Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Cultivation
2.2. Agar-Based Screening
2.3. Gene-Based Analysis
2.4. Feast-Famine Regime Implementation
2.5. Nile Red Staining and Microscopy
2.6. Data Analysis
3. Results
4. Discussion
4.1. Evaluating Screening Methods
4.2. Biodiversity of Psychrophilic PHA Producers
4.3. PHA Producers and Their Habitats
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reddy, C.S.K.; Ghai, R.; Kalia, V. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 2003, 87, 137–146. [Google Scholar] [CrossRef]
- Rehm, B.H.; Steinbüchel, A. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 1999, 25, 3–19. [Google Scholar] [CrossRef]
- Anderson, A.J.; Dawes, E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Mol. Biol. Rev. 1990, 54, 450–472. [Google Scholar] [CrossRef] [Green Version]
- Chee, J.Y.; Yoga, S.S.; Lau, N.S.; Ling, S.C.; Abed, R.M.; Sudesh, K. Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1395–1404. [Google Scholar]
- Kumar, V.; Kumar, S.; Singh, D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int. J. Biol. Macromol. 2020, 147, 1255–1267. [Google Scholar] [CrossRef]
- Kung, S.S.; Chuang, Y.C.; Chen, C.H.; Chien, C.C. Isolation of polyhydroxyalkanoates-producing bacteria using a combination of phenotypic and genotypic approach. Lett. Appl. Microbiol. 2007, 44, 364–371. [Google Scholar] [CrossRef]
- Spiekermann, P.; Rehm, B.H.; Kalscheuer, R.; Baumeister, D.; Steinbüchel, A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 1999, 171, 73–80. [Google Scholar] [CrossRef]
- Kitamura, S.; Doi, Y. Staining method of poly (3-hydroxyalkanoic acids) producing bacteria by Nile blue. Biotechnol. Tech. 1994, 8, 345–350. [Google Scholar] [CrossRef]
- Romo, D.M.R.; Grosso, M.V.; Solano, N.C.M.; Castaño, D.M. A most effective method for selecting a broad range of short and medium-chain-length polyhidroxyalcanoate producing microorganisms. Electron. J. Biotechnol. 2007, 10, 348–357. [Google Scholar]
- Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018, 36, 856–870. [Google Scholar] [CrossRef]
- Pernicova, I.; Novackova, I.; Sedlacek, P.; Kourilova, X.; Koller, M.; Obruca, S. Application of osmotic challenge for enrichment of microbial consortia in polyhydroxyalkanoates producing thermophilic and thermotolerant bacteria and their subsequent isolation. Int. J. Biol. Macromol. 2020, 144, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, S.; Górniak, D.; Możejko, J.; Świątecki, A.; Grzesiak, J.; Zdanowski, M. The diversity of bacteria isolated from Antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Curr. Microbiol. 2014, 69, 594–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayub, N.D.; Pettinari, M.J.; Ruiz, J.A.; López, N.I. A polyhydroxybutyrate-producing Pseudomonas sp. isolated from Antarctic environments with high stress resistance. Curr. Microbiol. 2004, 49, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Varin, T.; Lovejoy, C.; Jungblut, A.D.; Vincent, W.F.; Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 2012, 78, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, M. Production of polyhydroxyalkanoate (PHA) biopolyesters by extremophiles. MOJ Polym. Sci. 2017, 1, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; Wiley: Chichester, NY, USA, 1991. [Google Scholar]
- Mercantili, L.; Davis, F.; Collyer, S.D.; Higson, S.P. Ultrasonic modification of the viscosity of vegetable, mineral and synthetic oils—Effects of nucleating agents and free-radical scavengers. Lubr. Sci. 2015, 27, 177–191. [Google Scholar] [CrossRef]
- Zuriani, R.; Vigneswari, S.; Azizan, M.N.M.; Majid, M.I.A.; Amirul, A.A. A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol. Bioprocess Eng. 2013, 18, 472–478. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 5, 1547–1549. [Google Scholar] [CrossRef]
- Higuchi-Takeuchi, M.; Morisaki, K.; Numata, K. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front. Microbiol. 2016, 7, 1509. [Google Scholar] [CrossRef] [Green Version]
- He, Y.W.; Cao, X.Q.; Poplawsky, A.R. Chemical Structure, Biological Roles, Biosynthesis and Regulation of the Yellow Xanthomonadin Pigments in the Phytopathogenic Genus Xanthomonas. Mol. Plant-Microbe Interact. 2020, 33, 705–714. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, L.; Sundari, C.S.; Balasubramanian, D.; Sonti, R.V. The bacterial pigment xanthomonadin offers protection against photodamage. FEBS Lett. 1997, 415, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Králová, S. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst. Appl. Microbiol. 2017, 40, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Nichols, D.S. Polyunsaturated fatty acids in marine bacteria—A dogma rewritten. Microbiology 1999, 145, 767–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonzo, F.; Mayzaud, P. Spectrofluorometric quantification of neutral and polar lipids in zooplankton using Nile red. Mar. Chem. 1999, 67, 289–301. [Google Scholar] [CrossRef]
- Znój, A.; Chwedorzewska, K.J.; Androsiuk, P.; Cuba-Diaz, M.; Giełwanowska, I.; Koc, J.; Zmarz, A. Rapid environmental changes in the Western Antarctic Peninsula region due to climate change and human activity. Appl. Ecol. Environ. Res. 2017, 15, 525–539. [Google Scholar]
- Greenspan, P.; Mayer, E.P.; Fowler, S.D. Nile red: A selective fluorescent stain for intracellular lipid droplets. J. Cell Biol. 1985, 100, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Tan, I.K.P.; Foong, C.P.; Tan, H.T.; Lim, H.; Zain, N.A.A.; Tan, Y.C.; Sudesh, K. Polyhydroxyalkanoate (PHA) synthase genes and PHA-associated gene clusters in Pseudomonas spp. and Janthinobacterium spp. isolated from Antarctica. J. Biotechnol. 2020, 313, 18–28. [Google Scholar] [CrossRef]
- Montenegro, E.M.D.S.; Delabary, G.S.; Silva, M.A.C.D.; Andreote, F.D.; Lima, A.O.D.S. Molecular diagnostic for prospecting polyhydroxyalkanoate-producing bacteria. Bioengineering 2017, 4, 52. [Google Scholar] [CrossRef]
- Wältermann, M.; Steinbüchel, A. Neutral lipid bodies in prokaryotes: Recent insights into structure, formation, and relationship to eukaryotic lipid depots. J. Bacteriol. 2005, 187, 3607–3619. [Google Scholar] [CrossRef] [Green Version]
- Mravec, F.; Obruca, S.; Krzyzanek, V.; Sedlacek, P.; Hrubanova, K.; Samek, O.; Nebesarova, J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016, 363, fnw094. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Gliniewicz, K.; Settles, M.L.; Coats, E.R.; McDonald, A.G. Influence of organic loading rate and solid retention time on polyhydroxybutyrate production from hybrid poplar hydrolysates using mixed microbial cultures. Bioresour. Technol. 2015, 175, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Cavaillé, L.; Albuquerque, M.; Grousseau, E.; Lepeuple, A.S.; Uribelarrea, J.L.; Hernandez-Raquet, G.; Paul, E. Understanding of polyhydroxybutyrate production under carbon and phosphorus-limited growth conditions in non-axenic continuous culture. Bioresour. Technol. 2016, 201, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Pärnänen, K.; Karkman, A.; Virta, M.; Eronen-Rasimus, E.; Kaartokallio, H. Discovery of bacterial polyhydroxyalkanoate synthase (PhaC)-encoding genes from seasonal Baltic Sea ice and cold estuarine waters. Extremophiles 2015, 19, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Gawor, J.; Grzesiak, J.; Sasin-Kurowska, J.; Borsuk, P.; Gromadka, R.; Górniak, D.; Zdanowski, M.K. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 2016, 20, 403–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadouri, D.; Jurkevitch, E.; Okon, Y.; Castro-Sowinski, S. Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol. 2005, 31, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Prieto, A.; Escapa, I.F.; Martínez, V.; Dinjaski, N.; Herencias, C.; de la Peña, F.; Revelles, O. A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ. Microbiol. 2016, 18, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Ayub, N.D.; Tribelli, P.M.; López, N.I. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14–3 during low temperature adaptation. Extremophiles 2009, 13, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Zdanowski, M.K.; Żmuda-Baranowska, M.J.; Borsuk, P.; Świątecki, A.; Górniak, D.; Wolicka, D.; Grzesiak, J. Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica. Polar Biol. 2013, 36, 511–527. [Google Scholar] [CrossRef] [Green Version]
- Matias, F.; Bonatto, D.; Padilla, G.; Rodrigues, M.F.D.A.; Henriques, J.A.P. Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can. J. Microbiol. 2009, 55, 790–800. [Google Scholar] [CrossRef]
- Grzesiak, J.; Kaczyńska, A.; Gawor, J.; Żuchniewicz, K.; Aleksandrzak-Piekarczyk, T.; Gromadka, R.; Zdanowski, M.K. A smelly business: Microbiology of Adélie penguin guano (Point Thomas rookery, Antarctica). Sci. Total Environ. 2020, 714, 136714. [Google Scholar] [CrossRef]
- Zdanowski, M.K.; Zmuda, M.J.; Zwolska, I. Bacterial role in the decomposition of marine-derived material (penguin guano) in the terrestrial maritime Antarctic. Soil Biol. Biochem. 2005, 37, 581–595. [Google Scholar] [CrossRef]
- Pratt, S.; Werker, A.; Morgan-Sagastume, F.; Lant, P. Microaerophilic conditions support elevated mixed culture polyhydroxyalkanoate (PHA) yields, but result in decreased PHA production rates. Water Sci. Technol. 2012, 65, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yu, J. Kinetic analysis on inhibited growth and poly (3-hydroxybutyrate) formation of Alcaligenes eutrophus on acetate under nutrient-rich conditions. Process Biochem. 2000, 36, 201–207. [Google Scholar] [CrossRef]
- Grzesiak, J.; Górniak, D.; Świątecki, A.; Aleksandrzak-Piekarczyk, T.; Szatraj, K.; Zdanowski, M.K. Microbial community development on the surface of Hans and Werenskiold Glaciers (Svalbard, Arctic): A comparison. Extremophiles 2015, 19, 885–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzesiak, J.; Zdanowski, M.K.; Górniak, D.; Świątecki, A.; Aleksandrzak-Piekarczyk, T.; Szatraj, K.; Nieckarz, M. Microbial community changes along the ecology glacier ablation zone (King George Island, Antarctica). Polar Biol. 2015, 38, 2069–2083. [Google Scholar] [CrossRef] [Green Version]
- Telling, J.; Anesio, A.M.; Tranter, M.; Fountain, A.G.; Nylen, T.; Hawkings, J.; Wadham, J.L. Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Front. Microbiol. 2014, 5, 694. [Google Scholar] [CrossRef] [Green Version]
- Dieser, M.; Greenwood, M.; Foreman, C.M. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 2010, 42, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Gittel, A.; Bárta, J.; Kohoutová, I.; Mikutta, R.; Owens, S.; Gilbert, J.; Lashchinskiy, N. Distinct microbial communities associated with buried soils in the Siberian tundra. ISME J. 2014, 8, 841–853. [Google Scholar] [CrossRef]
- Crump, B.C.; Kling, G.W.; Bahr, M.; Hobbie, J.E. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 2003, 69, 2253–2268. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Thakur, V.; Kumar, S.; Singh, D. Bioplastic reservoir of diverse bacterialcommunities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol. Lett. 2018, 365, fny144. [Google Scholar] [CrossRef] [Green Version]
Strain Numbers | Material of Isolation | Place of Origin | Environment Type | Maintenance Medium |
---|---|---|---|---|
2043, 2045, 2047, 2049, 2099, 2102, 2132, 2139, 2157 | Little auk (Alle alle) guano | Hornsund Fiord, Spitsbergen Island, Arctic | Zoogenic | R3A agar |
966, 967, 968, 969, 970, 972, 973, 974, 975 | Adélie penguin guano | Point Thomas Rookery, King George Island, Antarctica | Zoogenic | R3A agar |
1198, 1200, 1204, 1206, 1208, 1210, 1212, 1334, 1335, 1336, 1337, 1338, 1339, 1340, 1341, 1343, 2848 | Decaying seaweeds | Hornsund Fiord, Spitsbergen Island, Arctic | Marine | R3A agar with artificial seawater |
1639, 1640, 1641, 1642, 1643, 1662, 1663, 1664, 1666, 2861 | Decaying seaweeds | Admiralty Bay shore, King George Island, Antarctica | Marine | R3A agar with artificial seawater |
2529, 2539, 2543, 2556, 2561, 2574, 2579, 2595, 2600 | Cryoconite | Hans Glacier, Spitsbergen, Arctic | Glacial | R3A agar |
2720, 2722, 2724, 2728 | Cryoconite | Werenskiold Glacier, Spitsbergen, Arctic | Glacial | R3A agar |
301, 303, 304, 305, 330, 331, 332, 333, 334 | Glacial surface ice | Ecology Glacier, King George Island, Antarctica | Glacial | R3A agar |
473, 474, 475, 476, 477, 478, 479, 481, 482 | Glacial surface ice | Baranowski Glacier, King George Island, Antarctica | Glacial | R3A agar |
803, 805, 806, 807, 808, 809, 810, 811, 812 | Plant-free postglacial soil | Ecology Glacier foreland, King George Island, Antarctica | Glacial | R3A agar |
989, 990, 991, 992, 993, 994, 995, 996, 997, 998 | Postglacial soil with plant debris | Ecology Glacier foreland, King George Island, Antarctica | Glacial | R3A agar |
844, 847, 848, 851 | Plant-free postglacial soil | Baranowski Glacier foreland, King George Island, Antarctica | Glacial | R3A agar |
117, 123, 130, 139, 1258, 1259, 1261 | Plant-free postglacial soil | Windy Glacier foreland, King George Island, Antarctica | Glacial | R3A agar |
2176, 2180, 2181, 2183, 2186, 2191, 2196, 2199, 2200, 2201, 2203 | Arctic tundra soil with moss/lichen debris | Hornsund Fiord, Spitsbergen Island, Arctic | Pedogenic | R3A agar |
1044, 1051, 1052, 1053, 1058, 1062, 1065, 1079, 1081 | Kettle lake water | Werenskiold Glacier forefield, Hornsund fiord, Spitsbergen, Arctic | Freshwater | R3A agar |
1699, 1700, 1701, 1702, 1703, 1704, 1705, 1706, 1707, 1708, 2031, 2032, 2033, 2034, 2035, 2036, 2042, 2083, 2084, 2954, 2955 | Freshwater microbial mat | Jasnorzewski Gardens, King George Island, Antarctica | Freshwater | R3A agar |
867, 868, 869, 870, 871, 872, 873, 874, 875, 876 | Air | Point Thomas Rookery, King George Island, Antarctica | Zoogenic | R3A agar |
1160, 1162, 1165, 1166, 1167, 1169, 1170, 1191, 1192 | Subglacial water | Subglacial stream, Hans Glacier, Spitsbergen, Arctic | Glacial | R3A agar |
P12, 2778, 2779, 2785 | Deschampsia antarctica rhizosphere soil | Arctowski Station vicinity, King George Island, Antarctica | Pedogenic | R3A agar |
2792, 2793, 2794, 2795, 2797, 2799, 2800, 2860 | Ornithogenic soil | Arctowski Station vicinity, King George Island, Antarctica | Pedogenic | R3A agar |
2810, 2812, 2813, 2814, 2815, 2816, 2817, 2818, 2819 | Moss rhizosphere | Arctowski Station vicinity, King George Island, Antarctica | Pedogenic | R3A agar |
2921, 2923, 2924, 2926, 2927, 2928 | Supraglacial water | Supraglacial stream, Ecology Glacier, King George Island, Antarctica | Glacial | R3A agar |
2743, 2744, 2746, 2747, 2748, 2749, 2750 | River water | Ariedalen stream, Spitsbergen, Arctic | Freshwater | R3A agar |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogala, M.M.; Gawor, J.; Gromadka, R.; Kowalczyk, M.; Grzesiak, J. Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods. Genes 2020, 11, 873. https://doi.org/10.3390/genes11080873
Rogala MM, Gawor J, Gromadka R, Kowalczyk M, Grzesiak J. Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods. Genes. 2020; 11(8):873. https://doi.org/10.3390/genes11080873
Chicago/Turabian StyleRogala, Małgorzata Marta, Jan Gawor, Robert Gromadka, Magdalena Kowalczyk, and Jakub Grzesiak. 2020. "Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods" Genes 11, no. 8: 873. https://doi.org/10.3390/genes11080873
APA StyleRogala, M. M., Gawor, J., Gromadka, R., Kowalczyk, M., & Grzesiak, J. (2020). Biodiversity and Habitats of Polar Region Polyhydroxyalkanoic Acid-Producing Bacteria: Bioprospection by Popular Screening Methods. Genes, 11(8), 873. https://doi.org/10.3390/genes11080873