Advances in Genomics for Drug Development
Abstract
:1. Introduction
2. Genome Sequencing and Genotyping
2.1. GWAS and Drug Target Discovery
2.2. Exome, Gene Essentiality, and Drug Target Discovery
2.3. Whole Genome Sequence—Challenges in the Druggability of the Non-Coding Genome
3. Transcriptomics—Bulk and Single-Cell Sequencing
3.1. Transcriptomics of Drug Perturbations
3.2. Bulk and Single-Cell RNA Sequencing to Characterize Drug Targets
3.3. Biomarkers from Transcriptome Data
3.4. Linking Transcriptome to Genome Data
4. CRISPR-Based Technologies
4.1. Genome-Wide CRISPR Screens for Drug-Target Discovery
4.2. Gene-to-Drug Mechanism-of-Action
4.3. CRISPR Screens and Drug Response
5. Genetic Support and the Probability of Drug Approval
6. Conclusions and Future Prospects
- More relevant to human biology than animal models of disease.
- Insights into safety and potential side effects.
- Possible higher approval and clinical success rates.
- Increased potential for first-in-class therapies.
- Facilitated target validation.
- Targets may involve unexplored biology.
- Targets may be difficult to drug—no precedent.
- For rare genetic variants, long-term health consequences may be unknown.
- Though non-essential genes are intuitively more attractive for development, there are successful drugs acting on genes that do not tolerate genetic variation.
- Need to improve on data integration and algorithms for better predictive models.
Author Contributions
Funding
Conflicts of Interest
References
- Holbein, M.E. Understanding FDA regulatory requirements for investigational new drug applications for sponsor-investigators. J. Investig. Med. 2009, 57, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Telenti, A.; Pierce, L.C.; Biggs, W.H.; di Iulio, J.; Wong, E.H.; Fabani, M.M.; Kirkness, E.F.; Moustafa, A.; Shah, N.; Xie, C.; et al. Deep sequencing of 10,000 human genomes. Proc. Natl. Acad. Sci. USA 2016, 113, 11901–11906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plenge, R.M.; Scolnick, E.M.; Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 2013, 12, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Giral, H.; Landmesser, U.; Kratzer, A. Into the Wild: GWAS Exploration of Non-coding RNAs. Front. Cardiovasc. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [PubMed]
- King, E.A.; Davis, J.W.; Degner, J.F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet. 2019, 15, e1008489. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Bartha, I.; di Iulio, J.; Venter, J.C.; Telenti, A. Human gene essentiality. Nat. Rev. Genet. 2018, 19, 51–62. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Rausell, A.; Luo, Y.; Lopez, M.; Seeleuthner, Y.; Rapaport, F.; Favier, A.; Stenson, P.D.; Cooper, D.N.; Patin, E.; Casanova, J.L.; et al. Common homozygosity for predicted loss-of-function variants reveals both redundant and advantageous effects of dispensable human genes. Proc. Natl. Acad. Sci. USA 2020, 117, 13626–13636. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Cohen, J.C.; Boerwinkle, E.; Mosley, T.H., Jr.; Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 2006, 354, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Peden, J.F.; Hopewell, J.C.; Kyriakou, T.; Goel, A.; Heath, S.C.; Parish, S.; Barlera, S.; Franzosi, M.G.; Rust, S.; et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl. J. Med. 2009, 361, 2518–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosby, J.; Peloso, G.M.; Auer, P.L.; Crosslin, D.R.; Stitziel, N.O.; Lange, L.A.; Lu, Y.; Tang, Z.-Z.; Zhang, H.; Hindy, G.; et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 2014, 371, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjaerg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Altmann, S.W.; Davis, H.R., Jr.; Zhu, L.J.; Yao, X.; Hoos, L.M.; Tetzloff, G.; Iyer, S.P.; Maguire, M.; Golovko, A.; Zeng, M.; et al. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 2004, 303, 1201–1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musunuru, K.; Pirruccello, J.P.; Do, R.; Peloso, G.M.; Guiducci, C.; Sougnez, C.; Garimella, K.V.; Fisher, S.; Abreu, J.; Barry, A.J.; et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med. 2010, 363, 2220–2227. [Google Scholar] [CrossRef] [Green Version]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’Dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef]
- Robinson, M.K.; Caminis, J.; Brunkow, M.E. Sclerostin: How human mutations have helped reveal a new target for the treatment of osteoporosis. Drug Discov. Today 2013, 18, 637–643. [Google Scholar] [CrossRef]
- Cirulli, E.T.; Guo, L.; Leon Swisher, C.; Shah, N.; Huang, L.; Napier, L.A.; Kirkness, E.F.; Spector, T.D.; Caskey, C.T.; Thorens, B.; et al. Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 2019, 29, 488–500.e2. [Google Scholar] [CrossRef] [Green Version]
- Long, T.; Hicks, M.; Yu, H.C.; Biggs, W.H.; Kirkness, E.F.; Menni, C.; Zierer, J.; Small, K.S.; Mangino, M.; Messier, H.; et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 2017, 49, 568–578. [Google Scholar] [CrossRef]
- Berger, M.F.; Mardis, E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Nogrady, B. How cancer genomics is transforming diagnosis and treatment. Nature 2020, 579, S10–S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fresard, L.; Montgomery, S.B. Diagnosing rare diseases after the exome. Mol. Case Stud. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- di Iulio, J.; Bartha, I.; Wong, E.H.M.; Yu, H.C.; Lavrenko, V.; Yang, D.; Jung, I.; Hicks, M.A.; Shah, N.; Kirkness, E.F.; et al. The human noncoding genome defined by genetic diversity. Nat. Genet. 2018, 50, 333–337. [Google Scholar] [CrossRef]
- Wells, A.; Heckerman, D.; Torkamani, A.; Yin, L.; Sebat, J.; Ren, B.; Telenti, A.; di Iulio, J. Ranking of non-coding pathogenic variants and putative essential regions of the human genome. Nat. Commun. 2019, 10, 5241. [Google Scholar] [CrossRef]
- Perenthaler, E.; Yousefi, S.; Niggl, E.; Barakat, T.S. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front. Cell. Neurosci. 2019, 13, 352. [Google Scholar] [CrossRef] [Green Version]
- Ning, B.; Yu, D.; Yu, A.M. Advances and challenges in studying noncoding RNA regulation of drug metabolism and development of RNA therapeutics. Biochem. Pharm. 2019, 169, 113638. [Google Scholar] [CrossRef]
- Keenan, A.B.; Wojciechowicz, M.L.; Wang, Z.; Jagodnik, K.M.; Jenkins, S.L.; Lachmann, A.; Ma’ayan, A. Connectivity Mapping: Methods and Applications. Annu. Rev. Biomed. Data Sci. 2019, 2, 69–92. [Google Scholar] [CrossRef]
- Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell 2017, 171, 1437–1452.e17. [Google Scholar] [CrossRef]
- Bush, E.C.; Ray, F.; Alvarez, M.J.; Realubit, R.; Li, H.; Karan, C.; Califano, A.; Sims, P.A. PLATE-Seq for genome-wide regulatory network analysis of high-throughput screens. Nat. Commun. 2017, 8, 105. [Google Scholar] [CrossRef]
- Ye, C.; Ho, D.J.; Neri, M.; Yang, C.; Kulkarni, T.; Randhawa, R.; Henault, M.; Mostacci, N.; Farmer, P.; Renner, S.; et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat. Commun. 2018, 9, 4307. [Google Scholar] [CrossRef] [PubMed]
- Alpern, D.; Gardeux, V.; Russeil, J.; Mangeat, B.; Meireles-Filho, A.C.A.; Breysse, R.; Hacker, D.; Deplancke, B. BRB-seq: Ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing. Genome Biol. 2019, 20, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 2010, 11, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, N.; Pavlidis, P. Evaluation of Connectivity Map shows limited reproducibility in drug repositioning. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.R.; Sullivan, D.J., Jr. New uses for old drugs. Nature 2007, 448, 645–646. [Google Scholar] [CrossRef]
- Liu, J.; Lee, J.; Salazar Hernandez, M.A.; Mazitschek, R.; Ozcan, U. Treatment of obesity with celastrol. Cell 2015, 161, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Srivatsan, S.R.; McFaline-Figueroa, J.L.; Ramani, V.; Saunders, L.; Cao, J.; Packer, J.; Pliner, H.A.; Jackson, D.L.; Daza, R.M.; Christiansen, L.; et al. Massively multiplex chemical transcriptomics at single-cell resolution. Science 2020, 367, 45–51. [Google Scholar] [CrossRef]
- Wang, J.; Rieder, S.A.; Wu, J.; Hayes, S.; Halpin, R.A.; de Los Reyes, M.; Shrestha, Y.; Kolbeck, R.; Raja, R. Evaluation of ultra-low input RNA sequencing for the study of human T cell transcriptome. Sci. Rep. 2019, 9, 8445. [Google Scholar] [CrossRef] [Green Version]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lonnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef]
- Stahl, P.L.; Salmen, F.; Vickovic, S.; Lundmark, A.; Navarro, J.F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J.O.; Huss, M.; et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Shen-Orr, S.S.; Gaujoux, R. Computational deconvolution: Extracting cell type-specific information from heterogeneous samples. Curr. Opin. Immunol. 2013, 25, 571–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahmani, E.; Schweiger, R.; Rhead, B.; Criswell, L.A.; Barcellos, L.F.; Eskin, E.; Rosset, S.; Sankararaman, S.; Halperin, E. Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology. Nat. Commun. 2019, 10, 3417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen-Orr, S.S.; Tibshirani, R.; Khatri, P.; Bodian, D.L.; Staedtler, F.; Perry, N.M.; Hastie, T.; Sarwal, M.M.; Davis, M.M.; Butte, A.J. Cell type-specific gene expression differences in complex tissues. Nat. Methods 2010, 7, 287–289. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, R.; Zhou, Y.; Fei, L.; Sun, H.; Lai, S.; Saadatpour, A.; Zhou, Z.; Chen, H.; Ye, F.; et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2018, 172, 1091–1107.e17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozenblatt-Rosen, O.; Stubbington, M.J.T.; Regev, A.; Teichmann, S.A. The Human Cell Atlas: From vision to reality. Nature 2017, 550, 451–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.S.; Behar, M.S.; Suryawanshi, G.W.; Feldman, K.E.; Spreafico, R.; Hoffmann, A. Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Syst. 2017, 4, 330–343.e5. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.; Parnas, O.; Li, B.; Chen, J.; Fulco, C.P.; Jerby-Arnon, L.; Marjanovic, N.D.; Dionne, D.; Burks, T.; Raychowdhury, R.; et al. Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell 2016, 167, 1853–1866.e17. [Google Scholar] [CrossRef]
- Hulsen, T.; Jamuar, S.S.; Moody, A.R.; Karnes, J.H.; Varga, O.; Hedensted, S.; Spreafico, R.; Hafler, D.A.; McKinney, E.F. From Big Data to Precision Medicine. Front. Med. 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.E.; Haynes, W.A.; Vallania, F.; Ioannidis, J.P.; Khatri, P. Methods to increase reproducibility in differential gene expression via meta-analysis. Nucleic Acids Res. 2017, 45, e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, P.; Castel, S.E.; Cummings, B.B.; Einson, J.; Sousa, C.; Hoffman, P.; Donkervoort, S.; Jiang, Z.; Mohassel, P.; Foley, A.R.; et al. Genetic regulatory variation in populations informs transcriptome analysis in rare disease. Science 2019, 366, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Doench, J.G. Am I ready for CRISPR? A user’s guide to genetic screens. Nat. Rev. Genet. 2018, 19, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Simeonov, D.R.; Marson, A. CRISPR-Based Tools in Immunity. Annu. Rev. Immunol. 2019, 37, 571–597. [Google Scholar] [CrossRef]
- Ford, K.; McDonald, D.; Mali, P. Functional Genomics via CRISPR-Cas. J. Mol. Biol. 2019, 431, 48–65. [Google Scholar] [CrossRef]
- Kurata, M.; Yamamoto, K.; Moriarity, B.S.; Kitagawa, M.; Largaespada, D.A. CRISPR/Cas9 library screening for drug target discovery. J. Hum. Genet. 2018, 63, 179–186. [Google Scholar] [CrossRef]
- McDonald, E.R., 3rd; de Weck, A.; Schlabach, M.R.; Billy, E.; Mavrakis, K.J.; Hoffman, G.R.; Belur, D.; Castelletti, D.; Frias, E.; Gampa, K.; et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 2017, 170, 577–592.e10. [Google Scholar] [CrossRef]
- Bodapati, S.; Daley, T.P.; Lin, X.; Zou, J.; Qi, L.S. A benchmark of algorithms for the analysis of pooled CRISPR screens. Genome Biol. 2020, 21, 62. [Google Scholar] [CrossRef] [Green Version]
- Imkeller, K.; Ambrosi, G.; Boutros, M.; Huber, W. Gscreend: Modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biol. 2020, 21, 53. [Google Scholar] [CrossRef]
- Li, W.; Xu, H.; Xiao, T.; Cong, L.; Love, M.I.; Zhang, F.; Irizarry, R.A.; Liu, J.S.; Brown, M.; Liu, X.S. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014, 15, 554. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Koster, J.; Xu, H.; Chen, C.H.; Xiao, T.; Liu, J.S.; Brown, M.; Liu, X.S. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015, 16, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanson, K.R.; Hanna, R.E.; Hegde, M.; Donovan, K.F.; Strand, C.; Sullender, M.E.; Vaimberg, E.W.; Goodale, A.; Root, D.E.; Piccioni, F.; et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat. Commun. 2018, 9, 5416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, I.; Greenside, P.G.; Natoli, T.; Lahr, D.L.; Wadden, D.; Tirosh, I.; Narayan, R.; Root, D.E.; Golub, T.R.; Subramanian, A.; et al. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map. PLoS Biol. 2017, 15, e2003213. [Google Scholar] [CrossRef] [Green Version]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [Google Scholar] [CrossRef] [Green Version]
- Behan, F.M.; Iorio, F.; Picco, G.; Goncalves, E.; Beaver, C.M.; Migliardi, G.; Santos, R.; Rao, Y.; Sassi, F.; Pinnelli, M.; et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature 2019, 568, 511–516. [Google Scholar] [CrossRef]
- Dempster, J.M.; Pacini, C.; Pantel, S.; Behan, F.M.; Green, T.; Krill-Burger, J.; Beaver, C.M.; Younger, S.T.; Zhivich, V.; Najgebauer, H.; et al. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. Nat. Commun. 2019, 10, 5817. [Google Scholar] [CrossRef] [Green Version]
- Luo, J. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. Trends Cancer 2016, 2, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Mestyan, G. Energy metabolism, food utilization and growth in low birth weight infants. Orv. Hetil. 1988, 129, 1459–1464, 1467. [Google Scholar]
- Chiu, Y.W.; Hori, Y.; Ebinuma, I.; Sato, H.; Hara, N.; Ikeuchi, T.; Tomita, T. Identification of calcium and integrin-binding protein 1 as a novel regulator of production of amyloid beta peptide using CRISPR/Cas9-based screening system. FASEB J. 2020, 34, 7661–7674. [Google Scholar] [CrossRef] [Green Version]
- Wertz, M.H.; Mitchem, M.R.; Pineda, S.S.; Hachigian, L.J.; Lee, H.; Lau, V.; Powers, A.; Kulicke, R.; Madan, G.K.; Colic, M.; et al. Genome-wide In Vivo CNS Screening Identifies Genes that Modify CNS Neuronal Survival and mHTT Toxicity. Neuron 2020, 106, 76–89.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Weng, C.; Li, H.; Tao, R.; Mai, W.; Liu, X.; Lu, L.; Lai, S.; Duan, Q.; Alvarez, C.; et al. Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key beta-Cell-Specific Disease Genes. Cell Rep. 2019, 26, 3132–3144.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroyo, J.D.; Jourdain, A.A.; Calvo, S.E.; Ballarano, C.A.; Doench, J.G.; Root, D.E.; Mootha, V.K. A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation. Cell Metab. 2016, 24, 875–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breslow, D.K.; Hoogendoorn, S.; Kopp, A.R.; Morgens, D.W.; Vu, B.K.; Kennedy, M.C.; Han, K.; Li, A.; Hess, G.T.; Bassik, M.C.; et al. A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat. Genet. 2018, 50, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Puschnik, A.S.; Majzoub, K.; Ooi, Y.S.; Carette, J.E. A CRISPR toolbox to study virus-host interactions. Nat. Rev. Microbiol 2017, 15, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Xiaofei, E.; Meraner, P.; Lu, P.; Perreira, J.M.; Aker, A.M.; McDougall, W.M.; Zhuge, R.; Chan, G.C.; Gerstein, R.M.; Caposio, P.; et al. OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc. Natl. Acad. Sci. USA 2019, 116, 7043–7052. [Google Scholar] [CrossRef] [Green Version]
- Labeau, A.; Simon-Loriere, E.; Hafirassou, M.L.; Bonnet-Madin, L.; Tessier, S.; Zamborlini, A.; Dupre, T.; Seta, N.; Schwartz, O.; Chaix, M.L.; et al. A Genome-Wide CRISPR-Cas9 Screen Identifies the Dolichol-Phosphate Mannose Synthase Complex as a Host Dependency Factor for Dengue Virus Infection. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Savidis, G.; McDougall, W.M.; Meraner, P.; Perreira, J.M.; Portmann, J.M.; Trincucci, G.; John, S.P.; Aker, A.M.; Renzette, N.; Robbins, D.R.; et al. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Rep. 2016, 16, 232–246. [Google Scholar] [CrossRef] [Green Version]
- Diep, J.; Ooi, Y.S.; Wilkinson, A.W.; Peters, C.E.; Foy, E.; Johnson, J.R.; Zengel, J.; Ding, S.; Weng, K.F.; Laufman, O.; et al. Enterovirus pathogenesis requires the host methyltransferase SETD3. Nat. Microbiol. 2019, 4, 2523–2537. [Google Scholar] [CrossRef]
- Li, B.; Clohisey, S.M.; Chia, B.S.; Wang, B.; Cui, A.; Eisenhaure, T.; Schweitzer, L.D.; Hoover, P.; Parkinson, N.J.; Nachshon, A.; et al. Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat. Commun. 2020, 11, 164. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Perez, J.T.; Chen, C.; Li, Y.; Benitez, A.; Kandasamy, M.; Lee, Y.; Andrade, J.; tenOever, B.; Manicassamy, B. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication. Cell Rep. 2018, 23, 596–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyrina, A.; Jones, C.; Chen, D.; Clarkson, S.; Cochran, N.; Feucht, P.; Hoffman, G.; Lindeman, A.; Russ, C.; Sigoillot, F.; et al. A Genome-wide CRISPR Screen Identifies ZCCHC14 as a Host Factor Required for Hepatitis B Surface Antigen Production. Cell Rep. 2019, 29, 2970–2978.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, R.J.; Wang, T.; Koundakjian, D.; Hultquist, J.F.; Lamothe-Molina, P.; Monel, B.; Schumann, K.; Yu, H.; Krupzcak, K.M.; Garcia-Beltran, W.; et al. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat. Genet. 2017, 49, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Orchard, R.C.; Sullender, M.E.; Dunlap, B.F.; Balce, D.R.; Doench, J.G.; Virgin, H.W. Identification of Antinorovirus Genes in Human Cells Using Genome-Wide CRISPR Activation Screening. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orchard, R.C.; Wilen, C.B.; Doench, J.G.; Baldridge, M.T.; McCune, B.T.; Lee, Y.C.; Lee, S.; Pruett-Miller, S.M.; Nelson, C.A.; Fremont, D.H.; et al. Discovery of a proteinaceous cellular receptor for a norovirus. Science 2016, 353, 933–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Miner, J.J.; Gorman, M.J.; Rausch, K.; Ramage, H.; White, J.P.; Zuiani, A.; Zhang, P.; Fernandez, E.; Zhang, Q.; et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 2016, 535, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Richardson, R.B.; Ohlson, M.B.; Eitson, J.L.; Kumar, A.; McDougal, M.B.; Boys, I.N.; Mar, K.B.; De La Cruz-Rivera, P.C.; Douglas, C.; Konopka, G.; et al. A CRISPR screen identifies IFI6 as an ER-resident interferon effector that blocks flavivirus replication. Nat. Microbiol. 2018, 3, 1214–1223. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Muffat, J.; Omer Javed, A.; Keys, H.R.; Lungjangwa, T.; Bosch, I.; Khan, M.; Virgilio, M.C.; Gehrke, L.; Sabatini, D.M.; et al. Genome-wide CRISPR screen for Zika virus resistance in human neural cells. Proc. Natl. Acad. Sci. USA 2019, 116, 9527–9532. [Google Scholar] [CrossRef] [Green Version]
- Jeng, E.E.; Bhadkamkar, V.; Ibe, N.U.; Gause, H.; Jiang, L.; Chan, J.; Jian, R.; Jimenez-Morales, D.; Stevenson, E.; Krogan, N.J.; et al. Systematic Identification of Host Cell Regulators of Legionella pneumophila Pathogenesis Using a Genome-wide CRISPR Screen. Cell Host Microbe 2019, 26, 551–563.e6. [Google Scholar] [CrossRef]
- Yeung, A.T.Y.; Choi, Y.H.; Lee, A.H.Y.; Hale, C.; Ponstingl, H.; Pickard, D.; Goulding, D.; Thomas, M.; Gill, E.; Kim, J.K.; et al. A Genome-Wide Knockout Screen in Human Macrophages Identified Host Factors Modulating Salmonella Infection. mBio 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Shifrut, E.; Carnevale, J.; Tobin, V.; Roth, T.L.; Woo, J.M.; Bui, C.T.; Li, P.J.; Diolaiti, M.E.; Ashworth, A.; Marson, A. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function. Cell 2018, 175, 1958–1971.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaFleur, M.W.; Nguyen, T.H.; Coxe, M.A.; Yates, K.B.; Trombley, J.D.; Weiss, S.A.; Brown, F.D.; Gillis, J.E.; Coxe, D.J.; Doench, J.G.; et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 2019, 10, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, M.B.; Wang, G.; Chow, R.D.; Ye, L.; Zhu, L.; Dai, X.; Park, J.J.; Kim, H.R.; Errami, Y.; Guzman, C.D.; et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell 2019, 178, 1189–1204.e23. [Google Scholar] [CrossRef] [PubMed]
- Manguso, R.T.; Pope, H.W.; Zimmer, M.D.; Brown, F.D.; Yates, K.B.; Miller, B.C.; Collins, N.B.; Bi, K.; LaFleur, M.W.; Juneja, V.R.; et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 2017, 547, 413–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishizuka, J.J.; Manguso, R.T.; Cheruiyot, C.K.; Bi, K.; Panda, A.; Iracheta-Vellve, A.; Miller, B.C.; Du, P.P.; Yates, K.B.; Dubrot, J.; et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2019, 565, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.D.; Chen, S. Cancer CRISPR Screens In Vivo. Trends Cancer 2018, 4, 349–358. [Google Scholar] [CrossRef]
- Jost, M.; Weissman, J.S. CRISPR Approaches to Small Molecule Target Identification. ACS Chem. Biol. 2018, 13, 366–375. [Google Scholar] [CrossRef]
- Brown, K.K.; Hann, M.M.; Lakdawala, A.S.; Santos, R.; Thomas, P.J.; Todd, K. Approaches to target tractability assessment—A practical perspective. MedChemComm 2018, 9, 606–613. [Google Scholar] [CrossRef]
- Colic, M.; Wang, G.; Zimmermann, M.; Mascall, K.; McLaughlin, M.; Bertolet, L.; Lenoir, W.F.; Moffat, J.; Angers, S.; Durocher, D.; et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.; Maguire, M.; Papa, E.; et al. Open Targets: A platform for therapeutic target identification and validation. Nucleic Acids Res. 2017, 45, D985–D994. [Google Scholar] [CrossRef]
- Cotto, K.C.; Wagner, A.H.; Feng, Y.Y.; Kiwala, S.; Coffman, A.C.; Spies, G.; Wollam, A.; Spies, N.C.; Griffith, O.L.; Griffith, M. DGIdb 3.0: A redesign and expansion of the drug-gene interaction database. Nucleic Acids Res. 2018, 46, D1068–D1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Felix, E.; Magarinos, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Southan, C.; Sharman, J.L.; Campo, B.; Cavanagh, D.R.; Alexander, S.P.H.; Davenport, A.P.; et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020, 48, D1006–D1021. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Janes, J.; Young, M.E.; Chen, E.; Rogers, N.H.; Burgstaller-Muehlbacher, S.; Hughes, L.D.; Love, M.S.; Hull, M.V.; Kuhen, K.L.; Woods, A.K.; et al. The ReFRAME library as a comprehensive drug repurposing library and its application to the treatment of cryptosporidiosis. Proc. Natl. Acad. Sci. USA 2018, 115, 10750–10755. [Google Scholar] [CrossRef] [Green Version]
- Bhinder, B.; Antczak, C.; Shum, D.; Radu, C.; Mahida, J.P.; Liu-Sullivan, N.; Ibanez, G.; Raja, B.S.; Calder, P.A.; Djaballah, H. Chemical & RNAi screening at MSKCC: A collaborative platform to discover & repurpose drugs to fight disease. Comb. Chem. High Throughput Screen. 2014, 17, 298–318. [Google Scholar] [CrossRef] [Green Version]
- Mercorelli, B.; Palu, G.; Loregian, A. Drug Repurposing for Viral Infectious Diseases: How Far Are We? Trends Microbiol. 2018, 26, 865–876. [Google Scholar] [CrossRef]
- Wang, T.; Wei, J.J.; Sabatini, D.M.; Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 2014, 343, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Shalem, O.; Sanjana, N.E.; Hartenian, E.; Shi, X.; Scott, D.A.; Mikkelson, T.; Heckl, D.; Ebert, B.L.; Root, D.E.; Doench, J.G.; et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Jost, M.; Chen, Y.; Gilbert, L.A.; Horlbeck, M.A.; Krenning, L.; Menchon, G.; Rai, A.; Cho, M.Y.; Stern, J.J.; Prota, A.E.; et al. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Mol. Cell 2017, 68, 210–223.e6. [Google Scholar] [CrossRef] [Green Version]
- Colic, M.; Hart, T. Chemogenetic interactions in human cancer cells. Comput. Struct. Biotechnol. J. 2019, 17, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bell, J.; Lau, B.T.; Whittaker, T.; Stapleton, D.; Ji, H.P. A functional CRISPR/Cas9 screen identifies kinases that modulate FGFR inhibitor response in gastric cancer. Oncogenesis 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Huang, Q.; Luster, T.A.; Hu, H.; Zhang, H.; Ng, W.L.; Khodadadi-Jamayran, A.; Wang, W.; Chen, T.; Deng, J.; et al. In Vivo Epigenetic CRISPR Screen Identifies Asf1a as an Immunotherapeutic Target in Kras-Mutant Lung Adenocarcinoma. Cancer Discov. 2020, 10, 270–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, J.; Jang, A.H.; Shin, H.R.; See, J.E.; Lee, W.; Lee, J.W.; Chang, S.; Kim, K.; Kim, Y. A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene 2020, 39, 30–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findlay, G.M.; Daza, R.M.; Martin, B.; Zhang, M.D.; Leith, A.P.; Gasperini, M.; Janizek, J.D.; Huang, X.; Starita, L.M.; Shendure, J. Accurate classification of BRCA1 variants with saturation genome editing. Nature 2018, 562, 217–222. [Google Scholar] [CrossRef]
- Nelson, M.R.; Tipney, H.; Painter, J.L.; Shen, J.; Nicoletti, P.; Shen, Y.; Floratos, A.; Sham, P.C.; Li, M.J.; Wang, J.; et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 2015, 47, 856–860. [Google Scholar] [CrossRef]
- Minikel, E.V.; Karczewski, K.J.; Martin, H.C.; Cummings, B.B.; Whiffin, N.; Rhodes, D.; Alfoldi, J.; Trembath, R.C.; van Heel, D.A.; Daly, M.J.; et al. Evaluating drug targets through human loss-of-function genetic variation. Nature 2020, 581, 459–464. [Google Scholar] [CrossRef]
- Glusman, G.; Rose, P.W.; Prlic, A.; Dougherty, J.; Duarte, J.M.; Hoffman, A.S.; Barton, G.J.; Bendixen, E.; Bergquist, T.; Bock, C.; et al. Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: A proposed framework. Genome Med. 2017, 9, 113. [Google Scholar] [CrossRef] [Green Version]
- Hicks, M.; Bartha, I.; di Iulio, J.; Venter, J.C.; Telenti, A. Functional characterization of 3D protein structures informed by human genetic diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 8960–8965. [Google Scholar] [CrossRef] [Green Version]
- Csermely, P.; Korcsmaros, T.; Kiss, H.J.; London, G.; Nussinov, R. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol. Ther. 2013, 138, 333–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics. Nat. Genet. 2019, 51, 12–18. [Google Scholar] [CrossRef] [PubMed]
Query | Representative Sources | Expected Output | Implication for Drug Development |
---|---|---|---|
Relevant population data for a given target | UK biobank (https://www.ukbiobank.ac.uk/), GWAS catalog (https://www.ebi.ac.uk/gwas/) | Genetic evidence of association between gene and target (similarity between the clinical trait and the drug indication) | Target identification, druggability |
Genetic diseases | OMIM (https://omim.org/) | Evidence for severe consequences of genetic variants | Druggability, consequences on long-term drug action and safety |
Null individuals | gnomAD (https://gnomad.broadinstitute.org/) | Identification of individuals in the general population that tolerate heterozygous or homozygous loss of function | Druggability, consequences of long-term drug action and safety |
Relevant tissue expression | GTEx (https://www.gtexportal.org/home/) | Target is pertinent to the disease tissue | Target identification, validation |
Relevant cell expression | Human cell atlas (https://www.humancellatlas.org/) | Target is pertinent to the cell implicated in pathogenesis | Target identification, validation |
Expression perturbation | LINCS (http://www.lincsproject.org/) | The target responds to relevant perturbation(s) | Target identification, validation, mechanism of action |
Target relevance and triage | CRISPR KO (https://depmap.org/portal/depmap/) | The target is relevant to in vitro or in vivo experimental endpoints | Target identification, validation |
Gene-to-drug matching and precedent | Open Targets Platform (https://www.targetvalidation.org/) | The target genetic perturbation matches the putative drug perturbation endpoints | Druggability, repurposing, chemical matter |
Gene (Protein) | Genetic Defect/Variant | Human Phenotype | Drug: Indication | Mechanism of Action |
---|---|---|---|---|
PCSK9; proprotein convertase subtilisin/kexin type 9 | GoF (deleterious), LoF (protective) | GoF: familial hypercholesterolemia and CHD. LoF: lower LDL-C and CHD incidence | Evolocumab (Amgen) and Alirocumab (Regeneron): Familial hypercholesterolemia | PCSK9 cleaves the hepatic LDL receptor in the endosome depending on cellular cholesterol levels. PCSK9 inhibition leads to increased LDL receptors and hence clearance of LDL particles from the circulation |
NPC1L1; Niemann-Pick C1-Like 1 | GoF (deleterious), LoF (protective) | Heterozygote carriers of LoF alleles have a very modest reduction in LDL cholesterol but a large reduction of cardiovascular risk | Ezetimibe (Merck): Hypercholesterolemia | Ezetimibe inhibits the intestinal absorption of cholesterol from the diet and from the bile. In addition, it reduces the uptake of plant sterols. Shifting the ratio between cholesterol uptake and de novo synthesis might be a factor explaining the discrepancy between the moderate effect on LDL-cholesterol and the cardiovascular benefits. |
ANGPTL3; angiopoietin-like protein 3 | LoF (protective) | Familial combined hypolipidemia: reduced blood lipids, including LDL, VLDL and HDL cholesterol and triglycerides resulting in significantly lower risk of coronary artery disease | Evinacumab (Regeneron): Familial hypercholesterolemia | Neutralization of ANGPTL3 which is an inhibitor of lipoprotein lipase and endothelial lipase. In addition, it activates integrin αVβ3 which contributes to intima proliferation. |
LPA; Lipoprotein(a) | GoF (deleterious), LoF (protective) | High plasma concentrations of Lp(a) as well as genetic variants which are associated with high Lp(a) concentrations are both associated with cardiovascular disease which very strongly supports causality between Lp(a) concentrations and myocardial infarction, stroke, peripheral vascular disease and childhood thromboembolism | AKCEA-APO(a)-LRx (Ionis) is an antisense drug that inhibits the production of apolipoprotein(a), thereby reducing Lp(a). | Reduction of hepatic Lp(a) translation and secretion resulting in reduced circulating levels and consequently in reduced cardiovascular risk. |
LEPR; Leptin receptor | LoF (deleterious) | Severe early-onset obesity, major hyperphagia, hypogonadotropic hypogonadism and neuroendocrine/metabolic dysfunction | Metreleptin (Aegerion), a leptin analogue, and REGN4461 (Regeneron), a leptin receptor agonist for lipodystrophy and obesity. | REGN4461 is a fully human monoclonal antibody that is an agonist to the human leptin receptor (LEPR). In lipodystrophies the adipokine leptin is not adequately produced leading to severe hyperlipidemia and insulin resistance with consequential diabetes which is very difficult to manage |
MC4R; Melanocortin 4 receptor | LoF (deleterious) | Early onset obesity due to increased appetite and reduced energy expenditure; increased body height. | Setmelanotide (Rythym): pro-opiomelanocortin (POMC) deficiency obesity and leptin receptor (LEPR) deficiency obesity | Setmelanotide is a peptide agonist of MC4R, a GPCR in the hypothalamus mediating satiety. In addition, activation of MC4R enhances sympathetic tone, metabolic rate and blood pressure, an obstacle for previous MC4R agonists. Setmelanotide does not elevate blood pressure or heart rate. |
PPARG; peroxisome proliferator activated receptor γ | LoF (deleterious) | Familial partial lipodystrophy 3: partial lipodystrophy affecting extremities. increased adiposity on body and intraperitoneally, acanthosis nigricans, insulin resistance with dyslipidemia | Thiazolidinediones (Rosiglitazone, Pioglitazone): Diabetes type 2 | Differentiation of adipocytes leading to increased insulin sensitivity, glucose uptake and secretion of adipokines (leptin, adiponectin). |
SOST; Sclerostin | LoF (homozygous:disease, heterozygous: protective) | Sclerosteosis is characterized by bone overgrowth with high bone mineral density. It can lead to facial distortion, syndactyly and elevated intracranial pressure with sudden brain incarceration and death | Romosozumab (Amgen): Postmenopausal osteoporosis. | Sclerostin is a negative signal secreted from osteocytes acting as an antagonist on LRP5/6 receptors on osteoblasts negatively regulating Wnt-mediated differentiation and activation of osteoblasts. Neutralization of sclerostin leads to increased osteoblast activity and bone formation. |
SLC22A12; Urate transporter 1 | LoF (deleterious) | GoF: Uric acid elevated (hyperuricemia) leading to gout. LoF: Hyperuricosuria and nephrolithiasis | Lesinurad (Ironwood): Hyperuricemia | Inhibits reabsorption of uric acid in the proximal tubule of the nephron with elevated urate excretion |
XDH; Xanthine oxidase | LoF | Xanthinuria | Allopurinol: Gout | Blockade of the oxidations hypoxanthine → xanthine → uric acid results in reduced urate production and increased urinary xanthine excretion. |
IL4; IL13; IL4Ra; Interleukin-4, -6 and IL4 receptor α | eQTL (all 3 genes) and GoF (IL13 and IL4Ra) | Airway obstruction in asthma patients, asthma severity. IgE elevation | Dupilumab (Regeneron): Asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyposis | Dupilumab blocks binding of IL-4 and IL-13 to IL-4α receptor which is used by both ligands. Previous attempts to neutralize IL-4 signaling only were not efficacious. |
NLRP3, NOD-, LRR- and pyrin domain-containing protein 3 | GoF (deleterious) | Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disorder characterized by systemic, cutaneous, musculoskeletal, and central nervous system inflammation | Canakinumab (Novartis); Anakinra (Amgen); Rilonacept (Regeneron): Rare and serious auto-inflammatory diseases in adults and pediatric patients | AB, endogenous receptor antagonist and decoy receptor neutralizing IL-1β, which is, together with IL-18, the product of the activated NLRP3 inflammasome. Canakinumab was shown to reduce cardiovascular events in a secondary prophylaxis study, to slightly increase sepsis occurrence, and unexpectedly to reduce several cancer diagnoses including lung cancer. |
F10, Factor X | LoF (deleterious) | Hemophilia with variable penetrance. Prolonged activated partial thromboplastin time and prothrombin time | Rivaroxaban (Janssen), Apixaban (BMS): Anticoagulation as secondary prevention of stroke and myocardial infarct. Andexanet Alfa (Portola): antidote for FXa inhibitors | Blocking binding pockets S1/4 required for binding and cleavage of FXa’s substrate prothrombine. Andexanet is a proteolytically inactive recombinant FXa acting as a decoy receptor for the small molecule inhibitors. |
CFTR; cystic fibrosis transmembrane conductance regulator | Missense, LoF (deleterious) | Cystic Fibrosis | Tezacaftor, Elexacaftor, Ivacaftor, Lumacaftor as fixed combinations (Vertex): Cystic fibrosis | Ivacaftor: gate opener (potentiator); Lumacaftor, Elexacaftor and Tezacaftor: chaperone and trafficking (corrector) |
HCRTR2; Hypocretin receptor 2 | LoF (deleterious) in dog breeds. LoF mutations have been detected in the ligand, HCRT. | Narcolepsy (sudden loss of wakefulness, daytime sleepiness, disturbed sleep patterns mainly due to autoimmune reactions against orexin secreting neurons | Lemborexant (Eisai), Suvorexant (Merck): Insomnia due to difficulties with sleep onset or maintenance | Dual antagonism of HCRTR1 and 2 receptors block the wakefulness signal mediated by the neuropeptides hypocretin 1/2 (also known as orexin A/B) temporarily for sleep induction and maintenance. |
SGLT2; Sodium glucose cotransporter 2 | Missense, LoF (protective) | Familial renal glucosuria | Dapagliflozin (AstraZeneca); empagliflozin (Boeringer/Lilly), canagliflozin (Mitsubishi/J&J): Type 2 diabetes; heart failure with reduced ejection fraction. | Inhibition of SGLT2 abrogates the glucose reabsorption from the primary filtrate in the proximal tubule. As a result, glucose is excreted with the urine. Remarkably, SGLT2 inhibitors are the only anti-diabetic drugs with clearly demonstrated cardiovascular benefits. |
JAK1; Janus kinase 1 | LoF (deleterious) | Deletion of Jak1 is perinatally lethal in mice. A single patient with homozygous missense mutations in the pseudokinase domain established its role for the recruitment of JAK2 which is essential for IFN-γ signaling. This patient suffered from combined immune deficiency with atypical mycobacterial osteomyelitis, sinopulmonary and skin infections, flat warts, and scabies. | Tofacitinib (JAK1/3, Pfizer)), Baricitinib (JAK1/2, Eli Lilly), Upadacitinib (JAK1, AbbVie): Rheumatoid arthritis. | JAK1 is involved in signal transduction of IL-2, IL-4, IL-7, IL-9, IL-15, IL-21, IL-27; IL-6 and IL-10 families as well as type I and II interferon. Two members of the JAK family work in common for specific signal transduction cascades: JAK1/3: IL-2, IL-4, IL-15, IL-21; JAK1/2: IL-6, IFN-γ; JAK1/TYK2: IL-10, IFN-α; JAK2/2: IL-3, GM-CSF; JAK2/TYK2: G-CSF |
HCN4; Hyperpolarization-activated cyclic nucleotide-gated channel 4 | LoF (deleterious) GoF (deleterious) | Expression in sinu-atrial, atrio-ventricular node and Purkinje fibers explains the various cardiac phenotypes affecting conductance and pace-making | Ivabradine (Amgen): Chronic heart failure. | Ivabradine is a non-selective blocker of HCN1/2/3/4 cation channels. The label of “a selective bradycardic agent” refers to the absence of effects on other hemodynamic parameters. Very limited crossing of the blood–brain barrier avoids effects on the CNS thus providing some selectivity for the heart. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spreafico, R.; Soriaga, L.B.; Grosse, J.; Virgin, H.W.; Telenti, A. Advances in Genomics for Drug Development. Genes 2020, 11, 942. https://doi.org/10.3390/genes11080942
Spreafico R, Soriaga LB, Grosse J, Virgin HW, Telenti A. Advances in Genomics for Drug Development. Genes. 2020; 11(8):942. https://doi.org/10.3390/genes11080942
Chicago/Turabian StyleSpreafico, Roberto, Leah B. Soriaga, Johannes Grosse, Herbert W. Virgin, and Amalio Telenti. 2020. "Advances in Genomics for Drug Development" Genes 11, no. 8: 942. https://doi.org/10.3390/genes11080942
APA StyleSpreafico, R., Soriaga, L. B., Grosse, J., Virgin, H. W., & Telenti, A. (2020). Advances in Genomics for Drug Development. Genes, 11(8), 942. https://doi.org/10.3390/genes11080942