COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19 Patients
2.2. Whole Exome Sequencing and Data Preprocessing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef] [PubMed]
- de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Mingxuan, X.; Qiong, C. Insight into 2019 novel coronavirus—an updated interim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 2020, 94, 119–124. [Google Scholar] [CrossRef]
- Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020, 5, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 11727–11734. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 182, 271–280. [Google Scholar] [CrossRef]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antivir. Res. 2020, 176, 104742. [Google Scholar] [CrossRef]
- Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015, 202, 120–134. [Google Scholar] [CrossRef]
- Vankadari, N.; Wilce, J.A. Emerging COVID-19 coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020, 9, 601–604. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Zhou, Y.S.; Lian, J.Q.; Zhang, Z.; Du, P.; Gong, L.; Zhang, Y.; Cui, H.Y.; Geng, J.J.; et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, H.; Pillat, M.M. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep. 2020, 16, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Online Mendelian Inheritance in Man, OMIM. Available online: https://OMIM.org/ (accessed on 10 July 2020).
- Novelli, A.; Biancolella, M.; Borgiani, P.; Cocciadiferro, D.; Colona, V.L.; D’Apice, M.R.; Rogliani, P.; Zaffina, S.; Leonardis, F.; Campana, A.; et al. Analysis of ACE2 Genetic Variants in 131 Italian SARS-CoV-2 Positive Patients. 2020. Available online: https://www.researchsquare.com/article/rs-39011/v3 (accessed on 26 August 2020). [CrossRef]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- GnomAD. Available online: https://gnomad.broadinstitute.org/ (accessed on 10 July 2020).
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- PolyPhen2. Available online: http://genetics.bwh.harvard.edu/pph2/ (accessed on 10 July 2020).
- Mutation Taster. Available online: http://www.mutationtaster.org/ (accessed on 10 July 2020).
- Sorting Intolerant from Tolerant, SIFT. Available online: https://sift.bii.a-star.edu.sg/ (accessed on 10 July 2020).
- UCSC Genome Browser. Available online: https://genome.ucsc.edu (accessed on 10 July 2020).
- Tang, T.; Bidon, M.; Jaimes, J.A.; Whittaker, G.R.; Daniel, S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antivir. Res. 2020, 178, 104792. [Google Scholar] [CrossRef]
- Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging 2020, 12, 10087–10098. [Google Scholar] [CrossRef]
- Somoza, J.R.; Ho, J.D.; Luong, C.; Ghate, M.; Sprengeler, P.A.; Mortara, K.; Shrader, W.D.; Sperandio, D.; Chan, H.; McGrath, M.E.; et al. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure 2003, 11, 1123–1131. [Google Scholar] [CrossRef]
- Böttcher-Friebertshäuser, E.; Freuer, C.; Sielaff, F.; Schmidt, S.; Eickmann, M.; Uhlendorff, J.; Steinmetzer, T.; Klenk, H.D.; Garten, W. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J. Virol. 2010, 84, 5605–5614. [Google Scholar] [CrossRef] [Green Version]
- Zarubin, A.; Stepanov, V.; Markov, A.; Kolesnikov, N.; Marusin, A.; Khitrinskaya, I.; Swarovskaya, M.; Litvinov, S.; Ekomasova, N.; Dzhaubermezov, M.; et al. Structural variability, expression profile and pharmacogenetics properties of TMPRSS2 gene as a potential target for COVID-19 therapy. BioRxiv 2020. [Google Scholar] [CrossRef]
- Braun, E.; Sauter, D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019, 8, 1073. [Google Scholar] [CrossRef] [Green Version]
- Zacchigna, L.; Vecchione, C.; Notte, A.; Cordenonsi, M.; Dupont, S.; Maretto, S.; Cifelli, G.; Ferrari, A.; Maffei, A.; Fabbro, C.; et al. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 2006, 124, 929–942. [Google Scholar] [CrossRef]
- Colombatti, A.; Spessotto, P.; Doliana, R.; Mongiat, M.; Bressan, G.M.; Esposito, G. The EMILIN/Multimerin family. Front. Immunol. 2012, 2, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Nr. | dbSNP | Position (Hg19) | Coding | Protein | Genotype (n) | Variant Type | Allelic Count | Allelic Count EUR (GnomAD) | Allelic Frequency | Allelic Frequency EUR (GnomAD) | p-Value | H.W. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BSG | 1 | rs201850688 | Chr19: 572671 | c.37C>G | p.Leu13Val | Het (1) | Missense_variant | 1 vs. 261 | 87 vs. 66377 | 1/262 = 0.004 | 17240/86164 = 0.001 | p = 0.2928 | Not possible to calculate |
2 | rs11551906 | Chr19: 572680 | c.46A>G | p.Thr16Ala | Het (2) | Missense_variant | 2 vs. 260 | 1384 vs. 62996 | 2/262 = 0.008 | 1384/64380 = 0.021 | p = 0.1919 | In equilibrium | |
3 | rs144824657 | Chr19: 577782 | c.76G>T | p.Val26Phe | Het (1) | Missense_variant | 1 vs. 261 | 414 vs. 4028078 | 1/262 = 0.004 | 414/40322 = 0.01 | p = 0.5306 | Not possible to calculate | |
4 | rs41276870 | Chr19: 579501 | c.417C>T | Het (1) | Splice_region_variant | 1 vs. 261 | 1366 vs. 125692 | 1/262 = 0.004 | 1366/127058 = 0.01 | p = 05376 | Not possible to calculate | ||
DPP4 | 1 | rs116302758 | Chr2: 162904013 | c.95-2A>G | Het (6) | Splice_acceptor_variant | 6 vs. 256 | 4933 vs. 122045 | 6/262 = 0.023 | 4933/126978 = 0.039 | p = 0.2511 | In equilibrium | |
2 | rs56179129 | Chr2: 162890142 | c.796G>A | p.Val266Ile | Het (2) | Missense_variant | 2 vs. 260 | 688 vs. 126666 | 2/262 = 0.008 | 688/127354 = 0.005 | p = 0.6557 | In equilibrium | |
3 | rs115450134 | Chr2: 162865748 | c.1887+3G>A | Het (1) | Splice_region_variant | 1 vs. 261 | 1069 vs. 127981 | 1/262 = 0.004 | 1069/129050 = 0.008 | p = 0.7299 | Not possible to calculate | ||
FURIN | 1 | rs16944971 | Chr15: 91419098 | c.128C>T | p.Ala43Val | Het (1) | Missense_variant | 1 vs. 261 | 273 vs. 106605 | 1/262 = 0.004 | 273/106878 = 0.0025 | p = 0.4892 | Not possible to calculate |
2 | rs780909157 | Chr15: 91419792 | c.372+5G>A | Het (1) | Splice_region_variant | 1 vs. 261 | 6 vs. 24650 | 1/262 = 0.004 | 6/24656 = 0.00024 | p = 0.0713 | Not possible to calculate | ||
3 | rs201551785 | Chr15: 91420189 | c.436G>A | p.Gly146Ser | Het (1) | Missense_variant | 1 vs. 261 | 51 vs. 129085 | 1/262 = 0.004 | 51/129136 = 0.00039 | p = 0.1 | Not possible to calculate | |
4 | rs769208985 | Chr15: 91422046 | c.893G>A | p.Arg298Gln | Het (1) | Missense_variant | 1 vs. 261 | 1 vs. 111907 | 1/262 = 0.004 | 1/111908 = 0.0000089 | p = 0.0047 | Not possible to calculate | |
5 | rs1236237792 | Chr15: 91424629 | c.1906A>G | p.Ile636Val | Het (1) | Missense_variant | 1 vs. 261 | Not reported | 1/262 = 0.004 | Not reported | - | Not possible to calculate | |
TMPRSS2 | 1 | rs200291871 | Chr21: 42879910 | c.22G>C | p.Gly8Arg | Het (1) | Missense_variant | 1 vs. 261 | 360 vs. 32572 | 1/262 = 0.004 | 360/32932 = 0.01 | p = 0.5387 | Not possible to calculate |
2 | rs75603675 | Chr21: 42879909 | c.23G>T | p.Gly8Val | Het (55) Hom (20) | Missense_variant | 95 vs. 157 | 14273 vs. 19331 | 95/262 =0.36 | 14273/33604 = 0.425 | p = 0.0446 | In equilibrium | |
3 | rs61735791 | Chr21: 42866439 | c.193G>A | p.Ala65Thr | Het (2) | Missense_variant | 2 vs. 260 | 365 vs. 128739 | 2/260 =0.008 | 365/129104 = 0.0028 | p = 0.1708 | In equilibrium | |
4 | rs114363287 | Chr21: 42866301 | c.331G>A | p.Gly111Arg | Het (1) | Missense_variant | 1 vs. 261 | 7 vs. 127779 | 1/262 = 0.004 | 7/127786 = 0.000055 | p = 0.0163 | Not possible to calculate | |
5 | rs12329760 | Chr21: 42852497 | c.589G>A | p.Val197Met | Het (33) Hom (6) | Missense_variant | 45 vs. 217 | 29831 vs. 98773 | 45/262 =0.17 | 29831/128604 = 0.23 | p = 0.0228 | In equilibrium |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latini, A.; Agolini, E.; Novelli, A.; Borgiani, P.; Giannini, R.; Gravina, P.; Smarrazzo, A.; Dauri, M.; Andreoni, M.; Rogliani, P.; et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes 2020, 11, 1010. https://doi.org/10.3390/genes11091010
Latini A, Agolini E, Novelli A, Borgiani P, Giannini R, Gravina P, Smarrazzo A, Dauri M, Andreoni M, Rogliani P, et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes. 2020; 11(9):1010. https://doi.org/10.3390/genes11091010
Chicago/Turabian StyleLatini, Andrea, Emanuele Agolini, Antonio Novelli, Paola Borgiani, Rosalinda Giannini, Paolo Gravina, Andrea Smarrazzo, Mario Dauri, Massimo Andreoni, Paola Rogliani, and et al. 2020. "COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells" Genes 11, no. 9: 1010. https://doi.org/10.3390/genes11091010
APA StyleLatini, A., Agolini, E., Novelli, A., Borgiani, P., Giannini, R., Gravina, P., Smarrazzo, A., Dauri, M., Andreoni, M., Rogliani, P., Bernardini, S., Helmer-Citterich, M., Biancolella, M., & Novelli, G. (2020). COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes, 11(9), 1010. https://doi.org/10.3390/genes11091010