26 |
Death due to PrCa, n (%) | 122 (100.0) | 15 (25.0) |
Age at death, median (IQR) | 60.0 (57.9–62.9) | 79.5 (69.5–84.5) |
Gene | RSID | Type | Ref | Alt | Protein Change | ClinVar | CADD/REVEL | MAF | Tier |
---|---|---|---|---|---|---|---|---|---|
ATM | rs758081262 | stopgain | C | T | Q852X | 5 | 35/- | 2.5 × 10−5 | 1 |
ATM | rs761486324 | frameshift ins | - | TG | H1082fs | - | -/- | - | 1 |
ATM | rs767099464 | frameshift del | C | - | H1083fs | - | -/- | - | 1 |
ATM | rs769142993 | missense | G | C | A2524P | 4 | 31/0.89 | 2.5 × 10−5 | 2 |
ATM | - | frameshift del | AGTAG | - | S2611fs | - | -/- | - | 1 |
ATM | rs753961188 | frameshift ins | - | T | L2885fs | 5,4 | -/- | 4.2 × 10−5 | 1 |
ATM | rs376676328 | missense | A | G | R2912G | 3 | 29/0.88 | 3.0 × 10−4 | 2 |
BRCA1 | rs41293459 | missense | C | T | R1699Q | 5,4,3 | 35/0.79 | 2.5 × 10−5 | 2 |
CHEK2 | rs555607708 | frameshift del | G | - | T367fs | 5 | -/- | 1.8 × 10−3 | 1 |
CHEK2 | rs137853007 | missense | G | A | R145W | 5,4 | 33/0.81 | 3.3 × 10−5 | 2 |
CHEK2 | rs730881700 | frameshift ins | - | T | E457fs | 5,4 | -/- | 5.0 × 10−5 | 1 |
CHEK2 | rs28909982 | missense | T | C | R117G | 5,4 | 27/0.93 | 1.0 × 10−4 | 2 |
ERCC3 | rs753182861 | frameshift del | T | - | Q586fs | - | -/- | 2.0 × 10−4 | 1 |
ERCC3 | rs145267069 | missense | A | G | F297S | - | 30/0.82 | 2.5 × 10−5 | 2 |
FAN1 | rs778927800 | missense | G | A | R749Q | - | 34/0.89 | 8.3 × 10−6 | 2 |
FANCM | rs147021911 | stopgain | C | T | Q1701X | 4 | 35/0.12 | 1.3 × 10−3 | 1 |
HLTF | rs184046773 | missense | C | T | G1886A | - | 33/0.81 | 2.0 × 10−4 | 2 |
MRE11A | rs372000848 | missense | G | A | R305W | 4,3 | 33/0.85 | 5.0 × 10−5 | 2 |
MUTYH | rs34126013 | missense | G | A | R238W | 5,4 | 33/0.79 | 9.2 × 10−5 | 2 |
NEIL1 | rs5745906 | missense | G | A | G169D | - | 27/0.86 | 1.3 × 10−3 | 2 |
NTHL1 | rs150766139 | stopgain | G | A | Q90X | 5,3 | 35/- | 1.5 × 10−3 | 1 |
POLG | rs761584617 | missense | G | A | A1115V | - | 23/0.80 | 2.5 × 10−5 | 2 |
POLG | rs113994097 | missense | C | G | W748S | 5,3 | 33/0.91 | 8.0 × 10−4 | 2 |
POLG | rs113994096 | missense | G | A | P587L | 5,3 | 28/0.80 | 1.7 × 10−3 | 2 |
POLG | rs121918052 | missense | C | G | Q497H | 5,3 | 26/0.71 | 2.0 × 10−4 | 2 |
POLL | rs139871590 | missense | C | T | G356S | - | 34/0.83 | 1.0 × 10−3 | 2 |
RAD18 | rs138830303 | stopgain | T | A | K197X | - | 36/- | 1.0 × 10−4 | 1 |
RECQL | rs149937760 | missense | C | T | C414Y | - | 33/0.84 | 2.0 × 10−4 | 2 |
RECQL5 | rs768705080 | missense | T | G | Y362S | - | 32/0.76 | 8.2 × 10−6 | 2 |
TP53 | rs876660754 | missense | C | T | V173M | 5,4 | 28/0.89 | - | 2 |
TP53 | rs779000871 | missense | G | A | T170M | 3 | 24/0.87 | 8.2 × 10−5 | 2 |
Lethal PrCa (n = 122) | Unselected PrCa (n = 60) | p Value | Finnish Controls (n = 3307) | p Value | Swedish Controls (n = 6192) | p Value | |
---|---|---|---|---|---|---|---|
Tier 1 | |||||||
ERCC3, n (%) | 1 (0.82) | 0 | 1.000 | 0 | 0.036 | 3 (0.05) | 0.075 |
RAD18, n (%) | 1 (0.82) | 0 | 1.000 | 0 | 0.036 | 0 | 0.019 |
ATM, n (%) | 4 (3.28) | 0 | 0.304 | 4 (0.12) | <0.001 | 10 (0.16) | <0.001 |
FANCM, n (%) | 2 (1.64) | 0 | 1.000 | 89 (2.69) | 0.772 | 44 (0.71) | 0.223 |
NTHL1, n (%) | 2 (1.64) | 0 | 1.000 | 24 (0.73) | 0.236 | 39 (0.63) | 0.187 |
CHEK2, n (%) | 5 (4.10) | 0 | 0.173 | 60 (1.81) | 0.080 | 5 (0.08) | <0.001 |
All, n (%) | 15 (12.30) | 0 | 0.003 | 177 (5.35) | 0.004 | 101 (1.63) | <0.001 |
Tier 2 | |||||||
MUTYH, n (%) | 0 | 1 (1.67) | 0.330 | 34 (1.03) | 0.633 | 75 (1.21) | 0.406 |
ERCC3, n (%) | 1 (0.82) | 1 (1.67) | 0.552 | 5 (0.15) | 0.195 | 4 (0.06) | 0.093 |
HLTF, n (%) | 1 (0.82) | 0 | 1.000 | 20 (0.60) | 0.534 | 9 (0.15) | 0.177 |
POLL, n (%) | 1 (0.82) | 0 | 1.000 | 15 (0.45) | 0.441 | 28 (0.45) | 0.433 |
MRE11A, n (%) | 1 (0.82) | 0 | 1.000 | 0 | 0.036 | 0 | 0.019 |
ATM, n (%) | 2 (1.64) | 0 | 1.000 | 13 (0.39) | 0.098 | 28 (0.45) | 0.114 |
RECQL, n (%) | 1 (0.82) | 0 | 1.000 | 0 | 0.036 | 13 (0.21) | 0.239 |
FAN1, n (%) | 1 (0.82) | 0 | 1.000 | 2 (0.06) | 0.103 | 16 (0.26) | 0.283 |
NEIL1, n (%) | 1 (0.82) | 0 | 1.000 | 3 (0.09) | 0.135 | 16 (0.26) | 0.283 |
POLG, n (%) | 5 (4.10) | 0 | 0.173 | 197 (5.96) | 0.555 | 190 (3.07) | 0.429 |
TP53, n (%) | 2 (1.64) | 0 | 1.000 | 3 (0.09) | 0.012 | 7 (0.11) | 0.012 |
BRCA1, n (%) | 1 (0.82) | 0 | 1.000 | 2 (0.06) | 0.103 | 5 (0.08) | 0.111 |
RECQL5, n (%) | 1 (0.82) | 0 | 1.000 | 3 (0.09) | 0.135 | 1 (0.02) | 0.038 |
CHEK2, n (%) | 1 (0.82) | 1 (1.67) | 0.552 | 2 (0.06) | 0.103 | 28 (0.45) | 0.433 |
All, n (%) | 16 (13.11) | 3 (5.00) | 0.123 | 299 (9.04) | 0.148 | 420 (6.78) | 0.011 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rantapero, T.; Wahlfors, T.; Kähler, A.; Hultman, C.; Lindberg, J.; Tammela, T.L.J.; Nykter, M.; Schleutker, J.; Wiklund, F. Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes 2020, 11, 314. https://doi.org/10.3390/genes11030314
Rantapero T, Wahlfors T, Kähler A, Hultman C, Lindberg J, Tammela TLJ, Nykter M, Schleutker J, Wiklund F. Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes. 2020; 11(3):314. https://doi.org/10.3390/genes11030314
Chicago/Turabian StyleRantapero, Tommi, Tiina Wahlfors, Anna Kähler, Christina Hultman, Johan Lindberg, Teuvo L. J. Tammela, Matti Nykter, Johanna Schleutker, and Fredrik Wiklund. 2020. "Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer" Genes 11, no. 3: 314. https://doi.org/10.3390/genes11030314
APA StyleRantapero, T., Wahlfors, T., Kähler, A., Hultman, C., Lindberg, J., Tammela, T. L. J., Nykter, M., Schleutker, J., & Wiklund, F. (2020). Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes, 11(3), 314. https://doi.org/10.3390/genes11030314