Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del-CFTR Homozygous Patient Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohorts
2.2. SCNN1B Genotyping
2.3. Evaluation of Genetic Data
2.4. Retrieval and Analysis of SCNN1B Expression Data
2.5. WWW Resources
3. Results
3.1. Mapping of a Regulatory Element at SCNN1B to the Genomic Segment rs168748-rs2303153-rs4968000
3.2. Assessment of the Risk and the Benign Allele at rs2303153
3.3. Functional Annotation of the Genomic Element Surrounding rs2303153
3.4. Expression Levels of SCNN1B Depend on rs2303153
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef]
- Mall, M.A. ENaC inhibition in cystic fibrosis: Potential role in the new era of CFTR modulator therapies. Eur. Respir. J. 2020, 56, 2000946. [Google Scholar] [CrossRef]
- Reihill, J.; Douglas, L.; Martin, S. Modulation of Ion Transport to Restore Airway Hydration in Cystic Fibrosis. Genes 2021, 12, 453. [Google Scholar] [CrossRef] [PubMed]
- Canessa, C.M.; Schild, L.; Buell, G.; Thorens, B.; Gautschi, I.; Horisberger, J.-D.; Rossier, B.C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994, 367, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Shimkets, R.A.; Warnock, D.G.; Bositis, C.M.; Nelson-Williams, C.; Hansson, J.H.; Schambelan, M.; Gill, J.R., Jr.; Ulick, S.; Milora, R.V.; Findling, J.W.; et al. Liddle’s Syndrome: Heritable Human Hypertension Caused by Mutations in the Beta Subunit of the Epithelial Sodium Channel. Cell 1994, 79, 407–414. [Google Scholar] [CrossRef]
- Strautnieks, S.S.; Thompson, R.; Hanukoglu, A.; Dillon, M.J.; Hanukoglu, I.; Kuhnle, U.; Seckl, J.; Gardiner, R.M.; Chung, E. Localisation of Pseudohypoaldosteronism Genes to Chromosome 16p12.2–13.11 and 12p13.1-Pter by Homozygosity Mapping. Hum. Mol. Genet. 1996, 5, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Fajac, I.; Viel, M.; Sublemontier, S.; Hubert, D.; Bienvenu, T. Could a defective epithelial sodium channel lead to bronchiectasis. Respir. Res. 2008, 9, 46. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, M.B.; Fong, P.; Groman, J.D.; Conrad, C.; Flume, P.; Diaz, R.; Harris, C.; Knowles, M.; Cutting, G.R. Mutations in the beta-subunit of the epithelial Na+ channel in patients with a cystic fibrosis-like syndrome. Hum. Mol. Genet. 2005, 14, 3493–3498. [Google Scholar] [CrossRef]
- Stanke, F.; Becker, T.; Cuppens, H.; Kumar, V.; Cassiman, J.-J.; Jansen, S.; Radojkovic, D.; Siebert, B.; Yarden, J.; Ussery, D.W.; et al. The TNFα receptor TNFRSF1A and genes encoding the amiloride-sensitive sodium channel ENaC as modulators in cystic fibrosis. Qual. Life Res. 2006, 119, 331–343. [Google Scholar] [CrossRef]
- Becker, T.; Pich, A.; Tamm, S.; Hedtfeld, S.; Ibrahim, M.; Altmüller, J.; Dalibor, N.; Toliat, M.R.; Janciauskiene, S.; Tümmler, B.; et al. Genetic information from discordant sibling pairs points to ESRP2 as a candidate trans-acting regulator of the CF modifier gene SCNN1B. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef]
- A Mall, M.; Grubb, B.R.; Harkema, J.R.; O’Neal, W.K.; Boucher, R.C. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nat. Med. 2004, 10, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G.R. Modifier genes in Mendelian disorders: The example of cystic fibrosis. Ann. N. Y. Acad. Sci. 2010, 1214, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Sepahzad, A.; Morris-Rosendahl, D.; Davies, J. Cystic Fibrosis Lung Disease Modifiers and Their Relevance in the New Era of Precision Medicine. Genes 2021, 12, 562. [Google Scholar] [CrossRef]
- Wright, F.A.; Strug, L.J.; Doshi, V.K.; Commander, C.; Blackman, S.; Sun, L.; Berthiaume, Y.; Cutler, D.M.; Cojocaru, A.; Collaco, J.M.; et al. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat. Genet. 2011, 43, 539–546. [Google Scholar] [CrossRef]
- Gong, J.; Wang, F.; Xiao, B.; Panjwani, N.; Lin, F.; Keenan, K.; Avolio, J.; Esmaeili, M.; Zhang, L.; He, G.; et al. Genetic association and transcriptome integration identify contributing genes and tissues at cystic fibrosis modifier loci. PLoS Genet. 2019, 15, e1008007. [Google Scholar] [CrossRef]
- Dang, H.; Polineni, D.; Pace, R.G.; Stonebraker, J.R.; Corvol, H.; Cutting, G.R.; Drumm, M.L.; Strug, L.J.; O’Neal, W.K.; Knowles, M.R. Mining GWAS and eQTL data for CF lung disease modifiers by gene expression imputation. PLOS ONE 2020, 15, e0239189. [Google Scholar] [CrossRef] [PubMed]
- Eichler, E.E.; Flint, J.; Gibson, G.; Kong, A.; Leal, S.M.; Moore, J.H.; Nadeau, J.H. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 2010, 11, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uricchio, L.H. Evolutionary perspectives on polygenic selection, missing heritability, and GWAS. Qual. Life Res. 2019, 139, 5–21. [Google Scholar] [CrossRef]
- Chen, Z.; Boehnke, M.; Wen, X.; Mukherjee, B. Revisiting the genome-wide significance threshold for common variant GWAS. G3: Genes|Genomes|Genetics 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Amrhein, V.; Greenland, S.; McShane, B. Scientists rise up against statistical significance. Nature 2019, 567, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Scotet, V.; L’Hostis, C.; Férec, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes 2020, 11, 589. [Google Scholar] [CrossRef]
- Drumm, M.L.; Konstan, M.W.; Schluchter, M.D.; Handler, A.; Pace, R.; Zou, F.; Zariwala, M.; Fargo, D.; Xu, A.; Dunn, J.M.; et al. Genetic Modifiers of Lung Disease in Cystic Fibrosis. N. Engl. J. Med. 2005, 353, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Jansen, S.; Tamm, S.; Wienker, T.F.; Tümmler, B.; Stanke, F. Transmission ratio distortion and maternal effects confound the analysis of modulators of cystic fibrosis disease severity on 19q13. Eur. J. Hum. Genet. 2007, 15, 774–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collaco, J.M.; Vanscoy, L.; Bremer, L.; McDougal, K.; Blackman, S.; Bowers, A.; Naughton, B.K.; Jennings, J.; Ellen, J.; Cutting, G.R. Interactions Between Secondhand Smoke and Genes That Affect Cystic Fibrosis Lung Disease. JAMA 2008, 299, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanke, F.; Becker, T.; Kumar, V.; Hedtfeld, S.; Becker, C.; Cuppens, H.; Tamm, S.; Yarden, J.; Laabs, U.; Siebert, B.; et al. Genes that determine immunology and inflammation modify the basic defect of impaired ion conductance in cystic fibrosis epithelia. J. Med. Genet. 2010, 48, 24–31. [Google Scholar] [CrossRef]
- Stanke, F.; Hector, A.; Hedtfeld, S.; Hartl, D.; Griese, M.; Tümmler, B.; Mall, M.A. An informative intragenic microsatellite marker suggests the IL-1 receptor as a genetic modifier in cystic fibrosis. Eur. Respir. J. 2017, 50, 1700426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekus, F.; Ballmann, M.; Bronsveld, I.; Bijman, J.; Veeze, H.; Tummler, B. Categories of DeltaF508 Homozygous Cystic Fibrosis Twin and Sibling Pairs with Distinct Phenotypic Characteristics. Twin Res. 2000, 3, 277–293. [Google Scholar] [CrossRef]
- Risch, N.; Zhang, H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science 1995, 268, 1584–1589. [Google Scholar] [CrossRef]
- Risch, N.J.; Zhang, H. Mapping quantitative trait loci with extreme discordant sib pairs: Sampling considerations. Am. J. Hum. Genet. 1996, 58, 836–843. [Google Scholar]
- Saxena, A.; Hanukoglua, I.; Strautnieks, S.S.; Thompson, R.; Gardinerb, R.M.; Hanukoglu, A. Gene Structure of the Human Amiloride-Sensitive Epithelial Sodium Channel Beta Subunit. Biochem. Biophys. Res. Commun. 1998, 252, 208–213. [Google Scholar] [CrossRef] [Green Version]
- Herold, C.; Becker, T. Genetic association analysis with FAMHAP: A major program update. Bioinformatics 2008, 25, 134–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, M.; Becker, T. Family-based association analysis with tightly linked markers. Hum. Hered. 2003, 56, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Knapp, M. A Powerful Strategy to Account for Multiple Testing in the Context of Haplotype Analysis. Am. J. Hum. Genet. 2004, 75, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Sham, P.C.; Curtis, D. Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann. Hum. Genet. 1995, 59, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Stanke, F.; Van Barneveld, A.; Hedtfeld, S.; Wölfl, S.; Becker, T.; Tümmler, B. The CF-modifying gene EHF promotes p.Phe508del-CFTR residual function by altering protein glycosylation and trafficking in epithelial cells. Eur. J. Hum. Genet. 2013, 22, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2011, 40, D930–D934. [Google Scholar] [CrossRef] [Green Version]
- Lesurf, R.; Cotto, K.C.; Wang, G.; Griffith, M.; Kasaian, K.; Jones, S.J.M.; Montgomery, S.B.; Griffith, O.L. The Open Regulatory Annotation Consortium ORegAnno 3.0: A community-driven resource for curated regulatory annotation. Nucleic Acids Res. 2015, 44, D126–D132. [Google Scholar] [CrossRef] [Green Version]
- Stanke, F.; Becker, T.; Hedtfeld, S.; Tamm, S.; Wienker, T.F.; Tümmler, B. Hierarchical fine mapping of the cystic fibrosis modifier locus on 19q13 identifies an association with two elements near the genes CEACAM3 and CEACAM6. Qual. Life Res. 2010, 127, 383–394. [Google Scholar] [CrossRef]
- Mirkin, S.; Frank-Kamenetskii, M.D. H-DNA and Related Structures. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 541–576. [Google Scholar] [CrossRef]
- Auerbach, S.D.; Loftus, R.W.; A Itani, O.; Thomas, C.P. Human amiloride-sensitive epithelial Na+ channel gamma subunit promoter: Functional analysis and identification of a polypurine-polypyrimidine tract with the potential for triplex DNA formation. Biochem. J. 2000, 347, 105–114. [Google Scholar] [CrossRef]
- Belotserkovskii, B.P.; Neil, A.J.; Saleh, S.S.; Shin, J.H.S.; Mirkin, S.M.; Hanawalt, P.C. Transcription blockage by homopurine DNA sequences: Role of sequence composition and single-strand breaks. Nucleic Acids Res. 2012, 41, 1817–1828. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Ogloblina, A.M.; Belotserkovskii, B.P.; Dolinnaya, N.; Yakubovskaya, M.G.; Mirkin, S.; Hanawalt, P.C. Transcription blockage by stable H-DNA analogs in vitro. Nucleic Acids Res. 2015, 43, 6994–7004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradervand, S.; Barker, P.M.; Wang, Q.; Ernst, S.A.; Beermann, F.; Grubb, B.R.; Burnier, M.; Schmidt, A.; Bindels, R.J.M.; Gatzy, J.T.; et al. Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the -subunit of the amiloride-sensitive epithelial sodium channel. Proc. Natl. Acad. Sci. USA 1999, 96, 1732–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagenais, A.; Gosselin, D.; Guilbault, C.; Radzioch, D.; Berthiaume, Y. Modulation of epithelial sodium channel (ENaC) expression in mouse lung infected with Pseudomonas aeruginosa. Respir. Res. 2005, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Duerr, J.; Johannesson, B.; Schubert, S.C.; Treis, D.; Harm, M.; Graeber, S.; Dalpke, A.; Schultz, C.; Mall, M.A. The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease. J. Cyst. Fibros. 2011, 10, S172–S182. [Google Scholar] [CrossRef] [Green Version]
- McKone, E.F.; Ariti, C.; Jackson, A.; Zolin, A.; Carr, S.B.; Orenti, A.; van Rens, J.; Lemonnier, L.; Macek, M.; Keogh, R.H.; et al. Survival estimates in European cystic fibrosis patients and the impact of socioeconomic factors: A retrospective registry Cohort study. Eur. Respir. J. 2021, 2002288. [Google Scholar] [CrossRef]
- Elborn, J.; Shale, D.J.; Britton, J.R. Cystic fibrosis: Current survival and population estimates to the year 2000. Thorax 1991, 46, 881–885. [Google Scholar] [CrossRef] [Green Version]
- Arkwright, P.; Laurie, S.; Super, M.; Pravica, V.; Schwarz, M.J.; Webb, A.K.; Hutchinson, I.V. TGF-beta 1 genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax 2000, 55, 459–462. [Google Scholar] [CrossRef] [Green Version]
Haplotype rs168748-rs2303153-rs4968000 | Associated with Disease Manifestation: | rs168748 * | rs250570 | rs62029389 | rs62029390 | rs62029391 | rs61379932 | rs2303153 * | rs4968000 * | rs3743966 |
---|---|---|---|---|---|---|---|---|---|---|
CCA | severe | C | C | G | G | G | G | C | A | T |
TCA | severe | T | G | G | G | G | G | C | A | T |
TGC | mild | T | G | A | T | A | A | G | C | A |
TGA | mild | T | C | A | T | A | A | G | A | A |
Different when comparing CCA and TCA with TGC and TGA? | no | no | yes | yes | yes | yes | yes | no | yes |
Allele at rs2303153 | IntERpair Comparison on Sibling Pairs | IntRApair Comparison on Sibling Pairs | Unrelated Patients Stratified by Birth Cohort | |||
---|---|---|---|---|---|---|
Mildly Affected Sibling Pairs (CON+) 11 Pairs | Severely Affected Sibling Pairs (CON-) 10 Pairs | Mildly Affected Sib (DIS+) of Discordant Pairs 14 Patients | Severely Affected Sib (DIS-) of Discordant pairs 14 Patients | Born 1959-1977 * 34 Patients | Born 1978-1994 * 33 Patients | |
rs2303153-G | 0.577 | 0.283 | 0.579 | 0.395 | 0.54 | 0.39 |
rs2303153-C | 0.423 | 0.717 | 0.421 | 0.605 | 0.46 | 0.61 |
Praw = 0.0177; Pcorr = 0.0528 | Praw = 0.04024; Pcorr = 0.05 | p = 0.084 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanke, F.; Becker, T.; Ismer, H.S.; Dunsche, I.; Hedtfeld, S.; Kontsendorn, J.; Dittrich, A.-M.; Tümmler, B. Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del-CFTR Homozygous Patient Populations. Genes 2021, 12, 1554. https://doi.org/10.3390/genes12101554
Stanke F, Becker T, Ismer HS, Dunsche I, Hedtfeld S, Kontsendorn J, Dittrich A-M, Tümmler B. Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del-CFTR Homozygous Patient Populations. Genes. 2021; 12(10):1554. https://doi.org/10.3390/genes12101554
Chicago/Turabian StyleStanke, Frauke, Tim Becker, Haide Susanne Ismer, Inga Dunsche, Silke Hedtfeld, Julia Kontsendorn, Anna-Maria Dittrich, and Burkhard Tümmler. 2021. "Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del-CFTR Homozygous Patient Populations" Genes 12, no. 10: 1554. https://doi.org/10.3390/genes12101554
APA StyleStanke, F., Becker, T., Ismer, H. S., Dunsche, I., Hedtfeld, S., Kontsendorn, J., Dittrich, A. -M., & Tümmler, B. (2021). Consistent Assignment of Risk and Benign Allele at rs2303153 in the CF Modifier Gene SCNN1B in Three Independent F508del-CFTR Homozygous Patient Populations. Genes, 12(10), 1554. https://doi.org/10.3390/genes12101554