Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment and Sample Collection
2.2. RNA Isolation
2.3. RNA Quantification
2.4. RT-qPCR
2.5. RNA Sequencing
2.6. Histological Analysis
3. Results
3.1. Study Population
3.2. Quantity and Quality of AIS Clot RNA
3.3. Most Samples were Amenable to qPCR Analysis
3.4. RNA Sequencing Analysis on 48 Samples
3.5. Acellular Clots Yielded RNA of Lesser Quantity and Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosures
References
- Jolugbo, P.; Ariëns, R.A.S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.; Rossi, R.; Mereuta, O.M.; Jabrah, D.; Okolo, A.; Douglas, A.; Molina Gil, S.; Pandit, A.; McCarthy, R.; Gilvarry, M.; et al. Per-pass analysis of acute ischemic stroke clots: Impact of stroke etiology on extracted clot area and histological composition. J. NeuroInterv. Surg. 2020, 1–7. [Google Scholar] [CrossRef]
- Brinjikji, W.; Duffy, S.; Burrows, A.; Hacke, W.; Liebeskind, D.; Majoie, C.B.L.M.; Dippel, D.W.J.; Siddiqui, A.H.; Khatri, P.; Baxter, B.; et al. Correlation of imaging and histopathology of thrombi in acute ischemic stroke with etiology and outcome: A systematic review. J. NeuroInterv. Surg. 2017, 9, 529–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuhmann, M.K.; Gunreben, I.; Kleinschnitz, C.; Kraft, P. Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke. Int. J. Mol. Sci. 2016, 17, 298. [Google Scholar] [CrossRef] [PubMed]
- Baek, B.H.; Kim, H.S.; Yoon, W.; Lee, Y.Y.; Baek, J.M.; Kim, E.H.; Kim, S.K. Inflammatory mediator expression within retrieved clots in acute ischemic stroke. Ann. Clin. Transl. Neurol. 2018, 5, 273–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, J.F.; Collier, L.A.; Gorman, A.A.; Martha, S.R.; Salmeron, K.E.; Trout, A.L.; Edwards, D.N.; Davis, S.M.; Lukins, D.E.; Alhajeri, A.; et al. The Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC) protocol: Novel method for evaluating human stroke. J. NeuroInterv. Surg. 2019, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.M.; Poppenberg, K.E.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Sonig, A.; Siddiqui, A.H.; Snyder, K.V.; Levy, E.I.; Kolega, J.; et al. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature. PLoS ONE 2018, 13, e0191407. [Google Scholar] [CrossRef]
- Tutino, V.M.; Poppenberg, K.E.; Li, L.; Shallwani, H.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H.; et al. Biomarkers from circulating neutrophil transcriptomes have potential to detect unruptured intracranial aneurysms. J. Transl. Med. 2018, 16, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppenberg, K.E.; Tutino, V.M.; Li, L.; Waqas, M.; June, A.; Chaves, L.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; et al. Classification models using circulating neutrophil transcripts can detect unruptured intracranial aneurysm. J. Transl. Med. 2020, 18, 392. [Google Scholar] [CrossRef] [PubMed]
- Wingett, S.A.-O.; Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000 Res. 2018, 7, 1338. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Patel, T.R.; Fricano, S.; Waqas, M.; Tso, M.; Dmytriw, A.A.; Mokin, M.; Kolega, J.; Tomaszewski, J.; Levy, E.I.; Davies, J.M.; et al. Increased Perviousness on CT for Acute Ischemic Stroke is Associated with Fibrin/Platelet-Rich Clots. Am. J. Neuroradiol. 2021, 42, 57. [Google Scholar] [CrossRef]
- Stritt, M.; Stalder, A.K.; Vezzali, E. Orbit Image Analysis: An open-source whole slide image analysis tool. PLoS Comput. Biol. 2020, 16, e1007313. [Google Scholar] [CrossRef] [PubMed]
- Tutino, V.M.; Poppenberg, K.E.; Damiano, R.J.; Patel, T.R.; Waqas, M.; Dmytriw, A.A.; Snyder, K.V.; Siddiqui, A.H.; Jarvis, J.N. Characterization of Long Non-coding RNA Signatures of Intracranial Aneurysm in Circulating Whole Blood. Mol. Diagn. Ther. 2020, 24, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Poppenberg, K.E.; Li, L.; Waqas, M.; Paliwal, N.; Jiang, K.; Jarvis, J.N.; Sun, Y.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H.; et al. Whole blood transcriptome biomarkers of unruptured intracranial aneurysm. PLoS ONE 2020, 15, e0241838. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Umi, S.H.; Mokhtar, S.S.; Mokhtar, U.; Zaiharina, M.Z.; Aziz, A.T.A.; Hoh, B.P. An alternate method for DNA and RNA extraction from clotted blood. Genet. Mol. Res. 2013, 12, 302–311. [Google Scholar] [CrossRef]
- Ahmed, S.; Shaffer, A.; Geddes, T.; Studzinski, D.; Mitton, K.; Pruetz, B.; Long, G.; Shanley, C. Evaluation of optimal RNA extraction method from human carotid atherosclerotic plaque. Cardiovasc. Pathol. 2015, 24, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, H.; Chen, J.; Zhong, X.; Wang, Y.; Wang, Z.; Wang, Y. The Impact of Different Preservation Conditions and Freezing-Thawing Cycles on Quality of RNA, DNA, and Proteins in Cancer Tissue. Biopreserv. Biobank. 2015, 13, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Sherman, M.E.; Rader, J.S.; Carreon, J.; Schiffman, M.; Baker, C.C. Cervical tissue collection methods for RNA preservation: Comparison of snap-frozen, ethanol-fixed, and RNAlater-fixation. Diagn. Mol. Pathol. 2006, 15, 144–148. [Google Scholar] [CrossRef] [PubMed]
Variable | Clot | Blood |
---|---|---|
Age (years, mean ± SE) | 70 ± 1.7 | 73 ± 11 |
Sex | ||
Female | 57% | 67% |
Co-Morbidities | ||
BMI (kg/m2, mean ± SE) | 29 ± 1.0 | 28 ± 4.0 |
Smoking (%) | 69% | 67% |
Hypertension (%) | 80% | 100% |
Heart Disease (%) | 29% | 33% |
Hyperlipidemia (%) | 50% | 33% |
History of Cancer (%) | 28% | 33% |
Diabetes (%) | 29% | 0.0% |
Arthritis (%) | 6.0% | 33% |
Asthma (%) | 4.5% | 0.0% |
Clot location | ||
BA (%) | 8.0% | 0.0% |
ICA (%) | 28% | 67% |
MCA (%) | 62% | 33% |
PCA (%) | 2.0% | 0.0% |
Primary Treatment Method | ||
Stent Retriever (%) | 10% | 0.0% |
Aspiration (%) | 14% | 0.0% |
Solumbra (%) | 76% | 100% |
tPA Administration | ||
IV-tPA (%) | 0.0% | 100% |
IA-tPA (%) | 36% | 0.0% |
Passes | ||
Number of Passes (mean ± SE) | 1.9 ± 0.15 | 2.0 ± 1.0 |
Clot Retrieved on Pass (mean ± SE) | 1.7 ± 0.15 | 2.0 ± 1.0 |
mTICI Score Post-Op. | ||
0 (%) | 1.0% | 0.0% |
1 (%) | 1.0% | 0.0% |
2a (%) | 3.0% | 0.0% |
2b (%) | 38% | 0.0% |
2c (%) | 21% | 67% |
3 (%) | 36% | 33% |
NIHSS | ||
NIHSS, Pre-Op. (mean ± SE) | 16 ± 0.9 | 15 ± 5.0 |
NIHSS, After 24 h (mean ± SE) | 10 ± 1.2 | 7.0 ± 5.0 |
Sample ID | Source | Conc. (ng/µL) | 260/280 | 260/230 | RIN |
---|---|---|---|---|---|
C1 | Clot | <0.01 | 2.20 | −0.31 | NR |
C2 | Clot | 3.4 | 1.97 | 0.33 | 3.8 |
C3 | Clot | 12.2 | 1.86 | 0.85 | 1.3 |
C4 | Clot | <0.01 | 0.71 | −0.71 | NR |
C5 | Clot | 1.6 | 2.46 | 0.34 | 2.7 |
C6 | Clot | 2.5 | 2.00 | 0.30 | 2.4 |
C7 | Clot | 6.5 | 1.87 | 0.56 | 1.6 |
C8 | Clot | 0.8 | 0.87 | 0.03 | 9.5 |
C9 | Clot | 10.3 | 1.93 | 0.84 | 1.4 |
C10 | Clot | 18.0 | 1.78 | 0.68 | 1.0 |
C11 | Clot | 17.1 | 1.97 | 0.95 | 2.5 |
C12 | Clot | 1.1 | 1.86 | 0.27 | 0.0 |
C13 | Clot | 2.3 | 6.14 | 0.20 | 2.6 |
C14 | Clot | 2.7 | 4.00 | 0.19 | 4.0 |
C15 | Clot | 7.8 | 2.69 | 0.4 | 2.4 |
C16 | Clot | 5.3 | 2.07 | 0.33 | 3.3 |
C17 | Clot | 10.6 | 1.77 | 0.29 | 2.8 |
C18 | Clot | 11.7 | 2.71 | 0.52 | 1.8 |
C19 | Clot | 46.0 | 1.71 | 1.14 | 2.7 |
C20 | Clot | 6.6 | 2.10 | 0.54 | 3.8 |
C21 | Clot | 4.6 | 2.22 | 0.31 | 2.4 |
C22 | Clot | 7.9 | 1.30 | 0.40 | 2.6 |
C23 | Clot | 15.4 | 1.15 | 0.37 | 0.0 |
C24 | Clot | 7.2 | 2.46 | 0.40 | 6.6 |
C25 | Clot | <0.01 | −0.79 | 0.04 | 1.4 |
C26 | Clot | 11.5 | 1.98 | 0.52 | 1.0 |
C27 | Clot | 7.5 | 2.65 | 0.40 | 1.0 |
C28 | Clot | 19.1 | 1.49 | 0.53 | 1.0 |
C29 | Clot | 29.1 | 1.89 | 0.58 | 2.3 |
C30 | Clot | 34.6 | 1.84 | 0.61 | 6.1 |
C31 | Clot | 40.2 | 1.84 | 0.59 | 2.4 |
C32 | Clot | 25.7 | 1.98 | 0.59 | 1.9 |
C33 | Clot | 34.4 | 1.82 | 0.55 | 2.0 |
C34 | Clot | 27.8 | 1.97 | 0.56 | NR |
C35 | Clot | 24.1 | 2.33 | 0.60 | 5.4 |
C36 | Clot | 29.8 | 1.95 | 0.56 | 6.1 |
C37 | Clot | 24.1 | 1.95 | 0.61 | 5.6 |
C38 | Clot | 33.4 | 1.87 | 0.61 | 2.3 |
C39 | Clot | 30.7 | 1.95 | 0.50 | 2.6 |
C40 | Clot | 23.6 | 1.98 | 0.49 | 4.4 |
C41 | Clot | 30.5 | 1.89 | 0.56 | 6.9 |
C42 | Clot | 5.2 | 2.78 | 0.85 | 2.5 |
C43 | Clot | 26.5 | 2.02 | 0.53 | 2.9 |
C44 | Clot | 30.0 | 2.04 | 0.54 | 4.9 |
C45 | Clot | 26.5 | 2.34 | 0.58 | 4.9 |
C46 | Clot | 35.6 | 2.11 | 0.63 | 3.7 |
C47 | Clot | 33.7 | 1.87 | 0.53 | 4.3 |
C48 | Clot | 31.9 | 1.89 | 0.54 | 3.2 |
C49 | Clot | 24.8 | 1.88 | 0.54 | 2.7 |
C50 | Clot | 39.3 | 1.94 | 0.58 | NR |
C51 | Clot | 13.8 | 1.83 | 0.91 | 2.1 |
C52 | Clot | 6.5 | 2.22 | 0.77 | 3.6 |
C53 | Clot | 27.9 | 1.86 | 0.5 | 1.6 |
C54 | Clot | 7.6 | 2.35 | 0.66 | 6.2 |
C55 | Clot | 30.7 | 2.01 | 0.56 | NR |
C56 | Clot | 8.1 | 6.47 | 0.65 | 2.6 |
C57 | Clot | 20.5 | 1.83 | 1.36 | 2.3 |
C58 | Clot | <0.01 | 2.26 | 0.43 | 1.9 |
C59 | Clot | <0.01 | 0.73 | −1.13 | 4.8 |
C60 | Clot | 29.1 | 1.97 | 0.54 | 3.1 |
C61 | Clot | 35.7 | 1.88 | 0.58 | NR |
C62 | Clot | 13.1 | 2.34 | 0.61 | NR |
C63 | Clot | 31.8 | 2.01 | 0.61 | NR |
C64 | Clot | 30.8 | 2.03 | 0.60 | NR |
C65 | Clot | 23.3 | 1.93 | 0.58 | NR |
C66 | Clot | 28.0 | 1.94 | 0.55 | NR |
C67 | Clot | 29.2 | 2.08 | 0.54 | 4.3 |
C68 | Clot | 34.4 | 1.98 | 0.56 | NR |
C69 | Clot | 34.0 | 1.98 | 0.56 | 1.0 |
C70 | Clot | 23.1 | 2.34 | 0.62 | 1.0 |
C71 | Clot | 30.4 | 2.03 | 0.65 | NR |
C72 | Clot | 27.0 | 2.30 | 0.64 | 1.1 |
C73 | Clot | 30.8 | 1.85 | 0.53 | 7.1 |
B1 | Blood | 45.4 | 1.96 | 0.59 | 7.6 |
B2 | Blood | 55.1 | 1.87 | 0.75 | 4.8 |
B3 | Blood | 65.2 | 1.93 | 0.66 | 8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutino, V.M.; Fricano, S.; Frauens, K.; Patel, T.R.; Monteiro, A.; Rai, H.H.; Waqas, M.; Chaves, L.; Poppenberg, K.E.; Siddiqui, A.H. Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy. Genes 2021, 12, 1617. https://doi.org/10.3390/genes12101617
Tutino VM, Fricano S, Frauens K, Patel TR, Monteiro A, Rai HH, Waqas M, Chaves L, Poppenberg KE, Siddiqui AH. Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy. Genes. 2021; 12(10):1617. https://doi.org/10.3390/genes12101617
Chicago/Turabian StyleTutino, Vincent M., Sarah Fricano, Kirsten Frauens, Tatsat R. Patel, Andre Monteiro, Hamid H. Rai, Muhammad Waqas, Lee Chaves, Kerry E. Poppenberg, and Adnan H. Siddiqui. 2021. "Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy" Genes 12, no. 10: 1617. https://doi.org/10.3390/genes12101617
APA StyleTutino, V. M., Fricano, S., Frauens, K., Patel, T. R., Monteiro, A., Rai, H. H., Waqas, M., Chaves, L., Poppenberg, K. E., & Siddiqui, A. H. (2021). Isolation of RNA from Acute Ischemic Stroke Clots Retrieved by Mechanical Thrombectomy. Genes, 12(10), 1617. https://doi.org/10.3390/genes12101617