Cytogenetic Mapping of 35 New Markers in the Alpaca (Vicugna pacos)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Selection of Markers
2.3. Design of PCR Primers and Overgo Probes
2.4. Screening Alpaca CHORI-246 BAC Library and BAC DNA Isolation
2.5. Cell Cultures and Chromosome Preparations
2.6. Fluorescence In Situ Hybridization (FISH) and Analysis
3. Results
3.1. Bioinformatic Analysis of SNP Markers
3.2. Identification of Alpaca BACs Containing Specific SNPs and Genes
3.3. Cytogenetic Mapping and Improvement of the Genome Assembly
4. Discussion
5. Conclusions and Future Approaches
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wheeler, J.C. Evolution and present situation of the South American Camelidae. Biol. J. Linn. Soc. 1995, 54, 271–295. [Google Scholar] [CrossRef]
- Kadwell, M.; Fernandez, M.; Stanley, H.F.; Baldi, R.; Wheeler, J.C.; Rosadio, R.; Bruford, M.W. Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc. Biol. Sci. 2001, 268, 2575–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruford, M.W.; Bradley, D.G.; Luikart, G. DNA markers reveal the complexity of livestock domestication. Nat. Rev. Genet. 2003, 4, 900–910. [Google Scholar] [CrossRef] [PubMed]
- More, M.; Gutierrez, G.; Rothschild, M.; Bertolini, F.; de Leon, F.A.P. Evaluation of SNP Genotyping in Alpacas Using the Bovine HD Genotyping Beadchip. Front Genet. 2019, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.N.; Raudsepp, T.; Alshanbari, F.; Gutierrez, G.; de Leon, F.A.P. Chromosomal Localization of Candidate Genes for Fiber Growth and Color in Alpaca (Vicugna pacos). Front Genet. 2019, 10, 583. [Google Scholar] [CrossRef]
- Barreta, J.; Gutierrez-Gil, B.; Iniguez, V.; Saavedra, V.; Chiri, R.; Latorre, E.; Arranz, J.J. Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: A contribution to the phylogeny of the South American camelids. Anim. Genet. 2013, 44, 158–168. [Google Scholar] [CrossRef]
- Cruz, A.; Cervantes, I.; Burgos, A.; Morante, R.; Gutierrez, J.P. Genetic parameters estimation for preweaning traits and their relationship with reproductive, productive and morphological traits in alpaca. Animal 2017, 11, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Browne, J. Using alpacas as therapy animals. Alpaca World 2015, 53, 58–62. [Google Scholar]
- Turney, S. Meet the alpacas that are helping researchers who study autism, alzheimer’s and cancer. Alpacas Mag. 2020, 31, 28–30. [Google Scholar]
- Wu, H.; Guang, X.; Al-Fageeh, M.B.; Cao, J.; Pan, S.; Zhou, H.; Zhang, L.; Abutarboush, M.H.; Xing, Y.; Xie, Z.; et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 2014, 5, 5188. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.F.; Munyard, K.; Croft, L.J.; Allnutt, T.R.; Jackling, F.; Alshanbari, F.; Jevit, M.; Wright, G.A.; Cransberg, R.; Tibary, A.; et al. Chromosome-Level Alpaca Reference Genome VicPac3.1 Improves Genomic Insight Into the Biology of New World Camelids. Front Genet. 2019, 10, 586. [Google Scholar] [CrossRef] [PubMed]
- Flajnik, M.F.; Deschacht, N.; Muyldermans, S. A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels? PLoS Biol. 2011, 9, e1001120. [Google Scholar] [CrossRef]
- Cohen, J. Llama antibodies inspire gene spray to prevent all flus. Science 2018, 362, 511. [Google Scholar] [CrossRef]
- Griffin, L.M.; Snowden, J.R.; Lawson, A.D.; Wernery, U.; Kinne, J.; Baker, T.S. Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species. J. Immunol. Methods 2014, 405, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, S.; Burger, P.A.; Ciani, E.; Castelli, V.; Linguiti, G.; Plasil, M.; Massari, S.; Horin, P.; Antonacci, R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet. 2019, 10, 997. [Google Scholar] [CrossRef] [Green Version]
- Murphy, W.J.; Larkin, D.M.; der Wind, A.E.; Bourque, G.; Tesler, G.; Auvil, L.; Beever, J.E.; Chowdhary, B.P.; Galibert, F.; Gatzke, L.; et al. Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 2005, 309, 613–617. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, S.; Yang, Y.; Zhou, K.; Yang, G. Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol. Phylogenet. Evol. 2011, 61, 255–264. [Google Scholar] [CrossRef]
- Marin, J.C.; Rivera, R.; Varas, V.; Cortes, J.; Agapito, A.; Chero, A.; Chavez, A.; Johnson, W.E.; Orozco-terWengel, P. Genetic Variation in Coat Colour Genes MC1R and ASIP Provides Insights Into Domestication and Management of South American Camelids. Front Genet. 2018, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.S.; Orozco-terWengel, P.; Yaya, K.; Kadwell, M.; Fernandez, M.; Marin, J.C.; Rosadio, R.; Maturrano, L.; Hoces, D.; Hu, Y.; et al. Comparing genetic diversity and demographic history in co-distributed wild South American camelids. Heredity (Edinb.) 2018, 121, 387–400. [Google Scholar] [CrossRef]
- Gonzalez, B.A.; Vasquez, J.P.; Gomez-Uchida, D.; Cortes, J.; Rivera, R.; Aravena, N.; Chero, A.M.; Agapito, A.M.; Varas, V.; Wheleer, J.C.; et al. Phylogeography and Population Genetics of Vicugna vicugna: Evolution in the Arid Andean High Plateau. Front Genet. 2019, 10, 445. [Google Scholar] [CrossRef]
- Mamani, C.; Gutierrez, G.; de León, F.A.P. Identification of single nucleotide polymorphism in alpaca (Vicugna pacos) using an alpaca/hamster radiation hybrid cells panel [in Spanish]. Revista RICBA 2017, 1, 92–95. [Google Scholar]
- Balmus, G.; Trifonov, V.A.; Biltueva, L.S.; O’Brien, P.C.; Alkalaeva, E.S.; Fu, B.; Skidmore, J.A.; Allen, T.; Graphodatsky, A.S.; Yang, F.; et al. Cross-species chromosome painting among camel, cattle, pig and human: Further insights into the putative Cetartiodactyla ancestral karyotype. Chromos. Res. 2007, 15, 499–515. [Google Scholar] [CrossRef] [PubMed]
- Avila, F.; Baily, M.P.; Perelman, P.; Das, P.J.; Pontius, J.; Chowdhary, R.; Owens, E.; Johnson, W.E.; Merriwether, D.A.; Raudsepp, T. A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet. Genome Res. 2014, 144, 196–207. [Google Scholar] [CrossRef]
- Rubes, J.; Pinton, A.; Bonnet-Garnier, A.; Fillon, V.; Musilova, P.; Michalova, K.; Kubickova, S.; Ducos, A.; Yerle, M. Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cytogenet. Genome Res. 2009, 126, 34–48. [Google Scholar] [CrossRef]
- Raudsepp, T.; Chowdhary, B.P. FISH for mapping single copy genes. Methods Mol. Biol. 2008, 422, 31–49. [Google Scholar]
- Elbers, J.P.; Rogers, M.F.; Perelman, P.L.; Proskuryakova, A.A.; Serdyukova, N.A.; Johnson, W.E.; Horin, P.; Corander, J.; Murphy, D.; Burger, P.A. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary. Mol. Ecol. Resour. 2019, 19, 1015–1026. [Google Scholar] [CrossRef]
- Alshanbari, F.; Castaneda, C.; Juras, R.; Hillhouse, A.; Mendoza, M.N.; Gutierrez, G.A.; de Leon, F.A.P.; Raudsepp, T. Comparative FISH-Mapping of MC1R, ASIP, and TYRP1 in New and Old World Camelids and Association Analysis With Coat Color Phenotypes in the Dromedary (Camelus dromedarius). Front Genet. 2019, 10, 340. [Google Scholar] [CrossRef]
- Pauciullo, A.; Shuiep, E.T.; Ogah, M.D.; Cosenza, G.; di Stasio, L.; Erhardt, G. Casein Gene Cluster in Camelids: Comparative Genome Analysis and New Findings on Haplotype Variability and Physical Mapping. Front Genet. 2019, 10, 748. [Google Scholar] [CrossRef] [Green Version]
- Achour, I.; Cavelier, P.; Tichit, M.; Bouchier, C.; Lafaye, P.; Rougeon, F. Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J. Immunol. 2008, 181, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, D. Looking for genes related to fiber synthesis and SSR markers in alpaca (Vicugna pacos) skin ESTs [in Spanish]; Universidad Nacional Mayor de San Marcos: Lima, Peru, 2015; p. 57. [Google Scholar]
- Cransberg, R.; Munyard, K.A. Polymorphisms detected in the tyrosinase and matp (slc45a2) genes did not explain coat colour dilution in a sample of Alpaca (Vicugna pacos). Small Rumin. Res. 2011, 95, 92–96. [Google Scholar] [CrossRef]
- Simoes-Costa, M.; Bronner, M.E. Insights into neural crest development and evolution from genomic analysis. Genome Res. 2013, 23, 1069–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, K.M.; Mendoza, K.M.; Fleege, E.C.; Damerow, J.A.; Armien, A.G. Evaluation of CHD7 as a candidate gene for choanal atresia in alpacas (Vicugna pacos). Vet. J. 2013, 198, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, W71–W74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, F.; Das, P.J.; Kutzler, M.; Owens, E.; Perelman, P.; Rubes, J.; Hornak, M.; Johnson, W.E.; Raudsepp, T. Development and application of camelid molecular cytogenetic tools. J. Hered. 2014, 105, 858–869. [Google Scholar] [CrossRef] [Green Version]
- Staiger, E.A.; al Abri, M.A.; Pflug, K.M.; Kalla, S.E.; Ainsworth, D.M.; Miller, D.; Raudsepp, T.; Sutter, N.B.; Brooks, S.A. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiol. Genom. 2016, 48, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Qu, Z.; Das, P.J.; Fang, E.; Juras, R.; Cothran, E.G.; McDonell, S.; Kenney, D.G.; Lear, T.L.; Adelson, D.L.; et al. Copy number variation in the horse genome. PLoS Genet. 2014, 10, e1004712. [Google Scholar] [CrossRef] [Green Version]
- Rafati, N.; Andersson, L.S.; Mikko, S.; Feng, C.; Raudsepp, T.; Pettersson, J.; Janecka, J.; Wattle, O.; Ameur, A.; Thyreen, G.; et al. Large Deletions at the SHOX Locus in the Pseudoautosomal Region Are Associated with Skeletal Atavism in Shetland Ponies. G3 (Bethesda) 2016, 6, 2213–2223. [Google Scholar] [CrossRef] [Green Version]
- Avila, F.; Baily, M.P.; Merriwether, D.A.; Trifonov, V.A.; Rubes, J.; Kutzler, M.A.; Chowdhary, R.; Janecka, J.; Raudsepp, T. A cytogenetic and comparative map of camelid chromosome 36 and the minute in alpacas. Chromos. Res. 2015, 23, 237–251. [Google Scholar] [CrossRef]
- De Lorenzi, L.; Genualdo, V.; Perucatti, A.; Iannuzzi, A.; Iannuzzi, L.; Parma, P. Physical mapping of 20 unmapped fragments of the btau_4.0 genome assembly in cattle, sheep and river buffalo. Cytogenet. Genome Res. 2013, 140, 29–35. [Google Scholar] [CrossRef]
- Janecka, J.E.; Davis, B.W.; Ghosh, S.; Paria, N.; Das, P.J.; Orlando, L.; Schubert, M.; Nielsen, M.K.; Stout, T.A.E.; Brashear, W.; et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat. Commun. 2018, 9, 2945. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Davis, B.W.; Rosengren, M.; Jevit, M.J.; Castaneda, C.; Arnold, C.; Jaxheimer, J.; Love, C.C.; Varner, D.D.; Lindgren, G.; et al. Characterization of A Homozygous Deletion of Steroid Hormone Biosynthesis Genes in Horse Chromosome 29 as A Risk Factor for Disorders of Sex Development and Reproduction. Genes (Basel) 2020, 11, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huddleston, J.; Ranade, S.; Malig, M.; Antonacci, F.; Chaisson, M.; Hon, L.; Sudmant, P.H.; Graves, T.A.; Alkan, C.; Dennis, M.Y.; et al. Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res. 2014, 24, 688–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baily, M.P.; Avila, F.; Das, P.J.; Kutzler, M.A.; Raudsepp, T. An Autosomal Translocation 73,XY,t(12;20)(q11;q11) in an Infertile Male Llama (Lama glama) With Teratozoospermia. Front Genet. 2019, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J. Fluorescence in situ hybridization in plants: Recent developments and future applications. Chromos. Res. 2019, 27, 153–165. [Google Scholar] [CrossRef]
- Yamada, N.A.; Rector, L.S.; Tsang, P.; Carr, E.; Scheffer, A.; Sederberg, M.C.; Aston, M.E.; Ach, R.A.; Tsalenko, A.; Sampas, N.; et al. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet. Genome Res. 2011, 132, 248–254. [Google Scholar] [CrossRef]
Cytogenetic Location | SNP ID More et al. 2019 | Gene Symbol | Scaffold VicPac3.1 | ChromosomeVicPac3.1 | BAC for FISH, CHORI-246 |
---|---|---|---|---|---|
1q16-q17 | UNA_077 | NLGN1 (LOC102535064) | 77225 | 1 | 250G20 |
1q32 | UNA_071 | CXADR | 4 | 1 | 203G23 |
1q33ter | UNA_049 | intergenic | 4 | 1 | 27E21 |
2q21-q22 | UNA_172 | UNC5C | 26 | 2 | 113I16 |
2q32 | UNA_174 | PCDH7 | 26 | 2 | 31H13 |
3q13 | n/a | BMP4 * | 77258; 33 | 6 | 17I20, 63L14 |
3q17-q21 | UNA_150 | ARRDC3 | 77261 | 3 | 87L21 |
3q24 | UNA_345 | MAP3K1 | 77261 | 3 | 106K2 |
4q23-q24 | UNA_211 | DMRT3 | 8430 | 4 | 41L6 |
4q23-q24 | UNA_210 | intergenic | 2524 | 4 | 46F18 |
7q12 | UNA_141 | intergenic | 8475 | 7 | 83F11 |
7q12-q13 | n/a | SFRP4 | 8475 | 7 | 190L6 |
7q15-q21 | n/a | COL1A2 | 8475 | 7 | 43N9 |
9q24 | UNA_116 | DDX20 | 160 | 9 | 68O18 |
10q12-q13 | n/a | TYR | 127 | 10 | 74O16 |
10q21-q22 | UNA_396 | putative ncRNA | 127 | 10 | 196K17 |
11q15-q16 | UNA_297 | intergenic | 77342 | 11 | 174G24 |
11q21ter | UNA_114 | DNMBP | 77343 | 11 | 62A20 |
12q12-q13 | n/a | GLI1 | 77319 | unassigned | 85P24 |
12q13-q14 | UNA_110 | intergenic | 77306 | 12 | 29N15 |
13q24-q25 | n/a | PAX7 | 77224 | 13 | 29J22 |
14p12-p13 | UNA_270 | intergenic | 81 | 14 | 22F1 |
14p15 | UNA_272 | putative ncRNA | 81 | 14 | 71E16 |
15q21-q22 | UNA_252 | CRIM1 | 46 | 15 | 135P3 |
20q13ter | UNA_369 | RNF144B/ putative ncRNA | 77293 | 20 | 10N10 |
20q14 | UNA_370 | intergenic | 77293 | 20 | 418M11 |
21q15 | UNA_095 | GPR89A | 77374 | 21 | 218E10 |
25q15 | UNA_287 | TRPS1 | 77333 | 25 | 45D13 |
26q12 | UNA_442 | SLC20A2 | 77335 | 26 | 114K20 |
26q14 | UNA_441 | intergenic | 4140 | 9,26 | 164M19 |
27q12ter | UNA_353 | AGBL1 | 11 | 27 | 15N15 |
29q15 | n/a | CHD7 | 3 | 29 | 431P24 |
33q13-q14 | UNA_398 | intergenic | 12 | 33 | 13A11 |
Xp12 | UNA_413 | PHF8 | 232 | X | 120H23 |
Xq21 | UNA_399 | DOCK11 | 93 | X | 13C22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, M.N.; Raudsepp, T.; More, M.J.; Gutiérrez, G.A.; Ponce de León, F.A. Cytogenetic Mapping of 35 New Markers in the Alpaca (Vicugna pacos). Genes 2020, 11, 522. https://doi.org/10.3390/genes11050522
Mendoza MN, Raudsepp T, More MJ, Gutiérrez GA, Ponce de León FA. Cytogenetic Mapping of 35 New Markers in the Alpaca (Vicugna pacos). Genes. 2020; 11(5):522. https://doi.org/10.3390/genes11050522
Chicago/Turabian StyleMendoza, Mayra N., Terje Raudsepp, Manuel J. More, Gustavo A. Gutiérrez, and F. Abel Ponce de León. 2020. "Cytogenetic Mapping of 35 New Markers in the Alpaca (Vicugna pacos)" Genes 11, no. 5: 522. https://doi.org/10.3390/genes11050522
APA StyleMendoza, M. N., Raudsepp, T., More, M. J., Gutiérrez, G. A., & Ponce de León, F. A. (2020). Cytogenetic Mapping of 35 New Markers in the Alpaca (Vicugna pacos). Genes, 11(5), 522. https://doi.org/10.3390/genes11050522