Evaluation of a Microhaplotype-Based Noninvasive Prenatal Test in Twin Gestations: Determination of Paternity, Zygosity, and Fetal Fraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Library Preparation, Sequencing, and Data Analysis
2.3. Calculation of Likelihood Ratios (LRs)
2.4. Assessment of Zygosity and Fetal Fraction
2.5. Conventional Genotyping of Short Tandem Repeat (STR) Markers
3. Results
3.1. Paternity Determination
3.2. Zygozity Evaluation and Fetal Fraction Quantification
3.3. Validation with Microhaplotype Sequencing of Fetal Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guseh, S.H. Noninvasive prenatal testing: From aneuploidy to single genes. Hum. Genet. 2020, 139, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.L.; Diamandis, E.P.; Hoffman, B.; Lo, Y.M.; Canick, J.; van den Boom, D. A new era in prenatal diagnosis: The use of cell-free fetal DNA in maternal circulation for detection of chromosomal aneuploidies. Clin. Chem. 2013, 59, 1151–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, L.; Yu, H.; Miao, X.; Zhang, J.; Li, S. Development and comprehensive evaluation of a noninvasive prenatal paternity testing method through a scaled trial. Forensic Sci. Int. Genet. 2019, 43, 102158. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xie, Y.; Li, X.; Ge, H.; Deng, Y.; Mu, H.; Feng, X.; Yin, L.; Du, Z.; Chen, F.; et al. Noninvasive Prenatal Paternity Testing (NIPAT) through Maternal Plasma DNA Sequencing: A Pilot Study. PLoS ONE 2016, 11, e0159385. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Xie, Y.; Li, H.; Liang, H.; Lin, S.; Huang, E.; Gao, J.; Chen, F.; Shi, Y.; Ou, X. Noninvasive prenatal paternity testing using targeted massively parallel sequencing. Transfusion 2018, 58, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.C.W.; Chan, Y.M.; Tsang, S.Y.; Yau, C.I.; Yeung, S.Y.; Au, K.K.; Chow, C.K. Noninvasive prenatal paternity testing by means of SNP-based targeted sequencing. Prenat. Diagn. 2020, 40, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Spencer, K. Screening for trisomy 21 in twins using first trimester ultrasound and maternal serum biochemistry in a one-stop clinic: A review of three years experience. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 276–280. [Google Scholar] [CrossRef]
- Kan, A.S.; Lee, C.P.; Leung, K.Y.; Chan, B.C.; Tang, M.H.; Chan, V.H. Outcome of twin pregnancies after amniocentesis. J. Obs. Gynaecol. Res. 2012, 38, 376–382. [Google Scholar] [CrossRef]
- Fellman, J. Aspects of the History of Twin Research: Statistical Congresses in the 19th Century and Hellin’s Law. Twin Res. Hum. Genet. 2018, 21, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Ananth, C.V.; Chauhan, S.P. Epidemiology of twinning in developed countries. Semin. Perinatol. 2012, 36, 156–161. [Google Scholar] [CrossRef]
- Doyle, P. The outcome of multiple pregnancy. Hum. Reprod. 1996, 11 (Suppl. 4), 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wimalasundera, R.; Fisk, N.M. In-vitro fertilisation and risk of multiple pregnancy. Lancet 2002, 360. [Google Scholar] [CrossRef]
- Qu, J.Z.; Leung, T.Y.; Jiang, P.; Liao, G.J.; Cheng, Y.K.; Sun, H.; Chiu, R.W.; Chan, K.C.; Lo, Y.M. Noninvasive prenatal determination of twin zygosity by maternal plasma DNA analysis. Clin. Chem 2013, 59, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Qu, N.; Lin, S.; Jiang, H.; Zhang, Y.; Zhang, X.; Liang, H.; Chen, F.; Ou, X. Noninvasive prenatal paternity testing by maternal plasma DNA sequencing in twin pregnancies. Electrophoresis 2020, 41, 1095–1102. [Google Scholar] [CrossRef]
- Zheng, J.; Xu, C.; Guo, J.; Wei, Y.; Ge, H.; Li, X.; Zhang, C.; Jiang, H.; Pan, L.; Tang, W.; et al. Effective noninvasive zygosity determination by maternal plasma target region sequencing. PLoS ONE 2013, 8, e65050. [Google Scholar] [CrossRef]
- Wenk, R.E.; Houtz, T.; Brooks, M.; Chiafari, F.A. How frequent is heteropaternal superfecundation? Acta Genet. Med. Gemellol. (Roma) 1992, 41, 43–47. [Google Scholar] [CrossRef]
- Kidd, K.K.; Pakstis, A.J.; Speed, W.C.; Lagace, R.; Chang, J.; Wootton, S.; Haigh, E.; Kidd, J.R. Current sequencing technology makes microhaplotypes a powerful new type of genetic marker for forensics. Forensic Sci. Int. Genet. 2014, 12, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.; Oldoni, F.; Long, K.; Cisana, S.; Madella, K.; Wootton, S.; Chang, J.; Hasegawa, R.; Lagace, R.; Kidd, K.K.; et al. Mixture deconvolution by massively parallel sequencing of microhaplotypes. Int. J. Leg. Med. 2019, 133, 719–729. [Google Scholar] [CrossRef]
- Chen, P.; Deng, C.; Li, Z.; Pu, Y.; Yang, J.; Yu, Y.; Li, K.; Li, D.; Liang, W.; Zhang, L.; et al. A microhaplotypes panel for massively parallel sequencing analysis of DNA mixtures. Forensic Sci. Int. Genet. 2019, 40, 140–149. [Google Scholar] [CrossRef]
- Oldoni, F.; Bader, D.; Fantinato, C.; Wootton, S.C.; Lagace, R.; Kidd, K.K.; Podini, D. A sequence-based 74plex microhaplotype assay for analysis of forensic DNA mixtures. Forensic Sci. Int. Genet. 2020, 49, 102367. [Google Scholar] [CrossRef]
- Oldoni, F.; Kidd, K.K.; Podini, D. Microhaplotypes in forensic genetics. Forensic Sci. Int. Genet. 2019, 38, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Qu, N. Noninvasive prenatal paternity testing by target sequencing microhaps. Forensic Sci. Int. Genet. 2020, 48, 102338. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Lin, S.; Gao, Y.; Liang, H.; Zhao, H.; Ou, X. A microhap panel for kinship analysis through massively parallel sequencing technology. Electrophoresis 2020, 41, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liang, H.; Gao, Y.; Lin, S.; He, Z.; Gao, J.; Sun, H.; Li, Q.; Ma, X.; Ou, X. Noninvasive fetal genotyping of paternally inherited alleles using targeted massively parallel sequencing in parentage testing cases. Transfusion 2017, 57, 1505–1514. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, A.; Vilella, A.J.; Cuppen, E.; Nijman, I.J.; Prins, P. Sambamba: Fast processing of NGS alignment formats. Bioinformatics 2015, 31, 2032–2034. [Google Scholar] [CrossRef]
- Dorum, G.; Kaur, N.; Gysi, M. Pedigree-based relationship inference from complex DNA mixtures. Int. J. Leg. Med. 2017, 131, 629–641. [Google Scholar] [CrossRef]
- Kaur, N.; Bouzga, M.M.; Dorum, G.; Egeland, T. Relationship inference based on DNA mixtures. Int. J. Leg. Med. 2016, 130, 323–329. [Google Scholar] [CrossRef]
- 1000 Genomes Project. Available online: http://phase3browser.1000genomes.org/ (accessed on 12 July 2020).
- Hwa, H.L.; Wu, M.Y.; Lee, J.C.; Yin, H.I.; Hsu, P.M.; Li, S.F.; Hwu, W.L.; Su, C.W. Analysis of nondegraded and degraded DNA mixtures of close relatives using massively parallel sequencing. Leg. Med. (Tokyo) 2020, 42, 101631. [Google Scholar] [CrossRef]
- Chen, M.; Jiang, F.; Guo, Y.; Yan, H.; Wang, J.; Zhang, L.; Zeng, X.; Li, S.; Li, Y.; Li, N.; et al. Validation of fetal DNA fraction estimation and its application in noninvasive prenatal testing for aneuploidy detection in multiple pregnancies. Prenat. Diagn. 2019, 39, 1273–1282. [Google Scholar] [CrossRef]
- Salipante, S.J.; Kawashima, T.; Rosenthal, C.; Hoogestraat, D.R.; Cummings, L.A.; Sengupta, D.J.; Harkins, T.T.; Cookson, B.T.; Hoffman, N.G. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 2014, 80, 7583–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, R.; Khalil, A. Ultrasound screening for complications in twin pregnancy. In Seminars in Fetal and Neonatal Medicine; WB Saunders: Philadelphia, PA, USA, 2018; Volume 23, pp. 133–141. [Google Scholar] [CrossRef]
- Norwitz, E.R.; McNeill, G.; Kalyan, A.; Rivers, E.; Ahmed, E.; Meng, L.; Vu, P.; Egbert, M.; Shapira, M.; Kobara, K.; et al. Validation of a Single-Nucleotide Polymorphism-Based Non-Invasive Prenatal Test in Twin Gestations: Determination of Zygosity, Individual Fetal Sex, and Fetal Aneuploidy. J. Clin. Med. 2019, 8, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dziennik, A.; Preis, K.; Swiatkowska-Freund, M.; Rebala, K. Genotyping of STR and DIP-STR Markers in Plasma Cell-Free DNA for Simple and Rapid Noninvasive Prenatal Diagnosis of Zygosity of Twin Pregnancies. Twin Res. Hum. Genet. 2019, 22, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Kidd, K.K.; Speed, W.C. Criteria for selecting microhaplotypes: Mixture detection and deconvolution. Investig. Genet. 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voskoboinik, L.; Motro, U.; Darvasi, A. Facilitating complex DNA mixture interpretation by sequencing highly polymorphic haplotypes. Forensic Sci. Int. Genet. 2018, 35, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.Y.; Qu, J.Z.; Liao, G.J.; Jiang, P.; Cheng, Y.K.; Chan, K.C.; Chiu, R.W.; Lo, Y.M. Noninvasive twin zygosity assessment and aneuploidy detection by maternal plasma DNA sequencing. Prenat. Diagn. 2013, 33, 675–681. [Google Scholar] [CrossRef]
Case ID | cfDNA | Validated by Fetus Tissue | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n. of Locus * | n. of Locus ** | n. of Assumed PA | Est. Lower FF % | Est. Higher FF % | Est. Combined FF % | n. of Locus † | n. of Locus ‡ | n. of Real PA †† | n. of PA Dropout | n. of Drop-In | PA Detection Rate | Lower FF % | Higher FF % | Combined FF % | Ratio § | |
2 | 37 | 8 | 45 | 5.21 | 8.53 | 13.74 | 37 | 8 | 45 | 0 | 0 | 100% | 6.13 | 8.06 | 14.18 | 1.316 |
3 | 33 | 3 | 36 | 3.84 | 5.81 | 9.65 | 33 | 3 | 36 | 0 | 0 | 100% | 3.43 | 5.82 | 9.25 | 1.695 |
5 | 36 | 6 | 42 | 5.94 | 7.88 | 13.82 | 36 | 5 | 41 | 0 | 1 | 100% | 6.08 | 7.95 | 14.03 | 1.308 |
6 | 37 | 8 | 45 | 6.13 | 10.35 | 16.48 | 37 | 8 | 45 | 0 | 0 | 100% | 6.77 | 10.62 | 17.40 | 1.569 |
7 | 37 | 6 | 43 | 7.28 | 20.29 | 27.58 | 37 | 6 | 43 | 0 | 0 | 100% | 7.17 | 18.33 | 25.50 | 2.558 |
8 | 31 | 3 | 34 | 4.51 | 11.02 | 15.53 | 32 | 4 | 36 | 2 | 0 | 94.44% | 3.66 | 8.66 | 12.32 | 2.369 |
9 | 40 | 6 | 46 | 3.53 | 6.88 | 10.41 | 41 | 6 | 47 | 1 | 0 | 97.87% | 3.90 | 7.52 | 11.42 | 1.928 |
10 | 36 | 10 | 46 | 8.01 | 12.02 | 20.03 | 36 | 10 | 46 | 0 | 0 | 100% | 8.33 | 11.18 | 19.51 | 1.341 |
12 | 37 | 3 | 40 | 7.35 | 12.14 | 19.49 | 36 | 3 | 39 | 0 | 1 | 100% | 6.30 | 10.37 | 16.67 | 1.646 |
14 | 36 | 7 | 43 | 6.46 | 9.47 | 15.93 | 36 | 7 | 43 | 0 | 0 | 100% | 6.75 | 8.79 | 15.54 | 1.301 |
15 | 37 | 6 | 43 | 3.03 | 5.40 | 8.43 | 37 | 5 | 42 | 0 | 1 | 100% | 3.72 | 4.71 | 8.44 | 1.265 |
16 | 34 | 6 | 40 | 4.00 | 7.16 | 11.16 | 34 | 6 | 40 | 0 | 0 | 100% | 4.04 | 6.81 | 10.85 | 1.685 |
17 | 39 | 7 | 46 | 2.99 | 6.40 | 9.39 | 40 | 7 | 47 | 1 | 0 | 97.87% | 3.33 | 5.70 | 9.03 | 1.715 |
1 | 33 | 0 | 33 | NA | NA | 11.90 | 33 | 0 | 33 | 0 | 0 | 100% | NA | NA | 11.90 | NA |
4 | 31 | 0 | 31 | NA | NA | 15.96 | 31 | 0 | 31 | 0 | 0 | 100% | NA | NA | 15.96 | NA |
11 | 33 | 0 | 33 | NA | NA | 9.05 | 33 | 0 | 33 | 0 | 0 | 100% | NA | NA | 9.05 | NA |
13 | 38 | 0 | 38 | NA | NA | 18.08 | 38 | 0 | 38 | 0 | 0 | 100% | NA | NA | 18.08 | NA |
18 | 31 | 0 | 31 | NA | NA | 9.34 | 31 | 0 | 31 | 0 | 0 | 100% | NA | NA | 9.34 | NA |
19 | 34 | 0 | 34 | NA | NA | 11.90 | 34 | 0 | 34 | 0 | 0 | 100% | NA | NA | 11.90 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhao, H.; Lin, S.; Huang, L.; He, Z.; Wang, H.; Ou, X. Evaluation of a Microhaplotype-Based Noninvasive Prenatal Test in Twin Gestations: Determination of Paternity, Zygosity, and Fetal Fraction. Genes 2021, 12, 26. https://doi.org/10.3390/genes12010026
Bai Z, Zhao H, Lin S, Huang L, He Z, Wang H, Ou X. Evaluation of a Microhaplotype-Based Noninvasive Prenatal Test in Twin Gestations: Determination of Paternity, Zygosity, and Fetal Fraction. Genes. 2021; 12(1):26. https://doi.org/10.3390/genes12010026
Chicago/Turabian StyleBai, Zhaochen, Hu Zhao, Shaobin Lin, Linhuan Huang, Zhiming He, Huan Wang, and Xueling Ou. 2021. "Evaluation of a Microhaplotype-Based Noninvasive Prenatal Test in Twin Gestations: Determination of Paternity, Zygosity, and Fetal Fraction" Genes 12, no. 1: 26. https://doi.org/10.3390/genes12010026
APA StyleBai, Z., Zhao, H., Lin, S., Huang, L., He, Z., Wang, H., & Ou, X. (2021). Evaluation of a Microhaplotype-Based Noninvasive Prenatal Test in Twin Gestations: Determination of Paternity, Zygosity, and Fetal Fraction. Genes, 12(1), 26. https://doi.org/10.3390/genes12010026