Next Generation Sequencing of 134 Children with Autism Spectrum Disorder and Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Literature Search for Candidate Genes
2.3. Library Preparation
2.4. Sequence Capture and Sequencing on HiSeq 2000
2.5. Primary Data Analysis
2.6. Sanger Sequencing
3. Results
3.1. Targeted Sequencing of Regressive Autism Candidate Genes
3.2. Recurrent Variants Identified in Our Regressive Autism Cohort
3.3. Variants in Genes Associated with Syndromic Forms of ASD
3.4. Individuals Carrying Multiple Variants with Evidence Supportive of Pathogenicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics Statements
References
- Al Backer, N.B. Developmental regression in autism spectrum disorder. Sudan. J. Paediatr. 2015, 15, 21–26. [Google Scholar] [PubMed]
- Pescosolido, M.F.; Stein, D.M.; Schmidt, M.; El Achkar, C.M.; Sabbagh, M.; Rogg, J.M.; Tantravahi, U.; McLean, R.L.; Liu, J.S.; Poduri, A.; et al. Genetic and phenotypic diversity of NHE6 mutations in Christianson syndrome. Ann. Neurol. 2014, 76, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Edery, P.; Chabrier, S.; Ceballos-Picot, I.; Marie, S.; Vincent, M.F.; Tardieu, M. Intrafamilial variability in the phenotypic expression of adenylosuccinate lyase deficiency: A report on three patients. Am. J. Med. Genet. Part A 2003, 120, 185–190. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, D.R.H.; Van Dijk, A.H.A.; Pfundt, R.; Hoischen, A.; Merkx, G.F.M.; Gradek, G.A.; Lybæk, H.; Stray-Pedersen, A.; Brunner, H.G.; Houge, G. Severe Progressive Autism Associated with Two de novo Changes: A 2.6-Mb 2q31.1 Deletion and a Balanced t(14;21)(q21.1;p11.2) Translocation with Long-Range Epigenetic Silencing of LRFN5 Expression. Mol. Syndromol. 2010, 1, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Craiu, D.; Dragostin, O.; Dica, A.; Hoffman-Zacharska, D.; Gos, M.; Bastian, A.E.; Gherghiceanu, M.; Rolfs, A.; Nahavandi, N.; Craiu, M.; et al. Rett-like onset in late-infantile neuronal ceroid lipofuscinosis (CLN7) caused by compound heterozygous mutation in the MFSD8 gene and review of the literature data on clinical onset signs. Eur. J. Paediatr. Neurol. 2015, 19, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Ziats, M.N.; Comeaux, M.S.; Yang, Y.; Scaglia, F.; Elsea, S.H.; Sun, Q.; Beaudet, A.L.; Schaaf, C.P. Improvement of regressive autism symptoms in a child with TMLHE deficiency following carnitine supplementation. Am. J. Med. Genet. Part A 2015, 167, 2162–2167. [Google Scholar] [CrossRef]
- Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012, 485, 237–241. [Google Scholar] [CrossRef]
- Neale, B.M.; Kou, Y.; Liu, L.; Ma’Ayan, A.; Samocha, K.E.; Sabo, A.; Lin, C.F.; Stevens, C.; Wang, L.S.; Makarov, V.; et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 2012, 485, 242–245. [Google Scholar] [CrossRef]
- O’Roak, B.J.; Vives, L.; Girirajan, S.; Karakoc, E.; Krumm, N.; Coe, B.P.; Levy, R.; Ko, A.; Lee, C.; Smith, J.D.; et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 2012, 485, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Goes, F.S.; Pirooznia, M.; Parla, J.S.; Kramer, M.; Ghiban, E.; Mavruk, S.; Chen, Y.C.; Monson, E.T.; Willour, V.L.; Karchin, R.; et al. Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry 2016, 73, 590–597. [Google Scholar] [CrossRef]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Schaaf, C.P. Autism genetics—An overview. Prenat. Diagn. 2017, 37, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Oleson, D.; Schaaf, C.P. Next Generation Sequencing in Autism Spectrum Disorder. OBM Genet. 2018, 2, 014. [Google Scholar] [CrossRef] [Green Version]
- Berghuis, B.; De Kovel, C.G.; van Iterson, L.; Lamberts, R.J.; Sander, J.W.; Lindhout, D.; Koeleman, B.P. Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy. Epilepsy Res. 2015, 115, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutry-Kryza, N.; Labalme, A.; Ville, D.; de Bellescize, J.; Touraine, R.; Prieur, F.; Dimassi, S.; Poulat, A.L.; Till, M.; Rossi, M.; et al. Molecular characterization of a cohort of 73 patients with infantile spasms syndrome. Eur. J. Med. Genet. 2015, 58, 51–58. [Google Scholar] [CrossRef]
- Depienne, C.; Bouteiller, D.; Keren, B.; Cheuret, E.; Poirier, K.; Trouillard, O.; Benyahia, B.; Quelin, C.; Carpentier, W.; Julia, S.; et al. Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females. PLoS Genet. 2009, 5, e1000381. [Google Scholar] [CrossRef]
- Guffanti, G.; Lievers, L.S.; Bonati, M.T.; Marchi, M.; Geronazzo, L.; Nardocci, N.; Estienne, M.; Larizza, L.; Macciardi, F.; Russo, S. Role of UBE3A and ATP10A genes in autism susceptibility region 15q11–q13 in an Italian population: A positive replication for UBE3A. Psychiatry Res. 2011, 185, 33–38. [Google Scholar] [CrossRef]
- Meyer, A.; Kossow, K.; Gal, A.; Steglich, C.; Mühlhausen, C.; Ullrich, K.; Braulke, T.; Muschol, N. The Mutation p.Ser298Pro in the sulphamidase gene (SGSH) is associated with a slowly progressive clinical phenotype in mucopolysaccharidosis type IIIA (Sanfilippo A Syndrome). Hum. Mutat. 2008, 29, 770. [Google Scholar] [CrossRef]
- Ngoh, A.; McTague, A.; Wentzensen, I.M.; Meyer, E.; Applegate, C.; Kossoff, E.H.; Batista, D.A.; Wang, T.; Kurian, M.A. Severe infantile epileptic encephalopathy due to mutations in PLCB1: Expansion of the genotypic and phenotypic disease spectrum. Dev. Med. Child Neurol. 2014, 56, 1124–1128. [Google Scholar] [CrossRef] [Green Version]
- Noh, G.J.; Graham, J.M. 2q23.1 microdeletion of the MBD5 gene in a female with seizures, developmental delay and distinct dysmorphic features. Eur. J. Med. Genet. 2012, 55, 354–357. [Google Scholar] [CrossRef]
- Philippe, A.; Craus, Y.; Rio, M.; Bahi-Buisson, N.; Boddaert, N.; Malan, V.; Bonnefont, J.P.; Robel, L. Case report: An unexpected link between partial deletion of the SHANK3 gene and Heller’s dementia infantilis, a rare subtype of autism spectrum disorder. BMC Psychiatry 2015, 15, 256. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.N.; Rupar, C.A.; Prasad, C. Methylenetetrahydrofolate reductase (MTHFR) deficiency and infantile epilepsy. Brain Dev. 2011, 33, 758–769. [Google Scholar] [CrossRef]
- Ramocki, M.B.; Chapieski, L.; McDonald, R.O.; Fernandez, F.; Malphrus, A.D. Spinocerebellar ataxia type 2 presenting with cognitive regression in childhood. J. Child Neurol. 2008, 23, 999–1001. [Google Scholar] [CrossRef]
- Willemsen, M.H.; Rensen, J.H.M.; de Valk, H.V.S.L.; Hamel, B.C.J.; Kleefstra, T. Adult Phenotypes in Angelman- and Rett-Like Syndromes. Mol. Syndromol. 2012, 2, 217–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamakawa, Y.; Nakazawa, T.; Ishida, A.; Saito, N.; Komatsu, M.; Matsubara, T.; Obinata, K.; Hirose, S.; Okumura, A.; Shimizu, T. A boy with a severe phenotype of succinic semialdehyde dehydrogenase deficiency. Brain Dev. 2012, 34, 107–112. [Google Scholar] [CrossRef]
- Fan, H.; Gulley, M.L. DNA extraction from paraffin-embedded tissues. Methods Mol. Med. 2001, 49, 1–4. [Google Scholar] [PubMed]
- Killeen, A.A. (Ed.) Molecular Pathology Protocols; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Challis, D.; Yu, J.; Evani, U.S.; Jackson, A.R.; Paithankar, S.; Coarfa, C.; Milosavljevic, A.; Gibbs, R.A.; Yu, F. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinform. 2012, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, J.G.; Carroll, A.; Veeraraghavan, N.; Dahdouli, M.; Sundquist, A.; English, A.; Bainbridge, M.; White, S.; Salerno, W.; Buhay, C.; et al. Launching genomics into the cloud: Deployment of Mercury, a next generation sequence analysis pipeline. BMC Bioinform. 2014, 15, 30. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Lesca, G.; Rudolf, G.; Bruneau, N.; Lozovaya, N.; Labalme, A.; Boutry-Kryza, N.; Salmi, M.; Tsintsadze, T.; Addis, L.; Motte, J.; et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet 2013, 45, 1061–1066. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Kogan, J.; Kimonis, V.; Fernandez, B.; Horn, D.; Klopocki, E.; Chung, B.; Toutain, A.; Weksberg, R.; Millen, K.J.; et al. Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion. Am. J. Med Genet. Part A 2013, 161, 131–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, B.; Ypsilanti, A.R.; Boutin, C.; Cremer, H.; Chedotal, A. Plexin-B2 regulates the proliferation and migration of neuroblasts in the postnatal and adult subventricular zone. J. Neurosci. 2012, 32, 16892–16905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worzfeld, T.; Puschel, A.W.; Offermanns, S.; Kuner, R. Plexin-B family members demonstrate non-redundant expression patterns in the developing mouse nervous system: An anatomical basis for morphogenetic effects of Sema4D during development. Eur. J. Neurosci. 2004, 19, 2622–2632. [Google Scholar] [CrossRef]
- Lesca, G.; Rudolf, G.; Labalme, A.; Hirsch, E.; Arzimanoglou, A.; Genton, P.; Motte, J.; de Saint Martin, A.; Valenti, M.P.; Boulay, C.; et al. Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types: Genomic dissection makes the link with autism. Epilepsia 2012, 53, 1526–1538. [Google Scholar] [CrossRef]
- Rojo, D.C.; Hamiwka, L.; McMahon, J.M.; Dibbens, L.M.; Arsov, T.; Suls, A.; Stödberg, T.; Kelley, K.; Wirrell, E.; Appleton, B.; et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology 2011, 77, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibbens, L.M.; Tarpey, P.S.; Hynes, K.; Bayly, M.A.; Scheffer, I.E.; Smith, R.; Bomar, J.; Sutton, E.; Vandeleur, L.; Shoubridge, C.; et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 2008, 40, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.S.; Knowland, V.C.; Karmiloff-Smith, A. Mechanisms of developmental regression in autism and the broader phenotype: A neural network modeling approach. Psychol. Rev. 2011, 118, 637–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeste, S.S.; Tuchman, R. Autism Spectrum Disorder and Epilepsy: Two Sides of the Same Coin? J. Child Neurol. 2015, 30, 1963–1971. [Google Scholar] [CrossRef] [Green Version]
- Schaaf, C.P.; Sabo, A.; Sakai, Y.; Crosby, J.; Muzny, D.; Hawes, A.; Lewis, L.; Akbar, H.; Varghese, R.; Boerwinkle, E.; et al. Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Hum. Mol. Genet. 2011, 20, 3366–3375. [Google Scholar] [CrossRef] [Green Version]
Mode of Inheritance | |
---|---|
ATXN2 | x-linked |
EHMT1 | x-linked |
CDKL5 | x-linked |
PCDH19 | x-linked |
TMLHE | x-linked |
MECP2 | x-linked |
SLC9A6 | x-linked |
ATP13A4 | Autosomal dominant |
ATP13A5 | Autosomal dominant |
CDH13 | Autosomal dominant |
CDH4 | Autosomal dominant |
CDH9 | Autosomal dominant |
GRIN2A | Autosomal dominant |
HSBP1 | Autosomal dominant |
LRFN5 | Autosomal dominant |
MACROD2 | Autosomal dominant |
MBD5 | Autosomal dominant |
MDGA2 | Autosomal dominant |
RELN | Autosomal dominant |
SCN1A | Autosomal dominant |
SGSH | Autosomal dominant |
SHANK3 | Autosomal dominant |
STXBP1 | Autosomal dominant |
TCF4 | Autosomal dominant |
UBE3A | Autosomal dominant |
ADSL | Autosomal recessive |
ALDH5A1 | Autosomal recessive |
FOXG1 | Autosomal recessive |
MFSD8 | Autosomal recessive |
PLCB1 | Autosomal recessive |
PRSS12 | Autosomal recessive |
SCN8A | Autosomal recessive |
MTHFR | Autosomal recessive |
DIAPH3 | Autosomal recessive |
FGF12 | Involved in copy number variations |
HRASLS | Involved in copy number variations |
OPA1 | Involved in copy number variations |
SCN2A | Involved in copy number variations |
ATXN7 | Involved in copy number variations |
CDH6 | Involved in copy number variations |
CNTNAP2 | Involved in copy number variations |
CTNNA3 | Involved in copy number variations |
GRIN2B | Involved in copy number variations |
HDAC10 | Involved in copy number variations |
KCNQ2 | Involved in copy number variations |
KIF26B | Involved in copy number variations |
PLXNB2 | Involved in copy number variations |
Indivi-Dual ID | Sex | Onset Age of Regression | Variants | ACMG Classify-Cation | Seizures | Language Impair-Ment | Motor Impair-Ment | Additional Notes |
---|---|---|---|---|---|---|---|---|
090 | M | 36 months | GRIN2A c.28C > A p.Leu10Met | PM2 | No | Yes | No | |
113 | M | 36 months | GRIN2A c.28C > A p.Leu10Met | PM2 | No | Yes | Yes | Stereotypies |
031 | M | 39 months | GRIN2A c.904G > T p.Ala302Ser | PM2 | Yes | Yes | No | |
086 | M | 36 months | PLXNB2 c.742C > T p.Arg248Cys | PP3 | Yes | Yes | Yes | |
110 | F | 14 months | PLXNB2 c.742C > T p.Arg248Cys | PP3 | Yes | Yes | Yes | Stereotypies, hand tremor |
037 | F | 6 months | SCN1A c.4852 + 1G > T | PM2 | Yes | Yes | Yes | Convulsions |
121 | M | 24 months | SCN1A c.3269G > C p.Ser1090Thr | PM2 | Yes | Yes | Yes | Stereotypies, attention deficit |
051 | F | 16 months | PCDH19 c.121A > G p.Asn41Asp | PM2 | Yes | Yes | Yes | Facial dysmorphology |
073 | F | 6 months | MECP2 c.439A > G p.Lys147Glu | PS1 | Yes | Yes | Yes | Loss of vision, hand tremor |
139 | F | 12 months | CDKL5 c.1387A > G p.Lys463Glu | PP3 | No | Yes | Yes | Sleep disturbances, obesity, severe temper tantrums, stereotypies, aggression |
029 | F | 18 months | UBE3A c.2439C > G p.Asp813Glu | PM2 | Yes | Yes | Yes | Ataxia |
030 | F | Not available | SLC9A6 c.171C > G p.Ile57Met | PP3 | Yes | Yes | Yes | Spastic quadriparesis and ataxia, sleep disturbances |
104 | M | Not available | EHMT1 c.989A > T p.Lys330Met & SLC9A6 c.1777C > G p.Leu593Val | PM2 (for EHMT1) & PP3 (for SLC9A6) | Not available | Not available | Not available | |
041 | M | 12 months | EHMT1 c.1513G > A p.Gly505Ser & MFSD8 c.353A > G p.Asn118Ser | PP3 for both | No | Yes | Yes | |
137 | M | 11 months | SCN2A c.5549A > G p.Asp1850Gly & MTHFR c.136C > T p.Arg46Trp | PM2 for both | No | Yes | Yes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, J.; Chun, C.-A.; Zavadenko, N.N.; Pechatnikova, N.L.; Naumova, O.Y.; Doddapaneni, H.V.; Hu, J.; Muzny, D.M.; Schaaf, C.P.; Grigorenko, E.L. Next Generation Sequencing of 134 Children with Autism Spectrum Disorder and Regression. Genes 2020, 11, 853. https://doi.org/10.3390/genes11080853
Yin J, Chun C-A, Zavadenko NN, Pechatnikova NL, Naumova OY, Doddapaneni HV, Hu J, Muzny DM, Schaaf CP, Grigorenko EL. Next Generation Sequencing of 134 Children with Autism Spectrum Disorder and Regression. Genes. 2020; 11(8):853. https://doi.org/10.3390/genes11080853
Chicago/Turabian StyleYin, Jiani, Chun-An Chun, Nikolay N. Zavadenko, Natalia L. Pechatnikova, Oxana Yu. Naumova, Harsha V. Doddapaneni, Jianhong Hu, Donna M. Muzny, Christian P. Schaaf, and Elena L. Grigorenko. 2020. "Next Generation Sequencing of 134 Children with Autism Spectrum Disorder and Regression" Genes 11, no. 8: 853. https://doi.org/10.3390/genes11080853