Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Data Preprocessing
2.3. Identification of Differentially Expressed Genes (DEGs)
2.4. Classification between Tumors and Normal Samples by DEGs
2.5. Subtypes of LIHC
2.6. Mutational Enrichment Analysis
3. Results
3.1. Summary of Datasets
3.2. Identification of Differencially Expressed Genes (DEGs) in LIHC
3.3. Evaluating and Comparing the Performance of Our Feature Selection Method
3.4. Gene Ontology and KEGG Terms Enrichment Analysis for DEGs
3.5. DNA Methylation Involved in Regulating the Expression of DEGs
3.6. Blust Analysis Uncovers Major Subtypes of LIHC
3.7. Representative Genes of Subtypes in LIHC
3.8. Genetic Alteration in Subtypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Balogh, J.; Victor, D.; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, M.; Monsour, H. Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma 2016, 3, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Shahrjooihaghighi, A.; Frigui, H.; Zhang, X.; Wei, X.; Shi, B.; McClain, C.J. Ensemble feature selection for biomarker discovery in mass spectrometry-based metabolomics. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, New York, NY, USA, 7–12 April 2019. [Google Scholar]
- Yin, L.; He, N.; Chen, C.; Zhang, N.; Lin, Y.; Xia, Q. Identification of novel blood-based HCC-specific diagnostic biomarkers for human hepatocellular carcinoma. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1908–1916. [Google Scholar] [CrossRef]
- Li, L.; Lei, Q.; Zhang, S.; Kong, L.; Qin, B. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol. Rep. 2017, 38, 2607–2618. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Dhall, A.; Kumar, R.; Raghava, G.P.S. Identification of Platform-Independent Diagnostic Biomarker Panel for Hepatocellular Carcinoma Using Large-Scale Transcriptomics Data. Front. Genet. 2019, 10, 1306. [Google Scholar] [CrossRef]
- Blagus, R.; Lusa, L. Evaluation of SMOTE for High-Dimensional Class-Imbalanced Microarray Data. In Proceedings of the 2012 11th International Conference on Machine Learning and Applications, Boca Raton, FL, USA, 12–15 December 2012; pp. 89–94. [Google Scholar]
- Blagus, R.; Lusa, L. SMOTE for high-dimensional class-imbalanced data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [Green Version]
- Bian, J.; Peng, X.-G.; Wang, Y.; Zhang, H. An Efficient Cost-Sensitive Feature Selection Using Chaos Genetic Algorithm for Class Imbalance Problem. Math. Probl. Eng. 2016, 2016, 8752181. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.; Liu, M.; Goh, M.; Wen, J. 2-stage modified random forest model for credit risk assessment of P2P network lending to “Three Rurals” borrowers. Appl. Soft Comput. 2020, 95, 1–12. [Google Scholar] [CrossRef]
- Rao, C.; Lin, H.; Liu, M. Design of comprehensive evaluation index system for P2P credit risk of “three rural” borrowers. Soft Comput. 2019, 24, 11493–11509. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, V.H.F.; Ng, M.K.; Yan, H.; Bijlsma, M.F. Molecular subtyping of cancer: Current status and moving toward clinical applications. Brief. Bioinform. 2018, 20, 572–584. [Google Scholar] [CrossRef]
- Hoadley, K.; Yau, C.; Hinoue, T.; Wolf, D.; Lazar, A.; Drill, E.; Shen, R.; Taylor, A.; Cherniack, A.; Thorsson, V.; et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173, 291–304.e296. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, J.; Ghoshal, K.; Fernandez, S.; Li, L. Identification of a Subtype of Hepatocellular Carcinoma with Poor Prognosis Based on Expression of Genes within the Glucose Metabolic Pathway. Cancers 2019, 11, 2023. [Google Scholar] [CrossRef] [Green Version]
- Shimada, S.; Mogushi, K.; Akiyama, Y.; Furuyama, T.; Watanabe, S.; Ogura, T.; Ogawa, K.; Ono, H.; Mitsunori, Y.; Ban, D.; et al. Comprehensive molecular and immunological characterization of hepatocellular carcinoma. EBioMedicine 2019, 40, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Dat, T.H.; Guan, C. Feature Selection Based on Fisher Ratio and Mutual Information Analyses for Robust Brain Computer Interface. In Proceedings of the 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, Honolulu, HI, USA, 15–20 April 2007; pp. I-337–I-340. [Google Scholar]
- Li, Y.; Ruan, X. Research on tumor subtype identification and classification feature gene selection based on gene expression profile. Acta Electron. Sin. 2005, 33, 651–655. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Nia, V.P.; Davison, A.C. High-Dimensional Bayesian Clustering with Variable Selection: The R Package bclust. J. Stat. Softw. 2012, 47, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Mayakonda, A.; Koeffler, H.P. Maftools: Efficient analysis, visualization and summarization of MAF files from large-scale cohort based cancer studies. bioRxiv 2016, 052662. [Google Scholar] [CrossRef] [Green Version]
- Wu, C. Mining Characteristic Genes of Primary Liver Cancer and Construction of Gene Regulatory Network; Second Military Medical University: Shanghai, China, 2010. [Google Scholar]
- Liu, B.; Wan, C.; Wang, L. An efficient semi-unsupervised gene selection method via spectral biclustering. IEEE Trans. Nanobiosci. 2006, 5, 110–114. [Google Scholar] [CrossRef]
- Wang, L.; Chu, F.; Xie, W. Accurate Cancer Classification Using Expressions of Very Few Genes. IEEE/ACM Trans. Comput. Biol. Bioinform. 2007, 4, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, G.; Yi, B.; Pan, G.; Chen, X. A robust twelve-gene signature for prognosis prediction of hepatocellular carcinoma. Cancer Cell Int. 2020, 20, 207. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, M.; Zou, J.; Gong, X.; Zhang, L.; Wang, C.; Guo, Z. Disease Prediction Power and Stability of Differential Expressed Genes. In Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, China, 27–30 May 2008; pp. 265–268. [Google Scholar]
- Ma, S.; Huang, J. Regularized gene selection in cancer microarray meta-analysis. BMC Bioinform. 2009, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Goossens, N.; Nakagawa, S.; Sun, X.; Hoshida, Y. Cancer biomarker discovery and validation. Transl. Cancer Res. 2015, 4, 256–269. [Google Scholar] [CrossRef]
- Luo, L.; Chen, L.; Ke, K.; Zhao, B.; Wang, L.; Zhang, C.; Wang, F.; Liao, N.; Zheng, X.; Liu, X.; et al. High expression levels of CLEC4M indicate poor prognosis in patients with hepatocellular carcinoma. Oncol. Lett. 2020, 19, 1711–1720. [Google Scholar] [CrossRef]
- Li, C.; Zhou, D.; Jiang, X.; Liu, M.; Tang, H.; Mei, Z. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker. Gene 2019, 698, 9–18. [Google Scholar] [CrossRef]
- Qu, L.; Cai, X.; Xu, J.; Wei, X.; Qu, X.; Sun, L.; Gong, L.; Su, C.; Zhu, Y. Six long noncoding RNAs as potentially biomarkers involved in competitive endogenous RNA of hepatocellular carcinoma. Clin. Exp. Med. 2020, 20, 437–447. [Google Scholar] [CrossRef]
- Lian, Y.-F.; Huang, Y.-L.; Zhang, Y.-J.; Chen, D.-M.; Wang, J.-L.; Wei, H.; Bi, Y.-H.; Jiang, Z.-W.; Li, P.; Chen, M.-S.; et al. CACYBP Enhances Cytoplasmic Retention of P27(Kip1) to Promote Hepatocellular Carcinoma Progression in the Absence of RNF41 Mediated Degradation. Theranostics 2019, 9, 8392–8408. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, X.-Y.; Yu, H.; Xiang, S.-H.; Xu, L.; Wei, J.; Wu, Q.; Jia, R.; Wang, Y.-G.; Lu, X.-J. DDX11-AS1 as potential therapy targets for human hepatocellular carcinoma. Oncotarget 2017, 8, 44195–44202. [Google Scholar] [CrossRef]
- Chen, H.; Wong, C.C.; Liu, D.; Go, M.Y.Y.; Wu, B.; Peng, S.; Kuang, M.; Wong, N.; Yu, J. APLN promotes hepatocellular carcinoma through activating PI3K/Akt pathway and is a druggable target. Theranostics 2019, 9, 5246–5260. [Google Scholar] [CrossRef]
- Yuan, X.-D.; Wang, J.-W.; Fang, Y.; Qian, Y.; Gao, S.; Fan, Y.-C.; Wang, K. Methylation status of the T-cadherin gene promotor in peripheral blood mononuclear cells is associated with HBV-related hepatocellular carcinoma progression. Pathol. Res. Pract. 2020, 216, 152914. [Google Scholar] [CrossRef]
- Shao, P.; Sun, D.; Wang, L.; Fan, R.; Gao, Z. Deep sequencing and comprehensive expression analysis identifies several molecules potentially related to human poorly differentiated hepatocellular carcinoma. FEBS Open Bio. 2017, 7, 1696–1706. [Google Scholar] [CrossRef]
- Sarathi, A.; Palaniappan, A. Novel significant stage-specific differentially expressed genes in hepatocellular carcinoma. BMC Cancer 2019, 19, 663. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, B.-H.; Lin, W.-H.; Huang, Y.-H.; Ni, J.-Y.; Hu, J.; Cui, W.; Zhou, J.; Shen, L.; Xu, L.-F.; et al. Amplification of SMYD3 promotes tumorigenicity and intrahepatic metastasis of hepatocellular carcinoma via upregulation of CDK2 and MMP2. Oncogene 2019, 38, 4948–4961. [Google Scholar] [CrossRef]
- Nikitina, A.S.; Sharova, E.I.; Danilenko, S.A.; Butusova, T.B.; Vasiliev, A.O.; Govorov, A.V.; Prilepskaya, E.A.; Pushkar, D.Y.; Kostryukova, E.S. Novel RNA biomarkers of prostate cancer revealed by RNA-seq analysis of formalin-fixed samples obtained from Russian patients. Oncotarget 2017, 8, 32990–33001. [Google Scholar] [CrossRef]
- Schneider-Yin, X.; Serooskerken, A.-M.; Siegesmund, M.; Went, P.; Barman-Aksözen, J.; Bladergroen, R.; Komminoth, P.; Cloots, R.; Winnepenninckx, V.; zur Hausen, A.; et al. Biallelic inactivation of protoporphyrinogen oxidase and hydroxymethylbilane synthase is associated with liver cancer in acute porphyrias. J. Hepatol. 2014, 62, 734–738. [Google Scholar] [CrossRef]
- Kim, I.; Kim, H.G.; Kim, H.; Kim, H.H.; Park, S.K.; Uhm, C.S.; Lee, Z.H.; Koh, G.Y. Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem. J. 2000, 346, 603–610. [Google Scholar] [CrossRef]
- Marchio, S.; Soster, M.; Cardaci, S.; Muratore, A.; Bartolini, A.; Barone, V.; Ribero, D.; Monti, M.; Bovino, P.; Sun, J.; et al. A complex of alpha(6) integrin and E-cadherin drives liver metastasis of colorectal cancer cells through hepatic angiopoietin-like 6. EMBO Mol. Med. 2012, 4, 1156–1175. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, Y.; Yoneda, T.; Fujimori, K.; Maruyama, T.; Miyai, H.; Kobayashi, T.; Ekuni, D.; Tomofuji, T.; Morita, M. Detection of Serum miRNAs Affecting Liver Apoptosis in a Periodontitis Rat Model. In Vivo 2020, 34, 117–123. [Google Scholar] [CrossRef]
- Zigmond, E.; Preston, S.; Pappo, O.; Lalazar, G.; Margalit, M.; Shalev, Z.; Zolotarov, L.; Friedman, D.; Alper, R.; Ilan, Y. beta-Glucosylceramide: A novel method for enhancement of natural killer T lymphoycte plasticity in murine models of immune-mediated disorders. Gut 2007, 56, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Gao, Z.L.; Zhang, Z.P.; Jiang, H.B.; Yang, C.Q.; Yang, J.; Xia, X.B. Downregulation of CKS1B restrains the proliferation, migration, invasion and angiogenesis of retinoblastoma cells through the MEK/ERK signaling pathway. Int. J. Mol. Med. 2019, 44, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Wang, Z.-M.; Li, J.-N.; Zhang, S.; Xiao, Z.-F.; Tao, Y.-M. CLEC1B Expression and PD-L1 Expression Predict Clinical Outcome in Hepatocellular Carcinoma with Tumor Hemorrhage. Transl. Oncol. 2018, 11, 552–558. [Google Scholar] [CrossRef]
- Kim, K.M.; Park, S.-H.; Bae, J.S.; Noh, S.J.; Tao, G.-Z.; Kim, J.R.; Kwon, K.S.; Park, H.S.; Park, B.-H.; Lee, H.; et al. FAM83H is involved in the progression of hepatocellular carcinoma and is regulated by MYC. Sci. Rep. 2017, 7, 3274. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, B.M.; Yu, X.L.; Yi, H.C.; Niu, J.J.; Li, S.L. Suppressed Expression of CXCL14 in Hepatocellular Carcinoma Tissues and Its Reduction in the Advanced Stage of Chronic HBV Infection. Cancer Manag. Res. 2019, 11, 10435–10443. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lee, H.H.; Yoon, Y.E.; Na, J.C.; Kim, S.Y.; Cho, Y.I.; Hong, S.J.; Han, W.K. Clinical validation of serum endocan (ESM-1) as a potential biomarker in patients with renal cell carcinoma. Oncotarget 2017, 9, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Ni, B.; Li, Q.; Hu, L.P.; Jiang, S.H.; Li, R.K.; Tian, G.A.; Zhu, L.L.; Li, J.; Zhang, X.L.; et al. GPAA1 promotes gastric cancer progression via upregulation of GPI-anchored protein and enhancement of ERBB signalling pathway. J. Exp. Clin. Cancer Res. CR 2019, 38, 214. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Wang, H.F.; Liang, M.; Zou, R.C.; Tang, Z.R.; Wang, J.S. Upregulation of miR-3658 in bladder cancer and tumor progression. Genet. Mol. Res. 2016, 15, 1–10. [Google Scholar] [CrossRef]
- DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, A.; Kamphorst, J.J.; Markert, E.K.; Schug, Z.T.; Tardito, S.; Gottlieb, E. Cancer metabolism at a glance. J. Cell Sci. 2016, 129, 3367–3373. [Google Scholar] [CrossRef] [Green Version]
- Hoving, J.C.; Wilson, G.J.; Brown, G.D. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014, 16, 185–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, L.C.; Blau, H.; Danis, D.; Zhang, X.A.; Gourdine, J.-P.; Vasilevsky, N.; Krawitz, P.; Thompson, M.D.; Robinson, P.N. Significantly different clinical phenotypes associated with mutations in synthesis and transamidase+remodeling glycosylphosphatidylinositol (GPI)-anchor biosynthesis genes. Orphanet J. Rare Dis. 2020, 15, 6–24. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Fang, Z.; Yang, Y.; Rohlsen-Neal, D.; Cheng, F.; Wang, J. Analyzing the genes related to nicotine addiction or schizophrenia via a pathway and network based approach. Sci. Rep. 2018, 8, 2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Yang, J.; Wang, G.; Wang, C.; Zhang, H. Bioinformatic analysis of gene expression profiles of pituitary gonadotroph adenomas. Oncol. Lett. 2018, 15, 1655–1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Pardo, A.; Maglione, V. Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Front. Neurosci. 2018, 12, 249. [Google Scholar] [CrossRef]
- Razin, A.; Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 1991, 55, 451–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Su, G.; Wang, S.; Yang, L.; Liao, M.; Wei, Z.; Bai, C.; Li, G. Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 2016, 7, 74120–74131. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, B.; McNiven, M.A. Importance of endocytic pathways in liver function and disease. Compr. Physiol. 2014, 4, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Zarrinpar, A. Metabolic Pathway Inhibition in Liver Cancer. SLAS Technol. 2017, 22, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Amara, U.; Rittirsch, D.; Flierl, M.; Bruckner, U.; Klos, A.; Gebhard, F.; Lambris, J.D.; Huber-Lang, M. Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 2008, 632, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Blomhoff, R.; Blomhoff, H.K. Overview of retinoid metabolism and function. J. Neurobiol. 2006, 66, 606–630. [Google Scholar] [CrossRef]
No. | Methods | Validation Methods | No. of DEGs | Accuracy | Source |
---|---|---|---|---|---|
1 | Ensemble of DT based on unbalanced dataset | Naïve Bayes (NB) and support vector machine (SVM) | 34 | 0.9952 | Our method |
2 | Significance Analysis of Microarrays (SAM)-t test + Gene regulatory probability (GRP) | SVM (RBF, Radial Basis Function Kernel) | 10 | 0.9944 | [23] |
3 | Semi-supervised gene selection | Spectral Biclustering | 1 | 0.9870 | [24] |
4 | t-test + class separability | Fuzzy neural network | 2 | 0.9810 | [25] |
5 | Univariate cox regression and Lasso penalized cox regression analysis | Kaplan–Meier | 12 | 0.9311 | [26] |
6 | Resampling + SAM | K nearest neighbor | 10 | 0.93 | [27] |
7 | Meta Threshold Gradient Descent Regularization | Logistic regression | 34 | 0.8400 | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, X.; Fan, Q.; Ling, G.; Shi, Y.; Hu, F. Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis. Genes 2020, 11, 1051. https://doi.org/10.3390/genes11091051
Ouyang X, Fan Q, Ling G, Shi Y, Hu F. Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis. Genes. 2020; 11(9):1051. https://doi.org/10.3390/genes11091051
Chicago/Turabian StyleOuyang, Xiao, Qingju Fan, Guang Ling, Yu Shi, and Fuyan Hu. 2020. "Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis" Genes 11, no. 9: 1051. https://doi.org/10.3390/genes11091051
APA StyleOuyang, X., Fan, Q., Ling, G., Shi, Y., & Hu, F. (2020). Identification of Diagnostic Biomarkers and Subtypes of Liver Hepatocellular Carcinoma by Multi-Omics Data Analysis. Genes, 11(9), 1051. https://doi.org/10.3390/genes11091051