Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Conditions
2.2. UV Light Exposure
2.3. Cell Survival Analysis
2.4. Sister Chromatid Exchange Assay
2.5. Mutagenicity Assay
2.6. CPD Formation Assay
2.7. Detection of Reactive Oxygen Species
2.8. Statistical Analysis
3. Results
3.1. UV Spectrum
3.2. Cytotoxicity of Narrowband UVB
3.3. Genotoxicity and Mutagenicity of Narrowband UVB
3.4. Cyclobutane Pyrimidine Dimer (CPD) Formation of Narrowband UVB
3.5. ROS Production of Narrowband UVB
3.6. CPD Formation in Comparison to Cytotoxicity and Genotoxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dawe, R.S. A quantitative review of studies comparing the efficacy of narrow-band and broad-band ultraviolet B for psoriasis. Br. J. Dermatol. 2003, 149, 669–672. [Google Scholar] [CrossRef]
- Yones, S.S.; Palmer, R.A.; Garibaldinos, T.M.; Hawk, J.L.M. Randomized double-blind trial of treatment of vitiligo-efficacy of psoralen-UV-A therapy vs narrowband-UV-B therapy. Arch. Dermatol. 2007, 143, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Saito, C.; Maeda, A.; Morita, A. Bath-PUVA therapy induces circulating regulatory T cells in patients with psoriasis. J. Dermatol. Sci. 2009, 53, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Diffey, B.L.; Farr, P. The challenge of follow-up in narrowband ultraviolet B phototherapy. Br. J. Dermatol. 2007, 157, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Bilsland, D.; George, S.; Gibbs, N.; Aitchison, T.; Johnson, B.; Ferguson, J. A comparison of narrow band phototherapy (TL-01) and photochemotherapy (PUVA) in the management of polymorphic light eruption. Br. J. Dermatol. 1993, 129, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, N.J.; Franklin, V.; Gray, J.C.; Diffey, B.L.; Farr, P.M. Narrow-band ultraviolet B and broad-band ultraviolet a phototherapy in adult atopic eczema: A randomised controlled trial. Lancet 2001, 357, 2012–2016. [Google Scholar] [CrossRef]
- Kirke, S.M.; Lowder, S.; Lloyd, J.J.; Diffey, B.; Matthews, J.N.; Farr, P.M. A Randomized comparison of selective broadband UVB and narrowband UVB in the treatment of psoriasis. J. Investig. Dermatol. 2007, 127, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- Buma, A.G.J.; VanHannen, E.J.; Veldhuis, M.J.W.; Gieskes, W.W.C. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp. Sci. Mar. 1996, 60, 101–106. [Google Scholar]
- Brash, D.E.; Rudolph, J.A.; Simon, J.A.; Lin, A.; McKenna, G.J.; Baden, H.P.; Halperin, A.J.; Pontén, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.; Grand, A.; Douki, T. Solar UV radiation-induced DNA Bipyrimidine photoproducts: Formation and mechanistic insights. Top. Curr. Chem. 2014, 356, 249–275. [Google Scholar]
- Schreier, W.J.; Gilch, P.; Zinth, W. Early events of DNA photodamage. Annu. Rev. Phys. Chem. 2015, 66, 497–519. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.H.; Canfield, P.J.; Greenoak, G.E.; Reeve, V.E.; Path, F.R.C. Characterization and histogenesis of tumors in the hairless mouse produced by low-dosage incremental ultraviolet radiation. J. Investig. Dermatol. 1984, 83, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Y.; Wang, Y. UVB-induced formation of intrastrand cross-link products of DNA in MCF-7 cells treated with 5-bromo-2‘-deoxyuridine. Biochemistry 2007, 46, 8189–8195. [Google Scholar] [CrossRef]
- Coelho, M.M.V.; Apetato, M. The dark side of the light: Phototherapy adverse effects. Clin. Dermatol. 2016, 34, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.J.; Kwon, H.H.; Choi, M.R.; Youn, J.I. No evidence for increased skin cancer risk in Koreans with skin phototypes III-V treated with narrowband UVB phototherapy. Acta Derm. Venereol. 2011, 91, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Hearn, R.; Kerr, A.; Rahim, K.; Ferguson, J.; Dawe, R.S. Incidence of skin cancers in 3867 patients treated with narrow-band ultraviolet B phototherapy. Br. J. Dermatol. 2008, 159, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Yogianti, F.; Kunisada, M.; Ono, R.; Sakumi, K.; Nakabeppu, Y.; Nishigori, C. Skin tumours induced by narrowband UVB have higher frequency of p53 mutations than tumours induced by broadband UVB independent of Ogg1 genotype. Mutagenesis 2012, 27, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Tejasvi, T.; Sharma, V.K.; Kaur, J. Determination of minimal erythemal dose for narrow band-ultraviolet B radiation in north Indian patients: Comparison of visual and dermaspectrometer readings. Indian J. Dermatol. Venereol. Leprol. 2007, 73, 97–99. [Google Scholar] [PubMed]
- Hönigsmann, H. Phototherapy for psoriasis. Clin. Exp. Dermatol. 2001, 26, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Deep, G.; Agarwal, R. An overview of ultraviolet B radiation-induced skin cancer chemoprevention by silibinin. Curr. Pharmacol. Rep. 2015, 1, 206–215. [Google Scholar] [CrossRef]
- Abeti, R.; Zeitlberger, A.; Peelo, C.; Fassihi, H.; Sarkany, R.P.E.; Lehmann, A.R.; Giunti, P.; Zeitberger, A. Xeroderma pigmentosum: Overview of pharmacology and novel therapeutic strategies for neurological symptoms. Br. J. Pharmacol. 2019, 176, 4293–4301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspari, A.A.; Fleisher, T.A.; Kraemer, K.H. Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J. Clin. Investig. 1993, 92, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, T.-H.; Lee, J.-W.; Lee, M.-H. Evaluating the cytotoxic doses of narrowband and broadband UVB in human keratinocytes, melanocytes, and fibroblasts. Photodermatol. Photoimmunol. Photomed. 2008, 24, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Ikushima, T. Frequent occurrence of UVB-induced sister chromatid exchanges in telomere regions and its implication to telomere maintenance. Cytogenet. Genome Res. 2004, 104, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Herman, K.N.; Toffton, S.; McCulloch, S. Detrimental effects of UV-B radiation in a xeroderma pigmentosum-variant cell line. Environ. Mol. Mutagen. 2014, 55, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Kleinpenning, M.M.; Smits, T.; Boezeman, J.; Van De Kerkhof, P.; Evers, A.; Gerritsen, M. Narrowband ultraviolet B therapy in psoriasis: Randomized double-blind comparison of high-dose and low-dose irradiation regimens. Br. J. Dermatol. 2009, 161, 1351–1356. [Google Scholar] [CrossRef]
- Thompson, L.H.; Carrano, A.V.; Sato, K.; Salazar, E.P.; White, B.F.; Stewart, S.A.; Minkler, J.L.; Siciliano, M.J. Identification of nucleotide-excision-repair genes on human chromosomes 2 and 13 by functional complementation in hamster-human hybrids. Somat. Cell Mol. Genet. 1987, 13, 539–551. [Google Scholar] [CrossRef]
- Meyn, R.E.; Jenkins, S.F.; Thompson, L.H. Defective removal of DNA cross-links in a repair-deficient mutant of Chinese hamster cells. Cancer Res. 1982, 42, 3106–3110. [Google Scholar]
- Su, C.; Allum, A.J.; Aizawa, Y.; Kato, T. Novel glyceryl glucoside is a low toxic alternative for cryopreservation agent. Biochem. Biophys. Res. Commun. 2016, 476, 359–364. [Google Scholar] [CrossRef]
- Nowakowska, M.; Kowal, J.; Waligóra, B. Photo-oxidation of polystyrene film: 2. Photo-oxidation of polystyrene film with light absorbed by the polystyrene-oxygen complex. Polymer 1978, 19, 1317–1319. [Google Scholar] [CrossRef]
- Maeda, J.; Bell, J.J.; Genet, S.C.; Fujii, Y.; Genet, M.D.; Brents, C.A.; Genik, P.C.; Kato, T. Potentially lethal damage repair in drug arrested G 2 -phase cells after radiation exposure. Radiat. Res. 2014, 182, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Haskins, A.H.; Buglewicz, D.J.; Hirakawa, H.; Fujimori, A.; Aizawa, Y.; Kato, T. Palmitoyl ascorbic acid 2-glucoside has the potential to protect mammalian cells from high-LET carbon-ion radiation. Sci. Rep. 2018, 8, 13822. [Google Scholar] [CrossRef] [PubMed]
- Buglewicz, D.J.; Banks, A.B.; Hirakawa, H.; Fujimori, A.; Kato, T. Monoenergetic 290 MeV/n carbon-ion beam biological lethal dose distribution surrounding the Bragg peak. Sci. Rep. 2019, 9, 6157. [Google Scholar] [CrossRef] [PubMed]
- Cartwright, I.M.; Genet, M.D.; Kato, T. A simple and rapid fluorescence in situ hybridization microwave protocol for reliable dicentric chromosome analysis. J. Radiat. Res. 2012, 54, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Perry, P.; Wolff, S. New Giemsa method for the differential staining of sister chromatids. Nature 1974, 251, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.E. Mammalian cell HPRT gene mutation assay: Test methods. In Genetic Toxicology: Principles and Methods; Parry, J.M., Parry, E.M., Eds.; Springer: New York, NY, USA, 2012; Volume 817, pp. 55–67. [Google Scholar]
- Caskey, C.; Kruh, G.D. The HPRT locus. Cell 1979, 16, 1–9. [Google Scholar] [CrossRef]
- Lyon, M.F. X-chromosome inactivation and developmental patterns in mammals. Boil. Rev. 1972, 47, 1–35. [Google Scholar] [CrossRef]
- O’Neill, J.P.; Machanoff, R.; Hsie, A.W. Phenotypic expression time of mutagen-induced 6-thioguanine resistance in Chinese hamster ovary cells (CHO/HGPRT system): Expression in division-arrested cell cultures. Environ. Mutagen. 1982, 4, 421–434. [Google Scholar] [CrossRef]
- Kunisada, M.; Kumimoto, H.; Ishizaki, K.; Sakumi, K.; Nakabeppu, Y.; Nishigori, C. Narrow-band UVB induces more carcinogenic skin tumors than broad-band UVB through the formation of cyclobutane pyrimidine dimer. J. Investig. Dermatol. 2007, 127, 2865–2871. [Google Scholar] [CrossRef]
- Peus, D.; Vasa, R.A.; Beyerle, A.; Meves, A.; Krautmacher, C.; Pittelkow, M.R. Uvb activates erk1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J. Investig. Dermatol. 1999, 112, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Heck, D.E.; Vetrano, A.M.; Mariano, T.M.; Laskin, J.D. UVB light stimulates production of reactive oxygen species-unexpected role for catalase. J. Biol. Chem. 2003, 278, 22432–22436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, J.; Allum, A.; Mussallem, J.; Froning, C.E.; Haskins, A.; Buckner, M.; Miller, C.D.; Kato, T. Ascorbic acid 2-glucoside pretreatment protects cells from ionizing radiation, UVC, and short wavelength of UVB. Genes 2020, 11, 238. [Google Scholar] [CrossRef] [Green Version]
- Miyai, E.; Yanagida, M.; Akiyama, J.-I.; Yamamoto, I. Ascorbic acid 2-O-α-glucoside-induced redox modulation in human keratinocyte cell line, SCC: Mechanisms of photoprotective effect against ultraviolet light B. Boil. Pharm. Bull. 1997, 20, 632–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Painter, R.B. A replication model for sister-chromatid exchange. Mutat. Res. Mol. Mech. Mutagen. 1980, 70, 337–341. [Google Scholar] [CrossRef]
- Cleaver, J.E. Repair replication and sister chromatid exchanges as indicators of excisable and nonexcisable damage in human (xeroderma pigmentosum) cells. J. Toxicol. Environ. Health Part A 1977, 2, 1387–1394. [Google Scholar] [CrossRef]
- Nagasawa, H.; Fornace, A.J.; Little, J.B., Jr.; Little, M.A.R.B. Relationship of enhanced survival during confluent holding recovery in ultraviolet-irradiated human and mouse cells to chromosome aberrations, sister chromatid exchanges, and DNA repair. Radiat. Res. 1982, 92, 483. [Google Scholar] [CrossRef]
- Fornace, A.J.; Little, J.B. DNA crosslinking induced by X-rays and chemical agents. Biochim. Biophys. Acta (BBA) 1977, 477, 343–355. [Google Scholar] [CrossRef]
- Wolff, S.; Bodycote, J.; Painter, R.B. Sister chromatid exchanges induced in Chinese hamster cells by UV irradiation of different stages of the cell cycle: The necessity for cells to pass throughs. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1974, 25, 73–81. [Google Scholar] [CrossRef]
- Nishi, Y.; Hasegawa, M.M.; Taketomi, M.; Ohkawa, Y.; Inui, N. Comparison of 6-thioguanine-resistant mutation and sister chromatid exchanges in Chinese hamster V79 cells with forty chemical and physical agents. Cancer Res. 1984, 44, 3270–3279. [Google Scholar]
- Dahle, J.; Noordhuis, P.; Stokke, T.; Svendsrud, D.H.; Kvam, E. Multiplex polymerase chain reaction analysis of UV-A– and UV-B–induced delayed and early mutations in V79 Chinese hamster cells. Photochem. Photobiol. 2005, 81, 114. [Google Scholar] [CrossRef]
- Perry, P.; Evans, H.J. Cytological detection of mutagen–carcinogen exposure by sister chromatid exchange. Nature 1975, 258, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Carrano, A.V.; Thompson, L.H.; Lindl, P.A.; Minkler, J.L. Sister chromatid exchange as an indicator of mutagenesis. Nature 1978, 271, 551–553. [Google Scholar] [CrossRef]
- Connell, J.R. The relationship between sister chromatid exchange, chromosome aberration and gene mutation induction by several reactive polycyclic hydrocarbon metabolites in cultured mammalian cells. Int. J. Cancer 1979, 24, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Heflich, R.H.; Beranek, D.T.; Kodell, R.L.; Morris, S.M. Induction of mutations and sister-chromatid exchanges in Chinese-hamster ovary cells by ethylating agents-relationship to specific DNA adducts. Mutat. Res. 1982, 106, 147–161. [Google Scholar] [CrossRef]
- Stern, R.S.; Laird, N. For the photochemotherapy follow-up study. The carcinogenic risk of treatments for severe psoriasis. Cancer 1994, 73, 2759–2764. [Google Scholar] [CrossRef]
- Vreeswijk, M.P.; Van Hoffen, A.; Westland, B.E.; Vrieling, H.; Van Zeeland, A.A.; Mullenders, L.H. Analysis of repair of cyclobutane pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts in transcriptionally active and inactive genes in Chinese hamster cells. J. Boil. Chem. 1994, 269, 31858–31863. [Google Scholar]
UVR Source | D10 Value by Cell Type (J/m2) | |
---|---|---|
CHO10B2 Wild type | UV135 XPG mutant | |
UVC | 17 | 1.7 |
Broadband UVB | 149 | 14 |
Narrowband UVB | 1596 | 197 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buglewicz, D.J.; Mussallem, J.T.; Haskins, A.H.; Su, C.; Maeda, J.; Kato, T.A. Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. Genes 2020, 11, 646. https://doi.org/10.3390/genes11060646
Buglewicz DJ, Mussallem JT, Haskins AH, Su C, Maeda J, Kato TA. Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. Genes. 2020; 11(6):646. https://doi.org/10.3390/genes11060646
Chicago/Turabian StyleBuglewicz, Dylan J., Jacob T. Mussallem, Alexis H. Haskins, Cathy Su, Junko Maeda, and Takamitsu A. Kato. 2020. "Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells" Genes 11, no. 6: 646. https://doi.org/10.3390/genes11060646
APA StyleBuglewicz, D. J., Mussallem, J. T., Haskins, A. H., Su, C., Maeda, J., & Kato, T. A. (2020). Cytotoxicity and Mutagenicity of Narrowband UVB to Mammalian Cells. Genes, 11(6), 646. https://doi.org/10.3390/genes11060646