Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors
Abstract
:1. Introduction
2. Contributing Studies to Multi-Ethnic/Trans-Ethnic Meta-Analyses
3. Widening the Net: Following Manolio’s Suggestion [13]
4. Participating in Large Regional Consortia
5. Generating New Information Locally: Genome-Wide Association and Sequencing Studies in Latin American Populations
6. Validating European-Identified Instrumental Variables in Regional Populations
7. Making Sense of Small Local Studies
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davey Smith, G.; Ebrahim, S. “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 2003, 32, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Davey Smith, G.; Phillips, A.N. Correlation without a cause: An epidemiological odyssey. Int. J. Epidemiol. 2020, 49, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Yarmolinsky, J.; Bonilla, C.; Haycock, P.C.; Langdon, R.J.Q.; Lotta, L.A.; Langenberg, C.; Relton, C.L.; Lewis, S.J.; Evans, D.M.; Davey Smith, G.; et al. Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. JNCI J. Natl. Cancer Inst. 2018, 110, 1035–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ference, B.A. How to use Mendelian randomization to anticipate the results of randomized trials. Eur. Heart J. 2018, 39, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.A.; Wade, K.H.; Borges, M.C.; Palmer, T.; Hartwig, F.P.; Hemani, G.; Bowden, J. A Mendelian Randomization dictionary: Useful definitions and descriptions for undertaking, understanding and interpreting Mendelian Randomization studies. OSF 2019. [Google Scholar] [CrossRef]
- Borges, M.C.; Hartwig, F.P.; Oliveira, I.O.; Horta, B.L. Is there a causal role for homocysteine concentration in blood pressure? A Mendelian randomization study. Am. J. Clin. Nutr. 2016, 103, 39–49. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Horta, B.L.; Smith, G.D.; de Mola, C.L.; Victora, C.G. Association of lactase persistence genotype with milk consumption, obesity and blood pressure: A Mendelian randomization study in the 1982 Pelotas (Brazil) Birth Cohort, with a systematic review and meta-analysis. Int. J. Epidemiol. 2016, 45, 1573–1587. [Google Scholar] [CrossRef] [Green Version]
- Feitosa, M.F.; Kraja, A.T.; Chasman, D.I.; Sung, Y.J.; Winkler, T.W.; Ntalla, I.; Guo, X.; Franceschini, N.; Cheng, C.-Y.; Sim, X.; et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE 2018, 13, e0198166. [Google Scholar] [CrossRef]
- Sung, Y.J.; Winkler, T.W.; de las Fuentes, L.; Bentley, A.R.; Brown, M.R.; Kraja, A.T.; Schwander, K.; Ntalla, I.; Guo, X.; Franceschini, N.; et al. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. Am. J. Hum. Genet. 2018, 102, 375–400. [Google Scholar] [CrossRef] [Green Version]
- Wyss, A.B.; Sofer, T.; Lee, M.K.; Terzikhan, N.; Nguyen, J.N.; Lahousse, L.; Latourelle, J.C.; Smith, A.V.; Bartz, T.M.; Feitosa, M.F.; et al. Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nat. Commun. 2018, 9, 2976. [Google Scholar] [CrossRef] [Green Version]
- Kilpeläinen, T.O.; Bentley, A.R.; Noordam, R.; Sung, Y.J.; Schwander, K.; Winkler, T.W.; Jakupović, H.; Chasman, D.I.; Manning, A.; Ntalla, I.; et al. Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nat. Commun. 2019, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Keating, B.J. Trans-ethnic genome-wide association studies: Advantages and challenges of mapping in diverse populations. Genome Med. 2014, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolio, T.A. Using the Data We Have: Improving Diversity in Genomic Research. Am. J. Hum. Genet. 2019, 105, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Wojcik, G.L.; Graff, M.; Nishimura, K.K.; Tao, R.; Haessler, J.; Gignoux, C.R.; Highland, H.M.; Patel, Y.M.; Sorokin, E.P.; Avery, C.L.; et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 2019, 570, 514–518. [Google Scholar] [CrossRef]
- Zavala, V.A.; Serrano-Gomez, S.J.; Dutil, J.; Fejerman, L. Genetic Epidemiology of Breast Cancer in Latin America. Genes (Basel) 2019, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Budin-Ljøsne, I.; Isaeva, J.; Maria Knoppers, B.; Marie Tassé, A.; Shen, H.; McCarthy, M.I.; Harris, J.R. Data sharing in large research consortia: Experiences and recommendations from ENGAGE. Eur. J. Hum. Genet. 2014, 22, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Scliar, M.O. Admixture/fine-mapping in Brazilians reveals a West African associated potential regulatory variant (rs114066381) with a strong female-specific effect on body mass- and fat mass-indexes. bioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, K.; Mendoza-Revilla, J.; Sohail, A.; Fuentes-Guajardo, M.; Lampert, J.; Chacón-Duque, J.C.; Hurtado, M.; Villegas, V.; Granja, V.; Acuña-Alonzo, V.; et al. A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nat. Commun. 2019, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Pires, A.; de Almeida Queiroz, G.; de Jesus Silva, M.; da Silva, R.R.; da Silva, H.B.F.; Carneiro, N.V.Q.; Fonseca, H.F.; de Santana, M.B.R.; Nascimento, R.S.; Alcântara-Neves, N.M.; et al. Polymorphisms in the DAD1 and OXA1L genes are associated with asthma and atopy in a South American population. Mol. Immunol. 2018, 101, 294–302. [Google Scholar] [CrossRef]
- Bustos, B.I.; Pérez-Palma, E.; Buch, S.; Azócar, L.; Riveras, E.; Ugarte, G.D.; Toliat, M.; Nürnberg, P.; Lieb, W.; Franke, A.; et al. Variants in ABCG8 and TRAF3 genes confer risk for gallstone disease in admixed Latinos with Mapuche Native American ancestry. Sci. Rep. 2019, 9, 772. [Google Scholar] [CrossRef]
- Costa-Urrutia, P.; Colistro, V.; Jiménez-Osorio, A.S.; Cárdenas-Hernández, H.; Solares-Tlapechco, J.; Ramirez-Alcántara, M.; Granados, J.; Ascencio-Montiel, I.d.J.; Rodríguez-Arellano, M.E. Genome-Wide Association Study of Body Mass Index and Body Fat in Mexican-Mestizo Children. Genes (Basel) 2019, 10, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Tabb, K.L.; Dimitrov, L.M.; Taylor, K.D.; Wang, N.; Guo, X.; Long, J.; Rotter, J.I.; Watanabe, R.M.; Curran, J.E.; et al. Exome Sequencing Identifies Genetic Variants Associated with Circulating Lipid Levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS). Sci. Rep. 2018, 8, 5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccone, N.L.; Emery, L.S.; Sofer, T.; Gogarten, S.M.; Becker, D.M.; Bottinger, E.P.; Chen, L.-S.; Culverhouse, R.C.; Duan, W.; Hancock, D.B.; et al. Genome-Wide Association Study of Heavy Smoking and Daily/Nondaily Smoking in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Nicotine Tob. Res. 2018, 20, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.I.; Duncan, B.B.; Mill, J.G.; Lotufo, P.A.; Chor, D.; Barreto, S.M.; Aquino, E.M.L.; Passos, V.M.A.; Matos, S.M.A.; Molina, M.d.C.B.; et al. Cohort Profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int. J. Epidemiol. 2015, 44, 68–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Mimila, P.; Villamil-Ramírez, H.; Villalobos-Comparán, M.; Villarreal-Molina, T.; Romero-Hidalgo, S.; López-Contreras, B.; Gutiérrez-Vidal, R.; Vega-Badillo, J.; Jacobo-Albavera, L.; Posadas-Romeros, C.; et al. Contribution of Common Genetic Variants to Obesity and Obesity-Related Traits in Mexican Children and Adults. PLoS ONE 2013, 8, e70640. [Google Scholar] [CrossRef] [Green Version]
- Abadi, A.; Peralta-Romero, J.; Suarez, F.; Gomez-Zamudio, J.; Burguete-Garcia, A.I.; Cruz, M.; Meyre, D. Assessing the effects of 35 European-derived BMI-associated SNPs in Mexican children. Obesity 2016, 24, 1989–1995. [Google Scholar] [CrossRef] [Green Version]
- Carpena, M.; Hutz, M.; Salatino-Oliveira, A.; Polanczyk, G.; Zeni, C.; Schmitz, M.; Chazan, R.; Genro, J.; Rohde, L.; Tovo-Rodrigues, L. CLOCK Polymorphisms in Attention-Deficit/Hyperactivity Disorder (ADHD): Further Evidence Linking Sleep and Circadian Disturbances and ADHD. Genes (Basel) 2019, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Balderas, J.; Garza-Rodriguez, M.; Gomez-Macias, G.; Barboza-Quintana, A.; Barboza-Quintana, O.; Cerda-Flores, R.; Miranda-Maldonado, I.; Vazquez-Garcia, H.; Valdez-Chapa, L.; Antonio-Macedo, M.; et al. Description of Genetic Variants in BRCA Genes in Mexican Patients with Ovarian Cancer: A First Step towards Implementing Personalized Medicine. Genes (Basel) 2018, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Furuya, T.K.; Jacob, C.E.; Tomitão, M.T.P.; Camacho, L.C.C.; Ramos, M.F.K.P.; Eluf-Neto, J.; Alves, V.A.F.; Zilberstein, B.; Cecconello, I.; Ribeiro, U.; et al. Association between polymorphisms in inflammatory response-related genes and the susceptibility, progression and prognosis of the diffuse histological subtype of gastric cancer. Genes (Basel) 2018, 9, 631. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Hormazabal, P.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Valladares, H.; Lanzarini, E.; Chiong, H.; Rojas, J.; Suazo, J.; et al. Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes (Basel) 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Morales, S.; De Mayo, T.; Gulppi, F.; Gonzalez-Hormazabal, P.; Carrasco, V.; Reyes, J.; Gómez, F.; Waugh, E.; Jara, L. Genetic Variants in pre-miR-146a, pre-miR-499, pre-miR-125a, pre-miR-605, and pri-miR-182 Are Associated with Breast Cancer Susceptibility in a South American Population. Genes (Basel) 2018, 9, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.d.A.; Alvim-Soares, A.M.; Sandrim, V.C.; Lanna, C.M.M.; Souza-Costa, D.C.; Belo, V.d.A.; de Paula, J.J.; Tanus-Santos, J.E.; Romano-Silva, M.A.; Miranda, D.M.d. Falta de associação entre o polimorfismo genético do FTO, AKT1 e AKTIP e o sobrepeso e a obesidade infantis. J. Pediatr. 2016, 92, 521–527. [Google Scholar] [CrossRef]
- Reuter, C.P.; de Mello, E.D.; da Silva, P.T.; Borges, T.S.; Klinger, E.I.; Franke, S.I.R.; Valim, A.R.d.M. Overweight and Obesity in Schoolchildren: Hierarchical Analysis of Associated Demographic, Behavioral, and Biological Factors. J. Obes. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.A.d.; Leite, N.; Furtado-Alle, L.; Teixeira, M.D.; Souza, R.L.R.d.; Milano, G.E.; Silva, L.R.d.; Pizzi, J.; Lopes, W.A.; Lopes, M.D.F.A.; et al. FTO rs9939609 Does Not Interact with Physical Exercise but Influences Basal Insulin Metabolism in Brazilian Overweight and Obese Adolescents. J. Obes. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, L.d.S.; Santos, A.M.d.; Lima, M.I.S.; Simões, V.M.F.; Pereira, S.R. Association between the FTO gene polymorphism and obesity in Brazilian adolescents from the Northeast region. J. Pediatr. 2019. [Google Scholar] [CrossRef]
- Vilella, M.; Nunes de Oliveira Costa, G.; Lima Barreto, M.; Alexandrina Figueredo, C.; Maria Alcantara-Neves, N.; Cunha Rodrigues, L.; Maria Alvim de Matos, S.; Leovigildo Fiaccone, R.; Oliveira, P.; Rocha, A.; et al. Effect of dietary consumption as a modifier on the association between FTO gene variants and excess body weight in children from an admixed population in Brazil: The Social Changes, Asthma and Allergy in Latin America (SCAALA) cohort study. Br. J. Nutr. 2017, 117, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
- Vanderweele, T.J.; Tchetgen Tchetgen, E.J.; Cornelis, M.; Kraft, P. Methodological challenges in Mendelian randomization. Epidemiology 2014, 25, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, N.A.; Didelez, V. Epidemiology, genetic epidemiology and Mendelian randomisation: More need than ever to attend to detail. Hum. Genet. 2019, 139, 121–136. [Google Scholar] [CrossRef] [Green Version]
Subpopulation | A Allele Frequency | N |
---|---|---|
normal weight children | 0.374 | 3762 |
overweight/obese children | 0.402 | 1148 |
normal weight women | 0.375 | 1926 |
overweight/obese women | 0.455 | 847 |
Type of Information | Number of Studies a |
---|---|
type of study | 37 |
Hardy–Weinberg equilibrium | 42 |
effect allele | 44 |
DNA strand for palindromic SNPs | 0 |
allele frequencies/counts | 41 |
genotypic frequencies/counts | 27 |
participants’ ethnicity | 27 |
total N | 43 |
OR and 95% CI/SE | 13 |
beta coefficients and 95% CI/SE | 7 |
covariates adjusted for | 15 |
correction for population stratification | 12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, C.; Novaes Baccarini, L. Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors. Genes 2020, 11, 507. https://doi.org/10.3390/genes11050507
Bonilla C, Novaes Baccarini L. Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors. Genes. 2020; 11(5):507. https://doi.org/10.3390/genes11050507
Chicago/Turabian StyleBonilla, Carolina, and Lara Novaes Baccarini. 2020. "Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors" Genes 11, no. 5: 507. https://doi.org/10.3390/genes11050507
APA StyleBonilla, C., & Novaes Baccarini, L. (2020). Genetic Epidemiology in Latin America: Identifying Strong Genetic Proxies for Complex Disease Risk Factors. Genes, 11(5), 507. https://doi.org/10.3390/genes11050507