Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping of ABCG2 SNPs
2.3. Statistical Analysis
3. Results
3.1. Characterization of Study Participants
3.2. Association between ABCG2 Gene Polymorphisms and Psoriasis
3.3. Interaction of ABCG2 Gene Polymorphisms with Clinical Characteristics among Patients with Psoriasis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capon, F. The genetic basis of psoriasis. Int. J. Mol. Sci. 2017, 18, 2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, S.; Callaghan, D.; Juzwik, C.; Xiong, H.; Huang, P.; Zhang, W. Abcg2 reduces ros-mediated toxicity and inflammation: A potential role in alzheimer’s disease. J. Neurochem. 2010, 114, 1590–1604. [Google Scholar] [CrossRef] [PubMed]
- International Psoriasis Genetics Consortium. The international psoriasis genetics study: Assessing linkage to 14 candidate susceptibility loci in a cohort of 942 affected sib pairs. Am. J. Hum. Genet. 2003, 73, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunter, N.V.; Yap, B.J.M.; Chua, C.L.L.; Yap, W.H. Combining understanding of immunological mechanisms and genetic variants toward development of personalized medicine for psoriasis patients. Front. Genet. 2019, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Prinz, J.C. Autoimmune aspects of psoriasis: Heritability and autoantigens. Autoimmun. Rev. 2017, 16, 970–979. [Google Scholar] [CrossRef]
- Kim, T.G.; Kim, D.S.; Kim, H.P.; Lee, M.G. The pathophysiological role of dendritic cell subsets in psoriasis. BMB Rep. 2014, 47, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, L.C.; Stuart, P.E.; Tian, C.; Gudjonsson, J.E.; Das, S.; Zawistowski, M.; Ellinghaus, E.; Barker, J.N.; Chandran, V.; Dand, N.; et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat. Commun. 2017, 8, 15382. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Jin, X.; Li, Y.; Jiang, H.; Tang, X.; Yang, X.; Cheng, H.; Qiu, Y.; Chen, G.; Mei, J.; et al. A large-scale screen for coding variants predisposing to psoriasis. Nat. Genet. 2014, 46, 45–50. [Google Scholar] [CrossRef]
- Tsoi, L.C.; Spain, S.L.; Ellinghaus, E.; Stuart, P.E.; Capon, F.; Knight, J.; Tejasvi, T.; Kang, H.M.; Allen, M.H.; Lambert, S.; et al. Enhanced meta-analysis and replication studies identify five new psoriasis susceptibility loci. Nat. Commun. 2015, 6, 7001. [Google Scholar] [CrossRef] [Green Version]
- Leslie, E.M.; Deeley, R.G.; Cole, S.P.C. Multidrug resistance proteins: Role of p-glycoprotein, mrp1, mrp2, and bcrp (abcg2) in tissue defense. Toxicol. Appl. Pharmacol. 2005, 204, 216–237. [Google Scholar] [CrossRef]
- Wagener, F.A.; Dankers, A.C.; van Summeren, F.; Scharstuhl, A.; van den Heuvel, J.J.; Koenderink, J.B.; Pennings, S.W.; Russel, F.G.; Masereeuw, R. Heme oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity. Curr. Pharm. Des. 2013, 19, 2698–2707. [Google Scholar] [CrossRef]
- Woodward, O.M.; Köttgen, A.; Köttgen, M. Abcg transporters and disease. FEBS J. 2011, 278, 3215–3225. [Google Scholar] [CrossRef] [Green Version]
- van de Ven, R.; Oerlemans, R.; van der Heijden, J.W.; Scheffer, G.L.; de Gruijl, T.D.; Jansen, G.; Scheper, R.J. Abc drug transporters and immunity: Novel therapeutic targets in autoimmunity and cancer. J. Leukoc. Biol. 2009, 86, 1075–1087. [Google Scholar] [CrossRef] [Green Version]
- Köck, K.; Grube, M.; Jedlitschky, G.; Oevermann, L.; Siegmund, W.; Ritter, C.A.; Kroemer, H.K. Expression of adenosine triphosphate-binding cassette (abc) drug transporters in peripheral blood cells: Relevance for physiology and pharmacotherapy. Clin. Pharmacokinet. 2007, 46, 449–470. [Google Scholar]
- Randolph, G.J.; Angeli, V.; Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005, 5, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.O.; Zhang, W.; Wong, K.W.; Kwak, M.; van Driel, I.R.; Yu, Q. Inhibition of breast cancer resistance protein (abcg2) in human myeloid dendritic cells induces potent tolerogenic functions during lps stimulation. PLoS ONE 2014, 9, e104753. [Google Scholar] [CrossRef] [PubMed]
- van de Ven, R.; Lindenberg, J.J.; Reurs, A.W.; Scheper, R.J.; Scheffer, G.L.; de Gruijl, T.D. Preferential langerhans cell differentiation from cd34(+) precursors upon introduction of abcg2 (bcrp). Immunol. Cell Biol. 2012, 90, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Márki-Zay, J.; Tauberné Jakab, K.; Szerémy, P.; Krajcsi, P. Mdr-abc transporters: Biomarkers in rheumatoid arthritis. Clin. Exp. Rheumatol. 2013, 31, 779–787. [Google Scholar]
- Atisha-Fregoso, Y.; Lima, G.; Pascual-Ramos, V.; Baños-Peláez, M.; Fragoso-Loyo, H.; Jakez-Ocampo, J.; Contreras-Yáñez, I.; Llorente, L. Rheumatoid arthritis disease activity is determinant for abcb1 and abcg2 drug-efflux transporters function. PLoS ONE 2016, 11, e0159556. [Google Scholar]
- van der Heijden, J.W.; Oerlemans, R.; Tak, P.P.; Assaraf, Y.G.; Kraan, M.C.; Scheffer, G.L.; van der Laken, C.J.; Lems, W.F.; Scheper, R.J.; Dijkmans, B.A.; et al. Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis Rheum. 2009, 60, 669–677. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, C.; Liu, S.; Zeng, W.; Su, J.; Wu, L.; Luo, Z.; Zhou, S.; Li, Q.; Zhang, J.; et al. Cd147 promotes mtx resistance by immune cells through up-regulating abcg2 expression and function. J. Dermatol. Sci. 2013, 70, 182–189. [Google Scholar] [CrossRef]
- Kasza, I.; Várady, G.; Andrikovics, H.; Koszarska, M.; Tordai, A.; Scheffer, G.L.; Németh, A.; Szakács, G.; Sarkadi, B. Expression levels of the abcg2 multidrug transporter in human erythrocytes correspond to pharmacologically relevant genetic variations. PLoS ONE 2012, 7, e48423. [Google Scholar] [CrossRef]
- Cleophas, M.C.; Joosten, L.A.; Stamp, L.K.; Dalbeth, N.; Woodward, O.M.; Merriman, T.R. Abcg2 polymorphisms in gout: Insights into disease susceptibility and treatment approaches. Pharm. Pers. Med. 2017, 10, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Guo, S.; Yang, Y.; Wu, J.; Guan, M.; Zou, H.; Jin, L.; Wang, J. Association between abcg2 q141k polymorphism and gout risk affected by ethnicity and gender: A systematic review and meta-analysis. Int. J. Rheum. Dis. 2015, 18, 382–391. [Google Scholar] [CrossRef]
- Wang, C.; Xie, L.; Li, H.; Li, Y.; Mu, D.; Zhou, R.; Liu, R.; Zhou, K.; Hua, Y. Associations between abcg2 gene polymorphisms and isolated septal defects in a han chinese population. DNA Cell Biol. 2014, 33, 689–698. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Unadkat, J.D. Role of the breast cancer resistance protein (bcrp/abcg2) in drug transport--an update. AAPS J. 2015, 17, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Ieiri, I. Functional significance of genetic polymorphisms in p-glycoprotein (mdr1, abcb1) and breast cancer resistance protein (bcrp, abcg2). Drug Metab. Pharmacokinet. 2012, 27, 85–105. [Google Scholar] [CrossRef]
- Su, S.C.; Hsieh, M.J.; Lin, C.W.; Chuang, C.Y.; Liu, Y.F.; Yeh, C.M.; Yang, S.F. Impact of hotair gene polymorphism and environmental risk on oral cancer. J. Dent. Res. 2018, 97, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Butler, F.; Alghubayshi, A.; Roman, Y. The epidemiology and genetics of hyperuricemia and gout across major racial groups: A literature review and population genetics secondary database analysis. J. Pers. Med. 2021, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Tseng, C.C.; Yen, J.H.; Chang, J.G.; Chou, W.C.; Chu, H.W.; Chang, S.J.; Liao, W.T. Abcg2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Sci. Rep. 2018, 8, 3137. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.P.; Ruether, A.; Stuart, P.E.; Jenisch, S.; Tejasvi, T.; Hiremagalore, R.; Schreiber, S.; Kabelitz, D.; Lim, H.W.; Voorhees, J.J.; et al. Polymorphisms of the il12b and il23r genes are associated with psoriasis. J. Investig. Dermatol. 2008, 128, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cargill, M.; Schrodi, S.J.; Chang, M.; Garcia, V.E.; Brandon, R.; Callis, K.P.; Matsunami, N.; Ardlie, K.G.; Civello, D.; Catanese, J.J.; et al. A large-scale genetic association study confirms il12b and leads to the identification of il23r as psoriasis-risk genes. Am. J. Hum. Genet. 2007, 80, 273–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Miao, Z.; Liu, S.; Wang, J.; Zhou, S.; Han, L.; Meng, D.; Wang, Y.; Li, C.; Ma, X. Genetic analysis of abcg2 gene c421a polymorphism with gout disease in chinese han male population. Hum. Genet. 2010, 127, 245–246. [Google Scholar] [CrossRef]
- Yu, K.H.; Chang, P.Y.; Chang, S.C.; Wu-Chou, Y.H.; Wu, L.A.; Chen, D.P.; Lo, F.S.; Lu, J.J. A comprehensive analysis of the association of common variants of abcg2 with gout. Sci. Rep. 2017, 7, 9988. [Google Scholar] [CrossRef]
- Li, X.; Miao, X.; Wang, H.; Wang, Y.; Li, F.; Yang, Q.; Cui, R.; Li, B. Association of serum uric acid levels in psoriasis: A systematic review and meta-analysis. Medicine 2016, 95, e3676. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, L.; Sun, X.; Li, H.; Wang, Y.; Zhou, M.; Hua, L.; Li, B.; Li, X. Updated evidence of the association between elevated serum uric acid level and psoriasis. Front. Med. 2021, 8, 645550. [Google Scholar] [CrossRef] [PubMed]
Variable | Control (n = 1089) | Patients (n = 410) | p Value |
---|---|---|---|
Age (years) | Mean ± S.D. | Mean ± S.D. | |
54.22 ± 11.09 | 41.40 ± 12.55 | p < 0.001 | |
Gender | |||
Male | 765 (70.2%) | 291 (71.0%) | p = 0.783 |
Female | 324 (29.8%) | 119 (29.0%) | |
Height (cm) | 163.35 ± 8.16 | 167.26 ± 8.03 | p < 0.001 |
Weight (kg) | 68.99 ± 12.23 | 74.34 ± 15.69 | p < 0.001 |
Body mass index (BMI) | 25.79 ± 3.84 | 26.50 ± 4.93 | p = 0.004 |
Uric acid (mg/dL) | 6.22 ± 1.42 | 6.34 ± 1.65 | p = 0.161 |
high-density lipoprotein (HDL, mg/dL) | 56.01 ± 14.82 | 47.42 ± 11.58 | p < 0.001 |
low-density lipoprotein (LDL, mg/dL) | 117.32 ± 27.69 | 116.59 ± 35.99 | p = 0.825 |
Total cholesterol (mg/dL) | 202.16 ± 37.30 | 192.43 ± 63.16 | p < 0.001 |
Triglycerides (mg/dL) | 151.86 ± 125.22 | 136.82 ± 145.77 | p = 0.048 |
PASI score | 11.54 ± 9.86 | ||
Onset (age, on skin) | 27.84 ± 12.89 | ||
Arthritis pain | |||
No | 275 (67.1%) | ||
Yes | 135 (32.9%) |
Variable | Controls (n = 1089) n (%) | Patients (n = 410) n (%) | OR (95% CI) | AOR (95% CI) |
---|---|---|---|---|
ABCG2 rs2231142 | ||||
GG | 523 (48.0%) | 234 (57.1%) | 1.00 | 1.00 |
GT | 445 (40.9%) | 137 (33.4%) | 0.688 (0.538–0.880) p = 0.030 | 0.532 (0.370–0.765) p = 0.001 |
TT | 121 (11.1%) | 39 (9.5%) | 0.720 (0.487–1.067) | 0.812 (0.485–1.358) |
GT + TT | 566 (52.0%) | 176 (42.9%) | 0.695 (0.553–0.874) p = 0.002 | 0.594 (0.429–0.823) p = 0.002 |
ABCG2 rs2231137 | ||||
CC | 486 (44.6%) | 180 (43.9%) | 1.00 | 1.00 |
CT | 476 (43.7%) | 180 (43.9%) | 1.021 (0.801–1.301) | 0.928 (0.656–1.313) |
TT | 127 (11.7%) | 50 (12.2%) | 1.063 (0.735–1.538) | 1.124 (0.681–1.856) |
CT + TT | 603 (55.4%) | 230 (56.1%) | 1.030 (0.819–1.295) | 0.943 (0.665–1.337) |
ABCG2 (rs2231142) | ||||
---|---|---|---|---|
Variable | GG (%) (n = 234) | GT + TT (%) (n = 176) | OR (95% CI) | p Value |
Uric acid # | ||||
<7 mg/dL | 170 (72.6%) | 109 (62.3%) | 1.00 | |
≥7 mg/dL | 64 (27.4%) | 66 (37.7%) | 1.608 (1.057–2.447) | p = 0.026 |
Family History | ||||
None | 159 (67.9%) | 131 (74.4%) | 1.00 | |
Parent/Children | 37 (15.8%) | 24 (13.6%) | 0.787 (0.448–1.383) | p = 0.405 |
Others | 38 (16.2%) | 21 (11.9%) | 0.671 (0.375–1.199) | p = 0.176 |
PASI # | ||||
<10 | 128 (54.9%) | 99 (56.3%) | 1.00 | |
≥10 | 105 (45.1%) | 77 (43.7%) | 0.948 (0.639–1.406) | p = 0.791 |
Onset (age, on skin) | ||||
<40 | 198 (84.6%) | 145 (82.4%) | 1.00 | |
≥40 | 36 (15.4%) | 31 (17.6%) | 1.176 (0.695–1.989) | p = 0.546 |
Arthritis pain | ||||
No | 150 (64.1%) | 125 (71.0%) | 1.00 | |
Yes | 84 (35.9%) | 51 (29.0%) | 0.729 (0.478–1.110) | p = 0.140 |
ABCG2 (rs2231137) | ||||
---|---|---|---|---|
Variable | CC (%) (n = 180) | CT + TT (%) (n = 180) | OR (95% CI) | p Value |
Uric acid # | ||||
<7 mg/dL | 114 (63.7%) | 124 (68.9%) | 1.00 | |
≥7 mg/dL | 65 (36.3%) | 56 (31.1%) | 0.792 (0.511–1.228) | p = 0.297 |
Family History | ||||
None | 132 (73.3%) | 130 (72.2%) | 1.00 | |
Parent/Children | 21 (11.7%) | 23 (12.8%) | 1.112 (0.587–2.107) | p = 0.745 |
Others | 27 (15.0%) | 27 (15.0%) | 1.015 (0.565–1.824) | p = 0.959 |
PASI # | ||||
<10 | 97 (53.9%) | 99 (55.3%) | 1.00 | |
≥10 | 83 (46.1%) | 80 (44.7%) | 0.944 (0.623–1.431) | p = 0.787 |
Onset (age, on skin) | ||||
<40 | 151 (83.9%) | 153 (85.0%) | 1.00 | |
≥40 | 29 (16.1%) | 27 (15.0%) | 0.919 (0.519–1.625) | p = 0.771 |
Arthritis pain | ||||
No | 127 (70.6%) | 114 (63.3%) | 1.00 | |
Yes | 53 (29.4%) | 66 (36.7%) | 1.387 (0.892–2.157) | p = 0.145 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-H.; See, L.-C.; Chang, Y.-C.; Chung, W.-H.; Chang, L.-C.; Yang, S.-F.; Su, S.-C. Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis. Genes 2021, 12, 1601. https://doi.org/10.3390/genes12101601
Huang Y-H, See L-C, Chang Y-C, Chung W-H, Chang L-C, Yang S-F, Su S-C. Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis. Genes. 2021; 12(10):1601. https://doi.org/10.3390/genes12101601
Chicago/Turabian StyleHuang, Yu-Huei, Lai-Chu See, Ya-Ching Chang, Wen-Hung Chung, Lun-Ching Chang, Shun-Fa Yang, and Shih-Chi Su. 2021. "Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis" Genes 12, no. 10: 1601. https://doi.org/10.3390/genes12101601
APA StyleHuang, Y.-H., See, L.-C., Chang, Y.-C., Chung, W.-H., Chang, L.-C., Yang, S.-F., & Su, S.-C. (2021). Impact of ABCG2 Gene Polymorphism on the Predisposition to Psoriasis. Genes, 12(10), 1601. https://doi.org/10.3390/genes12101601