Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Women with PROM and Healthy Controls
2.2. Collection and Analysis of Blood Samples
2.3. Genotyping of Single Nucleotide Polymorphisms (SNPs)
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Pregnant Women
3.2. Parameters of Hemostasis
3.3. Hardy–Weinberg Equilibrium
3.4. Genetic Alterations in CSF2, FLT1, TFPI and TLR9 Polymorphisms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prelabor Rupture of Membranes: ACOG Practice Bulletin, Number 217. Obstet Gynecol. 2020, 135, e80–e97. [CrossRef]
- Ghafoor, S. Current and Emerging Strategies for Prediction and Diagnosis of Prelabour Rupture of the Membranes: A Narra-tive Review. Malays. J. Med. Sci. 2021, 28, 5–17. [Google Scholar] [PubMed]
- Meloni, A.; Palmas, F.; Barberini, L.; Mereu, R.; Deiana, S.F.; Fais, M.F.; Noto, A.; Fattuoni, C.; Mussap, M.; Ragusa, A.; et al. PROM and Labour Effects on Urinary Metabolome: A Pilot Study. Dis. Markers 2018, 2018, 1042479. [Google Scholar] [CrossRef]
- Ocviyanti, D.; Wahono, W.T. Risk Factors for Neonatal Sepsis in Pregnant Women with Premature Rupture of the Membrane. J. Pregnancy 2018, 2018, 4823404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananth, C.V.; Joseph, K.; Oyelese, Y.; Demissie, K.; Vintzileos, A.M. Trends in Preterm Birth and Perinatal Mortality Among Singletons: United States, 1989 Through 2000. Obstet. Gynecol. 2005, 105, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Kim, S.Y.; Heo, J.M.; Park, K.H.; Kim, H.Y.; Choi, B.M.; Kim, H.J. Perinatal Outcomes Associated with Latency in Late Pre-term Premature Rupture of Membranes. Int. J. Environ. Res. Public Health 2021, 18, 672. [Google Scholar] [CrossRef]
- Menon, R.; Richardson, L. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017, 41, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Günay, T.; Erdem, G.; Bilir, R.A.; Hocaoglu, M.; Ozdamar, O.; Turgut, A. The association of the amniotic fluid index (AFI) with perinatal fetal and maternal outcomes in pregnancies complicated by preterm premature rupture of membranes (PPROM). Ginekol. Pol. 2020, 91, 465–472. [Google Scholar] [CrossRef]
- Tchirikov, M.; Schlabritz-Loutsevitch, N.; Maher, J.; Buchmann, J.; Naberezhnev, Y.; Winarno, A.S.; Seliger, G. Mid-trimester preterm premature rupture of membranes (PPROM): Etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Périnat. Med. 2018, 46, 465–488. [Google Scholar] [CrossRef]
- Waters, T.P.; Mercer, B.M. The management of preterm premature rupture of the membranes near the limit of fetal viability. Am. J. Obstet. Gynecol. 2009, 201, 230–240. [Google Scholar] [CrossRef]
- Schmitz, T.; Sentilhes, L.; Lorthe, E.; Gallot, D.; Madar, H.; Doret-Dion, M.; Beucher, G.; Charlier, C.; Cazanave, C.; Delorme, P.; et al. Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF). Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Andrys, C.; Kacerovsky, M.; Drahosova, M.; Musilova, I.; Pliskova, L.; Hornychova, H.; Prochazka, M.; Jacobsson, B. Amniotic fluid soluble Toll-like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2013, 26, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Erez, O.; Espinoza, J.; Chaiworapongsa, T.; Gotsch, F.; Kusanovic, J.P.; Than, N.G.; Mazaki-Tovi, S.; Vaisbuch, E.; Papp, Z.; Yoon, B.H.; et al. A link between a hemostatic disorder and preterm PROM: A role for tissue factor and tissue factor pathway inhibitor. J. Matern. Fetal Neonatal Med. 2008, 21, 732–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grote, K.; Petri, M.; Liu, C.; Jehn, P.; Spalthoff, S.; Kokemüller, H.; Luchtefeld, M.; Tschernig, T.; Krettek, C.; Haasper, C.; et al. Toll-like receptor 2/6-dependent stimulation of mesen-chymal stem cells promotes angiogenesis by paracrine factors. Eur. Cell Mater. 2013, 26, 66–79. [Google Scholar] [CrossRef]
- Kumar, D.; Moore, R.M.; Nash, A.; Springel, E.; Mercer, B.M.; Philipson, E.; Mansour, J.M.; Moore, J.J. Decidual GM-CSF is a critical common interme-diate necessary for thrombin and TNF induced in-vitro fetal membrane weakening. Placenta 2014, 35, 1049–1056. [Google Scholar] [CrossRef]
- Kumar, D.; Schatz, F.; Moore, R.M.; Mercer, B.M.; Rangaswamy, N.; Mansour, J.M.; Lockwood, C.J.; Moore, J.J. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta 2011, 32, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.M.; Schatz, F.; Kumar, D.; Mercer, B.M.; Abdelrahim, A.; Rangaswamy, N.; Bartel, C.; Mansour, J.M.; Lockwood, C.J.; Moore, J.J. α-lipoic acid inhibits throm-bin-induced fetal membrane weakening in vitro. Placenta 2010, 31, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Liu, X.; Al-Mugotir, M.; Kobayashi, T.; Abe, S.; Kohyama, T. Thrombin and TNF-α/IL-1beta synergistically in-duce fibroblast-mediated collagen gel degradation. Am. J. Respir. Cell Mol. Biol. 2006, 35, 714–721. [Google Scholar] [CrossRef] [Green Version]
- Galis, Z.S.; Kranzhöfer, R.; Fenton, J.W.; Libby, P. Thrombin Promotes Activation of Matrix Metalloproteinase-2 Produced by Cultured Vascular Smooth Muscle Cells. Arter. Thromb. Vasc. Biol. 1997, 17, 483–489. [Google Scholar] [CrossRef]
- Han, C.S.; Schatz, F.; Lockwood, C.J. Abruption-Associated Prematurity. Clin. Perinatol. 2011, 38, 407–421. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, A.P.; Schatz, F.; Krikun, G.; Funai, E.F.; Kadner, S.; Lockwood, C.J. Mechanisms of abruption-induced premature rupture of the fetal membranes: Thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am. J. Obstet. Gynecol. 2004, 191, 1996–2001. [Google Scholar] [CrossRef]
- Stephenson, C.D.; Lockwood, C.J.; Ma, Y.; Guller, S. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J. Matern. Fetal Neonatal Med. 2005, 18, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Erez, O.; Romero, R.; Vaisbuch, E.; Kusanovic, J.P.; Mazaki-Tovi, S.; Chaiworapongsa, T.; Gotsch, F.; Fareed, J.; Hoppensteadt, D.; Than, N.G.; et al. High tissue factor activity and low tissue factor pathway inhibitor concentrations in patients with preterm labor. J. Matern. Fetal Neonatal Med. 2010, 23, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Lopez, N.; Hernandez-Santiago, S.; Lobb, A.P.; Olson, D.M.; Vadillo-Ortega, F. Normal and Premature Rupture of Fetal Membranes at Term Delivery Differ in Regional Chemotactic Activity and Related Chemokine/Cytokine Production. Reprod. Sci. 2012, 20, 276–284. [Google Scholar] [CrossRef]
- Musilova, I.; Pliskova, L.; Kutova, R.; Hornychova, H.; Jacobsson, B.; Kacerovsky, M. Ureaplasma species and Mycoplasma hominis in cervical fluid of pregnancies complicated by preterm prelabor rupture of membranes. J. Mater. Fetal Neonatal Med. 2016, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.J.; Romero, R.; Park, J.Y.; Hong, J.S.; Yoon, B.H. The earlier the gestational age, the greater the intensity of the in-tra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med. 2019, 47, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Perni, S.C.; Vardhana, S.; Korneeva, I.; Tuttle, S.L.; Paraskevas, L.-R.; Chasen, S.T.; Kalish, R.B.; Witkin, S.S. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: Association with amniotic fluid cytokine levels and pregnancy outcome. Am. J. Obstet. Gynecol. 2004, 191, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Tantengco, O.A.G.; Yanagihara, I. Current understanding and treatment of intra-amniotic infection with Ureaplasma spp. J. Obstet. Gynaecol. Res. 2019, 45, 1796–1808. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, K.A.; Kagan, J.C. Toll-like Receptors and the Control of Immunity. Cell 2020, 180, 1044–1066. [Google Scholar] [CrossRef]
- Mukherjee, S.; Huda, S.; Sinha Babu, S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand. J. Immunol. 2019, 90, e12771. [Google Scholar] [CrossRef] [Green Version]
- Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018, 59, 391–412. [Google Scholar] [CrossRef]
- Kacerovsky, M.; Andrys, C.; Hornychová, H.; Pliskova, L.; Lancz, K.; Musilová, I.K.; Drahosova, M.; Bolehovska, R.; Tambor, V.; Jacobsson, B. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2012, 25, 1148–1155. [Google Scholar] [CrossRef]
- He, B.; Yang, X.; Li, Y.; Huang, D.; Xu, X.; Yang, W.; Dai, Y.; Zhang, H.; Chen, Z.; Cheng, W. TLR9 (Toll-Like Receptor 9) Agonist Suppresses Angiogenesis by Dif-ferentially Regulating VEGFA (Vascular Endothelial Growth Factor A) and sFLT1 (Soluble Vascular Endothelial Growth Fac-tor Receptor 1) in Preeclampsia. Hypertension 2018, 71, 671–680. [Google Scholar] [CrossRef]
- Mohamed, F.E.-Z.A.; Hammad, S.; Luong, T.V.; Dewidar, B.; Al-Jehani, R.; Davies, N.; Dooley, S.; Jalan, R. Expression of TLR-2 in hepatocellular carcinoma is associated with tumour proliferation, angiogenesis and Caspase-3 expression. Pathol. Res. Pract. 2020, 216, 152980. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ma, R.; Zhang, L.; Yuan, X.; Wu, J.; He, L.; Liu, G.; Du, R. Inhibition of HIF-1a-mediated TLR4 activation decreases apoptosis and promotes angiogenesis of placental microvascular endothelial cells during severe pre-eclampsia pathogenesis. Placenta 2019, 83, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Saber, T.; Veale, U.J.; Balogh, E.; McCormick, J.; NicAnUltaigh, S.; Connolly, M.; Fearon, U. Toll-Like Receptor 2 Induced Angiogenesis and Invasion Is Mediated through the Tie2 Signalling Pathway in Rheumatoid Arthritis. PLoS ONE 2011, 6, e23540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grote, K.; Schuett, H.; Salguero, G.; Grothusen, C.; Jagielska, J.; Drexler, H.; Mühlradt, P.F.; Schieffer, B. Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 2010, 115, 2543–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kebir, D.; Damlaj, A.; Makhezer, N.; Filep, J.G. Toll-Like Receptor 9 Signaling Regulates Tissue Factor and Tissue Factor Pathway Inhibitor Expression in Human Endothelial Cells and Coagulation in Mice. Crit. Care Med. 2015, 43, e179–e189. [Google Scholar] [CrossRef] [Green Version]
- Harmon, Q.E.; Engel, S.M.; Olshan, A.F.; Moran, T.; Stuebe, A.M.; Luo, J.; Wu, M.C.; Avery, C.L. Association of polymorphisms in natural killer cell-related genes with preterm birth. Am. J. Epidemiol. 2013, 178, 1208–1218. [Google Scholar] [CrossRef] [Green Version]
- Gómez, L.M.; Sammel, M.D.; Appleby, D.H.; Elovitz, M.A.; Baldwin, D.A.; Jeffcoat, M.K.; Macones, G.A.; Parry, S. Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: A role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am. J. Obstet. Gynecol. 2010, 202, 386.e1–386.e6. [Google Scholar] [CrossRef]
- Frey, H.A.; Stout, M.J.; Pearson, L.N.; Tuuli, M.G.; Cahill, A.G.; Strauss, J.F.; Gomez, L.M.; Parry, S.; Allsworth, J.E.; Macones, G.A. Genetic variation associated with preterm birth in African-American women. Am. J. Obstet. Gynecol. 2016, 215, 235.e1–235.e8. [Google Scholar] [CrossRef] [Green Version]
- Amin-Beidokhti, M.; Gholami, M.; Abedin-Do, A.; Pirjani, R.; Sadeghi, H.; Karamoddin, F.; Yassaee, V.R.; Mirfakhraie, R. An intron variant in the FLT1 gene increases the risk of preeclampsia in Iranian women. Clin. Exp. Hypertens. 2018, 41, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Majewska, M.; Lipka, A.; Paukszto, L.; Jastrzebski, J.P.; Szeszko, K.; Gowkielewicz, M.; Lepiarczyk, E.; Jozwik, M.; Majewski, M.K. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). Int. J. Mol. Sci. 2019, 20, 1510. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, Z.; Xu, J.; Yuan, W.; Wang, J.; Huang, X.; Shen, Y.; Du, J. The association of idiopathic recurrent pregnancy loss with pol-ymorphisms in hemostasis-related genes. Gene 2013, 530, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Shinohara, E.M.; Bertinato, J.F.; Bueno, C.T.; da Silva, K.C.; de Carvalho, M.H.B.; Francisco, R.P.V.; Zugaib, M.; Cerda, A.; Morelli, V.M. Polymorphisms in antithrombin and in tissue factor pathway inhibitor genes are associated with recurrent pregnancy loss. Thromb Haemost. 2012, 108, 693–700. [Google Scholar] [PubMed]
- Karody, V.R.; Reese, S.; Kumar, N.; Liedel, J.; Jarzembowski, J.; Sampath, V. A toll-like receptor 9 (rs352140) variant is associated with placental inflammation in newborn infants. J. Matern. Fetal Neonatal Med. 2016, 29, 2210–2216. [Google Scholar] [CrossRef] [Green Version]
- Razdaibiedina, A.; Khobzey, M.; Tkachenko, V.; Vorobiova, I. Effects of Single-Nucleotide Polymorphisms in Cytokine, Toll-Like Receptor, and Progesterone Receptor Genes on Risk of Miscarriage. Obstet. Gynecol. Int. 2018, 2018, 9272749. [Google Scholar] [CrossRef]
- Mockenhaupt, F.P.; Hamann, L.; von Gaertner, C.; Bedu-Addo, G.; von Kleinsorgen, C.; Schumann, R.R.; Bienzle, U. Common poly-morphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 2006, 194, 184–188. [Google Scholar] [CrossRef]
- Moatti, D.; Haidar, B.; Fumeron, F.; Gauci, L.; Boudvillain, O.; Seknadji, P.; Olliver, V.; Aumont, M.C.; De Prost, D. A new T-287C polymorphism in the 5′ regulatory region of the tissue factor pathway inhibitor gene. Association study of the T-287C and C-399T polymorphisms with coronary artery disease and plasma TFPI levels. Thromb. Haemost. 2000, 84, 244–249. [Google Scholar] [CrossRef]
- Pandey, S.; Mittal, B.; Srivastava, M.; Singh, S.; Srivastava, K.; Lal, P.; Mittal, R.D. Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol. Biol. Rep. 2010, 38, 4715–4721. [Google Scholar] [CrossRef] [PubMed]
- Saeki, H.; Tsunemi, Y.; Asano, N.; Nakamura, K.; Sekiya, T.; Hirai, K.; Kakinuma, T.; Fujita, H.; Kagami, S.; Tamaki, K. Analysis of GM-CSF gene polymorphisms (3606T/C and 3928C/T) in Japanese patients with atopic dermatitis. Clin. Exp. Dermatol. 2006, 31, 278–280. [Google Scholar] [CrossRef] [PubMed]
- SNPStats Software. Available online: https://www.snpstats.net/start.htm (accessed on 22 September 2021).
- Srinivas, S.K.; Morrison, A.; Andrela, C.M.; Elovitz, M. Allelic variations in angiogenic pathway genes are associated with preeclampsia. Am. J. Obstet. Gynecol. 2010, 202, 445.e1–445.e11. [Google Scholar] [CrossRef] [PubMed]
- Amosco, M.D.; Villar, V.A.M.; Naniong, J.M.A.; David-Bustamante, L.M.G.; Jose, P.A.; Palmes-Saloma, C.P. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population. Clin. Exp. Hypertens. 2016, 38, 578–585. [Google Scholar] [CrossRef]
- Opstad, T.B.; Pettersen, A.A.; Bratseth, V.; Arnesen, H.; Seljeflot, I. The influence of tissue factor and tissue factor pathway in-hibitor polymorphisms on thrombin generation in stable coronary artery disease. Pathophysiol. Haemost. Thromb. 2010, 37, 98–103. [Google Scholar] [CrossRef]
- Keren-Politansky, A.; Breizman, T.; Brenner, B.; Sarig, G.; Drugan, A. The coagulation profile of preterm delivery. Thromb. Res. 2014, 133, 585–589. [Google Scholar] [CrossRef]
- Ekin, A.; Gezer, C.; Kulhan, G.; Avcı, M.E.; Taner, C.E. Can platelet count and mean platelet volume during the first trimester of pregnancy predict preterm premature rupture of membranes? J. Obstet. Gynaecol. Res. 2014, 41, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Gasparyan, A.Y.; Ayvazyan, L.; Mikhailidis, D.P.; Kitas, G.D. Mean platelet volume: A link between thrombosis and inflamma-tion? Curr. Pharm. Des. 2011, 17, 47–58. [Google Scholar] [CrossRef]
- Roszak, A.; Lianeri, M.; Sowińska, A.; Jagodziński, P.P. Involvement of Toll-like Receptor 9 polymorphism in cervical cancer development. Mol. Biol. Rep. 2012, 39, 8425–8430. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Cui, H.; Dick, A.D.; Liu, L. TLR9 Agonist Regulates Angiogenesis and Inhibits Corneal Neovascularization. Am. J. Pathol. 2014, 184, 1900–1910. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, D.; Forest, J.-C.; Blanchon, L.; Bujold, E.; Pereira, B.; Bernard, N.; Gallot, D.; Sapin, V.; Giguère, Y. Risk Factors and Outcomes of Preterm Premature Rupture of Membranes in a Cohort of 6968 Pregnant Women Prospectively Recruited. J. Clin. Med. 2019, 8, 1987. [Google Scholar] [CrossRef] [Green Version]
- Luisi, S.; Giorgi, M.; Riggi, S.; Messina, G.; Severi, F.M. Neonatal outcome in pregnancy hypotiroidee women. Gynecol. Endocrinol. 2020, 36, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Merello, M.; Lotte, L.; Gonfrier, S.; Trolli, S.E.D.; Casagrande, F.; Ruimy, R.; Bongain, A. Enterobacteria vaginal colonization among patients with preterm premature rupture of membranes from 24 to 34 weeks of gestation and neonatal infection risk. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 187–191. [Google Scholar] [CrossRef]
- Muche, A.A.; Olayemi, O.O.; Gete, Y.K. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: A prospec-tive cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth 2020, 20, 73. [Google Scholar] [CrossRef]
- Workineh, Y.; Birhanu, S.; Kerie, S.; Ayalew, E.; Yihune, M. Determinants of premature rupture of membrane in Southern Ethiopia, 2017: Case control study design. BMC Res. Notes 2018, 11, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Achi, V.; De Vries, B.; O’Brien, C.; Park, F.; Tooher, J.; Hyett, J. First-Trimester Prediction of Preterm Prelabour Rupture of Membranes. Fetal Diagn. Ther. 2020, 47, 624–629. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, Q.; Wang, F.; Li, D. Association of gestational diabetes mellitus and abnormal vaginal flora with adverse pregnancy outcomes. Medicine 2018, 97, e11891. [Google Scholar] [CrossRef] [PubMed]
- Getahun, D.; Ananth, C.V.; Oyelese, Y.; Peltier, M.R.; Smulian, J.C.; Vintzileos, A.M. Acute and chronic respiratory diseases in pregnancy: Associations with spontaneous premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2007, 20, 669–675. [Google Scholar] [CrossRef]
- Hnat, M.D.; Mercer, B.M.; Thurnau, G.; Goldenberg, R.; Thom, E.A.; Meis, P.J.; Moawad, A.H.; Iams, J.D.; Van Dorsten, J.P. Perinatal outcomes in women with preterm rupture of membranes between 24 and 32 weeks of gestation and a history of vaginal bleeding. Am. J. Obstet. Gynecol. 2005, 193, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, L.; Yang, W.; Ni, W.; Jin, L.; Liu, J.; Ren, A. Gestational hypertension and pre-eclampsia and risk of spontaneous premature rupture of membranes: A population-based cohort study. Int. J. Gynecol. Obstet. 2019, 147, 195–201. [Google Scholar] [CrossRef]
- Ahmed, S.R.; El-Sammani, M.; Al-Sheeha, M.A.; Aitallah, A.S.; Jabin, K.F.; Ahmed, S.R. Pregnancy outcome in women with threatened miscarriage: A year study. Mater Sociomed. 2012, 24, 26–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evrenos, A.N.; Gungor, A.N.C.; Gulerman, C.; Cosar, E. Obstetric outcomes of patients with abortus imminens in the first trimester. Arch. Gynecol. Obstet. 2013, 289, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.G.; Marchesi, J.R.; Lee, Y.S.; Smith, A.; Lehne, B.; Kindinger, L.M.; Terzidou, V.; Holmes, E.; Nicholson, J.K.; Bennett, P.R.; et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018, 16, 9. [Google Scholar]
- Brown, R.G.; Al-Memar, M.; Marchesi, J.R.; Lee, Y.S.; Smith, A.; Chan, D.; Lewis, H.; Kindinger, L.; Terzidou, V.; Bourne, T.; et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl. Res. 2019, 207, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Controls | PROM a Cases | p-Value b | pPROM c Cases | p-Value | ||
---|---|---|---|---|---|---|
Number of women | 180 | 180 | 126 | |||
Age (years) | 28 (18–44) | 30 (18–43) | 0.057 | 31 (18–43) | ≤0.001 | |
No. d of pregnancy, n (%) | 1 | 113 (62.8%) | 87 (48.3%) | 0.013 | 47 (37.3%) | ≤0.001 |
2 | 51 (28.3%) | 55 (30.6%) | 45 (35.7%) | |||
3 | 12 (6.7%) | 26 (14.4%) | 22 (17.5%) | |||
4 | 4 (2.2%) | 7 (3.9%) | 7 (5.5%) | |||
5 | 0 (0.0%) | 3 (1.7%) | 3 (2.4%) | |||
6 | 0 (0.0%) | 2 (1.1%) | 2 (1.6%) | |||
Pregnancy disorders, n (%) | Asthma and respiratory system infections | 4 (2.2%) | 10 (5.6%) | 0.085 | 6 (4.8%) | 0.183 |
Bleeding | 3 (1.7%) | 7 (3.9%) | 0.168 | 5 (4.0%) | 0.189 | |
Diabetes mellitus | 28 (15.6%) | 18 (10.0%) | 0.114 | 16 (12.7%) | 0.483 | |
Hypertension | 22 (12.2%) | 19 (10.6%) | 0.619 | 13 (10.3%) | 0.606 | |
Hypothyroidism | 27 (15.0%) | 36 (20.0%) | 0.212 | 25 (19.8%) | 0.267 | |
Serological conflict | 11 (6.1%) | 4 (2.2%) | 0.055 | 2 (1.6%) | 0.045 | |
Threatened miscarriage | 0 (0.0%) | 15 (8.3%) | ≤0.001 | 12 (9.5%) | ≤0.001 | |
Urogenital infections | 20 (11.1%) | 20 (11.1%) | 1.000 | 11 (8.7%) | 0.497 | |
APTT (s) e | 28.3 (23.6–34.8) | 27.7 (21.7–44.5) | 0.103 | 28.1 (21.7–44.5) | 0.322 | |
Platelet parameters | No. [×109/L] | 211.5 (150–398) | 214 (59–457) | 0.220 | 220.5 (59–457) | 0.900 |
PDW [fL] f | 13.7 (9.0–23.7) | 13.3 (8.8–24.9) | 0.597 | 12.9 (8.8–24.9) | 0.010 | |
MPV [fL] g | 11.1 (9.0–14.1) | 11.1 (8.8–14.6) | 0.809 | 10.9 (8.8–14.6) | 0.024 | |
PCT [%] h | 0.24 (0.17–0.39) | 0.23 (0.06–0.50) | 0.086 | 0.23 (0.06–0.50) | 0.257 | |
Delivery, n (%) | Weeks of pregnancy | 39 (37–41) | 35 (17–41) | ≤0.001 | 33 (17–40) | ≤0.001 |
Natural | 82 (45.6%) | 78 (44.8%) | 0.891 | 49 (40.8%) | 0.419 | |
C-section i | 98 (54.4%) | 96 (55.2%) | 71 (59.2%) | |||
Fetal sex, n (%) | Female | 96 (53.3%) | 72 (42.6%) | 0.045 | 50 (43.5%) | 0.099 |
Male | 84 (46.7%) | 97 (57.4%) | 65 (56.5%) | |||
Neonatal data | Weight (percentiles) | 73 (10–100) | 63.5 (0–100) | 0.004 | 56.5 (0–100) | 0.002 |
Apgar in 1 min | 10 (7–10) | 9 (0–10) | ≤0.001 | 7 (0–10) | ≤0.001 | |
Apgar in 5 min | 10 (7–10) | 9 (0–10) | ≤0.001 | 8 (0–10) | ≤0.001 |
Polymorphism | Genetic Model | Genotype | Genotype Prevalence, n a (%) | OR d (95% CI e) | p-Value f | |
---|---|---|---|---|---|---|
tPROM b | pPROM c | |||||
CSF2 | Codominant | CC | 40 (74.1%) | 82 (65.1%) | 1.00 | 0.055 |
rs25881 | CT | 10 (18.5%) | 41 (32.5%) | 2.16 (0.97–4.78) | ||
TT | 4 (7.4%) | 3 (2.4%) | 0.42 (0.09–1.96) | |||
Dominant | CC | 40 (74.1%) | 82 (65.1%) | 1.00 | 0.160 | |
CT-TT | 14 (25.9%) | 44 (34.9%) | 1.66 (0.81–3.41) | |||
Recessive | CC-CT | 50 (92.6%) | 123 (97.6%) | 1.00 | 0.160 | |
TT | 4 (7.4%) | 3 (2.4%) | 0.34 (0.07–1.56) | |||
Overdominant | CC-TT | 44 (81.5%) | 85 (67.5%) | 1.00 | 0.032 | |
CT | 10 (18.5%) | 41 (32.5%) | 2.28 (1.04–5.01) | |||
FLT1 | Codominant | TT | 36 (66.7%) | 71 (56.4%) | 1.00 | 0.370 |
rs722503 | CT | 16 (29.6%) | 48 (38.1%) | 1.59 (0.79–3.20) | ||
CC | 2 (3.7%) | 7 (5.6%) | 1.80 (0.35–9.23) | |||
Dominant | TT | 36 (66.7%) | 71 (56.4%) | 1.00 | 0.160 | |
CT-CC | 18 (33.3%) | 55 (43.6%) | 1.61 (0.82–3.16) | |||
Recessive | TT-CT | 52 (96.3%) | 119 (94.4%) | 1.00 | 0.600 | |
CC | 2 (3.7%) | 7 (5.6%) | 1.52 (0.30–7.68) | |||
Overdominant | TT-CC | 38 (70.4%) | 78 (61.9%) | 1.00 | 0.230 | |
CT | 16 (29.6%) | 48 (38.1%) | 1.52 (0.76–3.05) | |||
TFPI | Codominant | CC | 43 (79.6%) | 103 (81.8%) | 1.00 | 0.530 |
C-399T | CT | 11 (20.4%) | 22 (17.5%) | 0.74 (0.33–1.70) | ||
TT | 0 (0%) | 1 (0.8%) | NA g (0.00–NA) | |||
Dominant | CC | 43 (79.6%) | 103 (81.8%) | 1.00 | 0.570 | |
CT-TT | 11 (20.4%) | 23 (18.2%) | 0.79 (0.35–1.78) | |||
Recessive | CC-CT | 54 (100%) | 125 (99.2%) | 1.00 | 0.380 | |
TT | 0 (0%) | 1 (0.8%) | NA (0.00–NA) | |||
Overdominant | CC-TT | 43 (79.6%) | 104 (82.5%) | 1.00 | 0.470 | |
CT | 11 (20.4%) | 22 (17.5%) | 0.74 (0.32–1.69) | |||
TLR9 | Codominant | TT | 13 (24.1%) | 33 (26.2%) | 1.00 | 0.510 |
rs352140 | CT | 32 (59.3%) | 81 (64.3%) | 0.88 (0.41–1.90) | ||
CC | 9 (16.7%) | 12 (9.5%) | 0.54 (0.18–1.57) | |||
Dominant | TT | 13 (24.1%) | 33 (26.2%) | 1.00 | 0.560 | |
CT-CC | 41 (75.9%) | 93 (73.8%) | 0.80 (0.38–1.69) | |||
Recessive | TT-CT | 45 (83.3%) | 114 (90.5%) | 1.00 | 0.270 | |
CC | 9 (16.7%) | 12 (9.5%) | 0.59 (0.23–1.49) | |||
Overdominant | TT-CC | 22 (40.7%) | 45 (35.7%) | 1.00 | 0.810 | |
CT | 32 (59.3%) | 81 (64.3%) | 1.08 (0.56–2.11) |
Categorical Covariate | Polymorphisms/Alleles | Multiple-SNP a Variant Frequency | OR c (95% CI d) | p-Value e | ||||
---|---|---|---|---|---|---|---|---|
CSF2 | FLT1 | TLR9 | TFPI | Controls | PROM b Cases | |||
rs25881 | rs722503 | rs352140 | C-399T | |||||
APTT f | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 0.99 (0.53–1.86) | 0.990 | |
T | T | - | - | 0.118 | 0.181 | 2.39 (1.23–4.64) | 0.011 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf k–Inf) | 1.000 | |
C | T | T | - | 0.356 | 0.318 | 1.00 | --- | |
C | T | C | - | 0.275 | 0.273 | 1.46 (0.67–3.16) | 0.340 | |
C | C | T | - | 0.134 | 0.122 | 0.74 (0.23–2.40) | 0.610 | |
T | T | T | - | 0.079 | 0.129 | 1.96 (0.80–4.83) | 0.150 | |
C | C | C | - | 0.064 | 0.106 | 3.17 (0.63–15.81) | 0.160 | |
T | T | C | - | 0.038 | 0.051 | 19.54 (1.22–311.80) | 0.037 | |
T | C | C | - | 0.026 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
- | - | T | C | 0.555 | 0.503 | 1.00 | --- | |
- | - | C | C | 0.364 | 0.400 | 1.94 (1.08–3.50) | 0.028 | |
- | - | T | T | 0.039 | 0.066 | 2.88 (0.50–16.61) | 0.240 | |
- | - | C | T | 0.041 | 0.031 | 0.80 (0.08–8.42) | 0.860 | |
C | T | T | C | 0.326 | 0.269 | 1.00 | --- | |
C | T | C | C | 0.244 | 0.255 | 1.03 (0.44–2.46) | 0.940 | |
C | C | T | C | 0.125 | 0.115 | 0.04 (0.01–0.28) | 0.002 | |
T | T | T | C | 0.080 | 0.118 | 0.41 (0.10–1.67) | 0.210 | |
C | C | C | C | 0.053 | 0.094 | 13.87 (1.96–98.21) | 0.009 | |
T | T | C | C | 0.036 | 0.052 | 35.00 (3.14–390.81) | 0.004 | |
C | T | T | T | 0.029 | 0.056 | 1.60 (0.27–9.60) | 0.610 | |
T | C | C | C | 0.032 | 0.011 | 0.09 (0.00–2.29) | 0.140 | |
T | C | T | C | 0.026 | NA l | 1.17 (0.20–6.86) | 0.860 | |
C | T | C | T | 0.030 | NA | 0.01 (0.00–1.30) | 0.066 | |
C | C | C | T | 0.010 | 0.019 | 2.67 (0.11–66.45) | 0.550 | |
PLT g | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.15 (0.79–1.69) | 0.460 | |
T | T | - | - | 0.118 | 0.181 | 1.57 (1.01–2.43) | 0.045 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | - | 0.356 | 0.318 | 1.00 | --- | |
C | T | C | - | 0.275 | 0.273 | 1.17 (0.70–1.96) | 0.540 | |
C | C | T | - | 0.134 | 0.122 | 1.01 (0.52–1.96) | 0.980 | |
T | T | T | - | 0.079 | 0.129 | 1.67 (0.88–3.16) | 0.120 | |
C | C | C | - | 0.064 | 0.106 | 1.61 (0.79–3.30) | 0.190 | |
T | T | C | - | 0.038 | 0.051 | 1.66 (0.61–4.49) | 0.320 | |
T | C | T | - | 0.026 | 0.000 | 0.13 (0.13–0.14) | ≤0.001 | |
T | C | C | - | 0.030 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
- | T | T | C | 0.405 | 0.385 | 1.00 | --- | |
- | T | C | C | 0.280 | 0.309 | 1.24 (0.78–1.98) | 0.370 | |
- | C | T | C | 0.150 | 0.119 | 0.84 (0.46–1.54) | 0.570 | |
- | C | C | C | 0.084 | 0.090 | 1.11 (0.57–2.17) | 0.770 | |
- | T | T | T | 0.029 | 0.066 | 2.75 (1.05–7.19) | 0.040 | |
- | T | C | T | 0.033 | 0.012 | 0.00 (−Inf–Inf) | 1.000 | |
- | C | C | T | 0.008 | 0.019 | 2.42 (0.29–20.09) | 0.410 | |
C | T | T | C | 0.326 | 0.269 | 1.00 | --- | |
C | T | C | C | 0.244 | 0.255 | 1.50 (0.86–2.60) | 0.150 | |
C | C | T | C | 0.125 | 0.115 | 1.10 (0.53–2.30) | 0.800 | |
T | T | T | C | 0.080 | 0.118 | 1.81 (0.91–3.60) | 0.094 | |
C | C | C | C | 0.053 | 0.094 | 1.92 (0.87–4.27) | 0.110 | |
C | T | T | T | 0.029 | 0.056 | 2.70 (0.98–7.40) | 0.055 | |
T | T | C | C | 0.036 | 0.052 | 1.91 (0.67–5.40) | 0.230 | |
T | C | C | C | 0.026 | NA | 0.00 (−Inf–Inf) | 1.000 | |
C | T | C | T | 0.030 | NA | 0.00 (−Inf–Inf) | 1.000 | |
T | C | T | C | 0.032 | 0.011 | 0.31 (0.01–12.37) | 0.530 | |
C | C | C | T | 0.010 | 0.019 | 1.88 (0.29–12.08) | 0.510 | |
PDW h | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.22 (0.83–1.79) | 0.320 | |
T | T | - | - | 0.118 | 0.181 | 1.59 (1.03–2.46) | 0.039 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
MPV i | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.22 (0.83–1.79) | 0.320 | |
T | T | - | - | 0.118 | 0.181 | 1.59 (1.03–2.46) | 0.038 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PCT j | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.20 (0.82–1.77) | 0.350 | |
T | T | - | - | 0.118 | 0.181 | 1.67 (1.07–2.61) | 0.024 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PLT + MPV | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.20 (0.82–1.77) | 0.350 | |
T | T | - | - | 0.118 | 0.181 | 1.64 (1.06–2.56) | 0.028 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PDW + MPV | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.21 (0.82–1.79) | 0.340 | |
T | T | - | - | 0.118 | 0.181 | 1.58 (1.02–2.45) | 0.041 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
MPV + PCT | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.21 (0.82–1.79) | 0.340 | |
T | T | - | - | 0.118 | 0.181 | 1.67 (1.07–2.61) | 0.024 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PLT + PDW + MPV | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.20 (0.81–1.77) | 0.370 | |
T | T | - | - | 0.118 | 0.181 | 1.64 (1.05–2.55) | 0.030 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PLT + PDW + PCT | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.24 (0.84–1.83) | 0.280 | |
T | T | - | - | 0.118 | 0.181 | 1.70 (1.09–2.66) | 0.019 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PLT + MPV + PCT | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.24 (0.84–1.83) | 0.280 | |
T | T | - | - | 0.118 | 0.181 | 1.71 (1.09–2.66) | 0.019 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | C | 0.326 | 0.269 | 1.00 | --- | |
C | T | C | C | 0.244 | 0.255 | 1.45 (0.82–2.56) | 0.200 | |
C | C | T | C | 0.125 | 0.115 | 1.26 (0.60–2.65) | 0.540 | |
T | T | T | C | 0.080 | 0.118 | 2.08 (1.02–4.23) | 0.045 | |
C | C | C | C | 0.053 | 0.094 | 2.00 (0.89–4.48) | 0.092 | |
T | T | C | C | 0.036 | 0.052 | 1.83 (0.65–5.15) | 0.260 | |
C | T | T | T | 0.029 | 0.056 | 2.55 (0.86–7.55) | 0.091 | |
PDW + MPV + PCT | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.20 (0.81–1.78) | 0.360 | |
T | T | - | - | 0.118 | 0.181 | 1.66 (1.06–2.60) | 0.026 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
PLT + PDW + MPV + PCT | C | T | - | - | 0.629 | 0.592 | 1.00 | --- |
C | C | - | - | 0.199 | 0.228 | 1.22 (0.83–1.81) | 0.310 | |
T | T | - | - | 0.118 | 0.181 | 1.69 (1.08–2.64) | 0.022 | |
T | C | - | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 |
Pregnancy Disorders | Polymorphisms/Alleles | Multiple-SNP a Variant Frequency | OR c (95% CI d) | p-Value e | |||
---|---|---|---|---|---|---|---|
CSF2 | FLT1 | TLR9 | Controls | pPROM b Cases | |||
rs25881 | rs722503 | rs352140 | |||||
Asthma and respiratory system infections | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.39 (0.92–2.09) | 0.110 | |
T | T | - | 0.118 | 0.187 | 1.72 (1.06–2.78) | 0.028 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf f–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.36 (0.76–2.43) | 0.300 | |
C | C | T | 0.134 | 0.150 | 1.59 (0.77–3.28) | 0.210 | |
T | T | T | 0.079 | 0.134 | 1.98 (0.97–4.04) | 0.063 | |
C | C | C | 0.064 | 0.089 | 1.69 (0.73–3.93) | 0.220 | |
T | T | C | 0.038 | 0.045 | 2.09 (0.65–6.76) | 0.220 | |
T | C | C | 0.030 | 0.008 | 0.00 (−Inf–Inf) | 1.000 | |
T | C | T | 0.026 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
Bleeding | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.38 (0.92–2.07) | 0.120 | |
T | T | - | 0.118 | 0.187 | 1.73 (1.07–2.79) | 0.026 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.27 (0.68–2.39) | 0.450 | |
C | C | T | 0.134 | 0.150 | 1.52 (0.73–3.14) | 0.260 | |
T | T | T | 0.079 | 0.134 | 2.00 (0.97–4.10) | 0.060 | |
C | C | C | 0.064 | 0.089 | 1.63 (0.67–3.95) | 0.280 | |
T | T | C | 0.038 | 0.045 | 1.80 (0.24–13.52) | 0.570 | |
T | C | C | 0.030 | 0.008 | 0.03 (0.00–3.29 × 1026) | 0.920 | |
T | C | T | 0.026 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
Diabetes mellitus | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.35 (0.90–2.02) | 0.150 | |
T | T | - | 0.118 | 0.187 | 1.72 (1.06–2.77) | 0.027 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.29 (0.61–2.72) | 0.510 | |
C | C | T | 0.134 | 0.150 | 1.41 (0.52–3.77) | 0.500 | |
T | T | T | 0.079 | 0.134 | 1.94 (0.93–4.05) | 0.080 | |
C | C | C | 0.064 | 0.089 | 1.63 (0.50–5.34) | 0.420 | |
T | T | C | 0.038 | 0.045 | 1.73 (0.03–95.93) | 0.790 | |
T | C | C | 0.030 | 0.008 | 0.11 (0.00–8.01 × 1015) | 0.910 | |
T | C | T | 0.026 | 0.000 | 0.11 (0.00–7.18 × 1011) | 0.880 | |
Hypertension | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.35 (0.90–2.03) | 0.140 | |
T | T | - | 0.118 | 0.187 | 1.71 (1.06–2.75) | 0.029 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.26 (0.71–2.23) | 0.440 | |
C | C | T | 0.134 | 0.150 | 1.46 (0.71–2.99) | 0.300 | |
T | T | T | 0.079 | 0.134 | 1.92 (0.94–3.92) | 0.074 | |
C | C | C | 0.064 | 0.089 | 1.62 (0.70–3.75) | 0.260 | |
T | T | C | 0.038 | 0.045 | 1.90 (0.59–6.12) | 0.280 | |
T | C | C | 0.030 | 0.008 | 0.00 (−Inf–Inf) | 1.000 | |
T | C | T | 0.026 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
Hypothyroidism | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.36 (0.90–2.04) | 0.140 | |
T | T | - | 0.118 | 0.187 | 1.71 (1.06–2.77) | 0.029 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.28 (0.72–2.26) | 0.400 | |
C | C | T | 0.134 | 0.150 | 1.47 (0.72–2.98) | 0.290 | |
T | T | T | 0.079 | 0.134 | 2.00 (0.98–4.10) | 0.058 | |
C | C | C | 0.064 | 0.089 | 1.65 (0.72–3.80) | 0.240 | |
T | T | C | 0.038 | 0.045 | 1.76 (0.53–5.79) | 0.360 | |
T | C | C | 0.030 | 0.008 | 0.01 (−Inf–Inf) | 1.000 | |
T | C | T | 0.026 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
Serological conflict | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.32 (0.88–1.98) | 0.180 | |
T | T | - | 0.118 | 0.187 | 1.66 (1.03–2.69) | 0.039 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.27 (0.68–2.39) | 0.450 | |
C | C | T | 0.134 | 0.150 | 1.37 (0.65–2.86) | 0.410 | |
T | T | T | 0.079 | 0.134 | 1.93 (0.94–3.96) | 0.076 | |
C | C | C | 0.064 | 0.089 | 1.63 (0.64–4.14) | 0.310 | |
T | T | C | 0.038 | 0.045 | 1.53 (0.18–12.75) | 0.690 | |
T | C | C | 0.030 | 0.008 | 0.14 (0.00–1.44 × 106) | 0.810 | |
T | C | T | 0.026 | 0.000 | 0.01 (0.00–0.05) | ≤0.001 | |
Threatened miscarriage | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.34 (0.89–2.02) | 0.170 | |
T | T | - | 0.118 | 0.187 | 1.69 (1.03–2.77) | 0.037 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.25 (0.70–2.23) | 0.460 | |
C | C | T | 0.134 | 0.150 | 1.54 (0.71–3.36) | 0.280 | |
T | T | T | 0.079 | 0.134 | 1.94 (0.90–4.21) | 0.094 | |
C | C | C | 0.064 | 0.089 | 1.34 (0.55–3.28) | 0.530 | |
T | T | C | 0.038 | 0.045 | 1.66 (0.44–6.24) | 0.450 | |
T | C | C | 0.030 | 0.008 | 0.00 (−Inf–Inf) | 1.000 | |
T | C | T | 0.026 | 0.000 | 0.22 (0.00–1.71 × 103) | 0.740 | |
Urogenital infections | C | T | - | 0.629 | 0.568 | 1.00 | --- |
C | C | - | 0.199 | 0.246 | 1.35 (0.90–2.02) | 0.150 | |
T | T | - | 0.118 | 0.187 | 1.70 (1.05–2.75) | 0.031 | |
T | C | - | 0.054 | 0.000 | 0.00 (−Inf–Inf) | 1.000 | |
C | T | T | 0.356 | 0.299 | 1.00 | --- | |
C | T | C | 0.275 | 0.276 | 1.30 (0.71–2.39) | 0.390 | |
C | C | T | 0.134 | 0.150 | 1.41 (0.63–3.14) | 0.410 | |
T | T | T | 0.079 | 0.134 | 1.91 (0.91–4.00) | 0.089 | |
C | C | C | 0.064 | 0.089 | 1.57 (0.62–3.99) | 0.350 | |
T | T | C | 0.038 | 0.045 | 1.58 (0.21–12.03) | 0.660 | |
T | C | C | 0.030 | 0.008 | 0.23 (0.00–1.33 × 103) | 0.740 | |
T | C | T | 0.026 | 0.000 | 0.14 (0.00–4.16 × 105) | 0.790 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wujcicka, W.I.; Kacerovsky, M.; Krekora, M.; Kaczmarek, P.; Grzesiak, M. Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes. Genes 2021, 12, 1725. https://doi.org/10.3390/genes12111725
Wujcicka WI, Kacerovsky M, Krekora M, Kaczmarek P, Grzesiak M. Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes. Genes. 2021; 12(11):1725. https://doi.org/10.3390/genes12111725
Chicago/Turabian StyleWujcicka, Wioletta Izabela, Marian Kacerovsky, Michał Krekora, Piotr Kaczmarek, and Mariusz Grzesiak. 2021. "Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes" Genes 12, no. 11: 1725. https://doi.org/10.3390/genes12111725
APA StyleWujcicka, W. I., Kacerovsky, M., Krekora, M., Kaczmarek, P., & Grzesiak, M. (2021). Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes. Genes, 12(11), 1725. https://doi.org/10.3390/genes12111725