DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges
Abstract
:1. Introduction
- What was known about DNA-TPPR at the time, including in relation to:
- ○
- Potential means and complexities of transfer.
- ○
- Core factors impacting transfer.
- ○
- Prevalence and origins of non-self DNA on various surfaces.
- ○
- Persistence of deposited DNA in various circumstances.
- ○
- Potential relevance of activities performed between activities of interest.
- ○
- Impact of using different recovery and processing methodologies on quantities of DNA retrieved and the profile types generated.
- Consideration of associated elements, including in relation to:
- ○
- Contamination risks.
- ○
- Type of sources of information, and tools, to utilise when addressing activity level questions.
- ○
- Readiness of those addressing transfer-related questions, and the adequacies of training, competency/proficiency testing and accreditation programs.
- ○
- Means of creating, gathering, sharing and using data.
- Research to better understand the effect of the many variables impacting DNA-TPPR, and build the data necessary to facilitate more accurate probability assignments of generating particular types of profiles in a wide range of relevant casework situations. Specific areas of research include:
- ○
- Impacts of physical and chemical differences of contacting surfaces, including those relating to their topography, chemical compositions, fibre type, weave, thickness, electrical charge, etc.
- ○
- Assessment of transfer of primary touch deposits after long time periods.
- ○
- Drying patterns and transfer rates of various relevant biological materials, such as semen, and the impact different substrates may have.
- ○
- Effect of duration and/or frequency of use on the accumulation of DNA, and subsequent changes to profiles, for objects of different types and substrates.
- ○
- Awareness of general levels of background DNA (including quantity, origin and quality), and the impact of factors such as a person’s shedder status and frequency of item use.
- ○
- Understanding of the influence of any background DNA on the interpretation of mixed profiles.
- ○
- Acquisition of more accurate probabilities of finding non-self DNA, and of the different relative mixture proportions within a deposit made by a hand, by collecting more samples from random individuals in a wide range of situations.
- ○
- Prevalence of non-self DNA on the bodies of both children and adults.
- ○
- The quantity and quality of DNA from donors and other individuals in fingernail samples after various known contact activities; acquisition of non-self DNA during regular social interaction; indirect transfer by occupying another person’s space for a certain amount of time; the effects of personal habits; and an individual’s shedder status, on detection of donor and foreign DNA.
- ○
- Awareness of contributors to the non-self component of DNA retrieved from personal objects and occupied spaces.
- ○
- Persistence of the temporary user of an item after use by the original owner has resumed.
- ○
- Probabilities of detection, and relative contribution, of individuals to profiles retrieved from a wider array of shared objects and surfaces within confined shared spaces (e.g., homes, offices, cars) and public spaces, given known histories.
- ○
- Impact of handwashing on the amount and quality of DNA deposited from hands, including factors such as: different methods of washing hands, the natural accumulation of DNA on hands post-handwashing, and the different personal habits of individuals, and their effect on the accumulation of self and non-self DNA on hands.
- ○
- Impacts of genetic factors and various non-genetic factors (e.g., behavioural traits, health situation, and/or environmental conditions), and their potential interactions, on shedder status, as well as identifying and understanding their underlying properties.
- ○
- Understanding the impact of the absence/presence of the types of information one relies on that may be gathered by the crime scene attending officer, and to consider means of improving the gathering of relevant information in an efficient and consistent manner.
- ○
- Studies to help establish more accurate probability distributions for relevant factors impacting transfer.
- ○
- Determining the accuracy of ‘experiential’ assessment (i.e., based on experiences) relative to ‘experimental’ assessment (i.e., based on data from experiments).
- Enhancement of access to relevant data, including specific areas such as:
- ○
- Availability of a quality controlled open access depository of relevant DNA-TPPR information that can be easily mined for various purposes.
- ○
- Inclusion of relevant details of the methods, protocols and thresholds applied to generate the DNA-TPPR data presented.
- Recognition of DNA activity-associated expertise to be distinct and supported by dedicated training, competency testing, authorisation and ongoing proficiency testing.
- Underestimating the complexities and multitude of factors needing to be considered.
- Recording relevant information to allow comparisons and appropriate use.
- Identifying the relative weight of different impacting variables.
- How much DNA can be recovered from handled items.
- Whether trace DNA can be detected under certain scenarios including varying degrees of indirect transfer.
- Factors which may influence these results.
2. Identification and Reporting of Recent DNA-TPPR Publications
3. Synopsis of Recent DNA-TPPR-Related Publications
3.1. Detection and Source Identification
- Trypan blue to improve visibility of shed skin flakes collected by adhesive film [41].
- Diamond™ Nucleic Acid Dye (DD) (Promega, Madison, WI, USA) to detect cellular material in lip-prints [42].
- DD to detect DNA on used swabs to potentially assess if further processing for DNA profiling is warranted [43].
- Ethidium Bromide to detect small amounts of DNA on swabs to possibly provide similar pre-screening benefits [44].
- Immunohistochemical staining of skin-expressed proteins to identify exfoliated epidermal cells to screen samples taken from handled/touched objects [45].
- NIR hyperspectral imaging to localise invisible traces of blood, urine and semen on various substrates [46].
- A test based on the click reaction between serum albumin and tetraphenylethene maleimide (TPE-MI) to visualise invisible blood stains (and showing that it may perform better than luminol) [47].
3.2. Recovery
3.2.1. Sampling
3.2.2. Storage
3.2.3. Extraction
3.2.4. Preferential Recovery from Mixed Samples
3.2.5. Profiling
3.2.6. Methodology Differences
3.3. Time since Deposition
3.4. Persistence
3.5. Prevalence and Background
3.6. Manner of Handling
3.6.1. Handling Time
3.6.2. Pressure
3.6.3. Scenario Testing
3.6.4. Non-Contact Transfer
3.7. Shedder Status
3.8. Contamination
3.9. Microbiomes
- Classification of individuals and the potential to detect sexual contact using the microbiome of the pubic region [161].
- Bacterial communities associated with cell phones and shoes of the same person [162].
- Microbial communities of a wide range of known body sites and the detection of the source of different microbial contributions in mixtures of different body sites or with soil [163].
- Distinguishing microbiome communities of saliva, skin and mixtures of both as a potential tool for identifying samples of single and mixed biological materials [164].
- Correlations between the presence of certain bacterial species on a donor’s hands and personal characteristics [165].
- The direct and indirect transfer of microbiomes between individuals [166].
- The ability of several commercial kits to recover sufficient bacterial DNA from fingerprints to generate a microbiome profile [167].
- Generating both STR profiles and microbial population profiles from the same DNA extract of each sample to evaluate the sub-source and source questions, respectively in two forensic cases [168].
- The usefulness of the likelihood ratio approach for the evaluation of source attribution in microbial forensic cases to facilitate the interpretation of evidence in legal proceedings [169].
3.10. Evaluating DNA Evidence
3.10.1. Setting Propositions and Use of Bayesian Networks
3.10.2. Other Activity Level Assessment-Related Matters
4. Reflections on the Research Efforts to Meet the Challenges
- DNA profile success of samples from casework-related items [24].
- Impacts of surface roughness and physicochemical interactions on deposits of biological materials [184].
- Impacts of chewing gum on drying properties of saliva [185].
- Prevalence and persistence of saliva in vehicles [186].
- Exploring means of determining an individual’s shedder status.
- Consideration of distance and time with respect to accumulation of DNA within offices on surfaces that are not touched [187].
- Evaluation of profiles retrieved from the outside of gloves after simulating transfer scenarios related to breaking and entering [188].
- Findings indicating that cities around the globe have distinct microbial taxonomic signatures [189].
- Development of an LR framework incorporating sensitivity analysis to model multiple direct and secondary transfer events on skin surfaces [190].
- Highlighting the importance/value of considering common sources of unknown DNA [191].
- Assigning weight of cell type testing results [192] when evaluating findings given activity level propositions.
5. Industry Actions towards Addressing Challenges
5.1. Research
5.2. Education and Training
5.3. Availability and Sharing of Data
5.4. Standards and Guidance
- #5.1: DNA can be transferred from one surface or person to another, and this can potentially happen multiple times. Therefore, the DNA present on an evidence item may be unrelated (irrelevant) to the crime being investigated.
- #5.2: Highly sensitive DNA methods increase the likelihood of detecting irrelevant DNA. When assessing evidence that involves very small quantities of DNA, it is especially important to consider relevance.
- #5.3: Highly sensitive methods increase the likelihood of detecting contaminating DNA that might affect an investigation. Contamination avoidance procedures should be robust both at the crime scene and in the laboratory.
- #5.4: DNA statistical results such as a sub-source likelihood ratio do not provide information about how or when DNA was transferred, or whether it is relevant to a case. Therefore, using the likelihood ratio as a standalone number without context can be misleading.
- #5.5: The fact that DNA transfers easily between objects does not negate the value of DNA evidence. However, the value of DNA evidence depends on the circumstances of the case.
- #5.6: There is a growing body of knowledge about DNA transfer and persistence, but significant knowledge gaps remain.
5.5. Cooperation with Other Scientific Disciplines, the Legal Community, and Police
6. Concluding Remarks
- Quantity and quality of research directed at informing our understanding of DNA-TPPR and building the data needed to assign probabilities to DNA quantities and profile types being obtained given a vast range of circumstances.
- Harmonisation, standardisation, and accessibility of available data.
- Development of validated standardised methodologies and protocols to perform DNA-related activity level evaluations.
- Training and authorisation of experts to perform such evaluations and provide the guidance when needed as well as recognition of this expertise as a separate discipline.
- Education and cooperation of stakeholders within the legal fraternity.
Author Contributions
Funding
Conflicts of Interest
References
- Van Oorschot, R.A.H.; Szkuta, B.; Meakin, G.E.; Kokshoorn, B.; Goray, M. DNA transfer in forensic science: A review. Forensic Sci. Int. Genet. 2019, 38, 140–166. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Kokshoorn, B.; Biedermann, A. Evaluation of forensic genetics findings given activity level propositions: A review. Forensic Sci. Int. Genet. 2018, 36, 34–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, P.; Haned, H.; Bleka, O.; Hansson, O.; Dørum, G.; Egeland, T. Genotyping and interpretation of STR-DNA: Low-template, mixtures and database matches—Twenty years of research and development. Forensic Sci. Int. Genet. 2015, 18, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M. Advanced Topics in Forensic DNA Typing: Methodology; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Van Oorschot, R.A.H.; Ballantyne, K.N.; Mitchell, J.R. Forensic trace DNA: A review. Investig. Genet. 2010, 1, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballantyne, K.N.; Poy, A.L.; van Oorschot, R.A.H. Environmental DNA monitoring: Beware of the transition to more sensitive typing methodologies. Aust. J. Forensic Sci. 2013, 45, 323–340. [Google Scholar] [CrossRef]
- Farash, K.; Hanson, E.K.; Ballantyne, J. Single source DNA profile recovery from single cells isolated from skin and fabric from touch DNA mixtures in mock physical assaults. Sci. Justice 2018, 58, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Van Oorschot, R.A.H.; Jones, M.K. DNA fingerprints from fingerprints. Nature 1997, 387, 767. [Google Scholar] [CrossRef]
- Lowe, A.; Murray, C.; Whitaker, J.; Tully, G.; Gill, P. The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci. Int. 2002, 129, 25–34. [Google Scholar] [CrossRef]
- Van Oorschot, R.A.H.; Glavich, G.; Mitchell, R.J. Persistence of DNA deposited by the original user on objects after subsequent use by a second person. Forensic Sci. Int. Genet. 2014, 8, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, M.; Williams, L.; McKenna, L.; Moore, E. Probability of detection of DNA deposited by habitual wearer and/or the second individual who touched the garment. Forensic Sci. Int. Genet. 2016, 20, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Magee, A.M.; Breathnach, M.; Doak, S.; Thornton, F.; Noone, C.; McKenna, L.G. Wearer and non-wearer DNA on the collars and cuffs of upper garments of worn clothing. Forensic Sci. Int. Genet. 2018, 34, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Poetsch, M.; Pfeifer, M.; Konrad, H.; Bajanowski, T.; Helmus, J. Impact of several wearers on the persistence of DNA on clothes—A study with experimental scenarios. Int. J. Legal Med. 2018, 132, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wickenheiser, R.A. Trace DNA: A review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J. Forensic Sci. 2002, 47, 442–450. [Google Scholar] [CrossRef]
- Harbison, S.-A.; Fallow, M.; Bushell, D. An analysis of the success rate of 908 trace DNA samples submitted to the Crime Sample Database Unit in New Zealand. Aust. J. Forensic Sci. 2008, 40, 49–53. [Google Scholar] [CrossRef]
- Castella, V.; Mangin, P. DNA profiling success and relevance of 1739 contact stains from caseworks. Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 405–407. [Google Scholar] [CrossRef]
- Raymond, J.J.; van Oorschot, R.A.H.; Walsh, S.J.; Roux, C.; Gunn, P.R. Trace DNA and street robbery: A criminalistic approach to DNA evidence. Forensic Sci. Int. Genet. Suppl. Ser. 2009, 2, 544–546. [Google Scholar] [CrossRef]
- Mapes, A.A.; Kloosterman, A.D.; de Poot, C.J.; van Marion, V. Objective data on DNA success rates can aid the selection process of crime samples for analysis by rapid mobile DNA technologies. Forensic Sci. Int. 2016, 264, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Mapes, A.A.; Kloosterman, A.D.; van Marion, V.; de Poot, C.J. Knowledge on DNA success rates to optimize the DNA analysis process: From crime scene to laboratory. J. Forensic Sci. 2016, 61, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Dziak, R.; Peneder, A.; Buetter, A.; Hageman, C. Trace DNA sampling success from evidence items commonly encountered in forensic casework. J. Forensic Sci. 2018, 63, 835–841. [Google Scholar] [CrossRef]
- Martin, B.; Blackie, R.; Taylor, D.; Linacre, A. DNA profiles generated from a range of touched sample types. Forensic Sci. Int. Genet. 2018, 36, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Oorschot, R.A.H.; Szkuta, B.; Verdon, T.J.; Mitchell, R.J.; Ballantyne, K.N. Trace DNA profiling in missing persons investigations. In Handbook of Missing Persons; Morewitz, S.J., Sturdy Colls, C., Eds.; Springer: Cham, Switzerland, 2016; pp. 353–363. [Google Scholar]
- Krosch, M.N. Variation in forensic DNA profiling success among sampled items and collection methods: A Queensland perspective. Aust. J. Forensic Sci. 2020, 53, 612–625. [Google Scholar] [CrossRef]
- Taroni, F.; Biedermann, A.; Vuille, J.; Morling, N. Whose DNA is this? How relevant a question? (A note for forensic scientists). Forensic Sci. Int. Genet. 2013, 7, 467–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meakin, G.; Jamieson, A. DNA transfer: Review and implications for casework. Forensic Sci. Int. Genet. 2013, 7, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Gill, P. Analysis and implications of the miscarriages of justice of Amanda Knox and Raffaele Sollecito. Forensic Sci. Int. Genet. 2016, 23, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Blackie, R.; Taylor, D.; Linacre, A. DNA profiles from clothing fibers using direct PCR. Forensic Sci. Med. Pathol. 2016, 12, 331–335. [Google Scholar] [CrossRef]
- Ruan, T.; Barash, M.; Gunn, P.; Bruce, D. Investigation of DNA transfer onto clothing during regular daily activities. Int. J. Leg. Med. 2018, 132, 1035–1042. [Google Scholar] [CrossRef]
- Hess, S.; Haas, C. Recovery of trace DNA on clothing: A comparison of mini-tape lifting and three other forensic evidence collection techniques. J. Forensic Sci. 2017, 62, 187–191. [Google Scholar] [CrossRef]
- Van den Berge, M.; Ozcanhan, G.; Zijlstra, S.; Lindenbergh, A.; Sijen, T. Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci. Int. Genet. 2016, 21, 81–89. [Google Scholar] [CrossRef]
- Van den Berge, M.; van de Merwe, L.; Sijen, T. DNA transfer and cell type inference to assist activity level reporting: Post-activity background samples as a control in dragging scenario. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e591–e592. [Google Scholar] [CrossRef] [Green Version]
- Fonneløp, A.E.; Ramse, M.; Egeland, T.; Gill, P. The implications of shedder status and background DNA on direct and secondary transfer in an attack scenario. Forensic Sci. Int. Genet. 2017, 29, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Noël, S.; Lagace, K.; Rogic, A.; Granger, D.; Bourgoin, S.; Jolicoeur, C.; Séguin, D. DNA transfer during laundering may yield complete genetic profiles. Forensic Sci. Int. Genet. 2016, 23, 240–247. [Google Scholar] [CrossRef]
- Burrill, J.; Daniel, B.; Frascione, N. A review of trace “Touch DNA” deposits: Variability factors and an exploration of cellular composition. Forensic Sci. Int. Genet. 2019, 39, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosch, A.; Courts, C. On DNA transfer: The lack and difficulty of systematic research and how to do it better. Forensic Sci. Int. Genet. 2019, 40, 24–36. [Google Scholar] [CrossRef]
- DNA-TrAC Database. Available online: https://bit.ly/2R4bFgL (accessed on 15 August 2021).
- Taylor, D.; Biedermann, A.; Samie, L.; Pun, K.M.; Hicks, T.; Champod, C. Helping to distinguish primary from secondary transfer events for trace DNA. Forensic Sci. Int. Genet. 2017, 28, 155–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, R.; Shimoda, O.; Okitsu, T.; Sakurada, M.; Ueno, Y. Development of a modified p-dimethylaminocinnamaldehyde solution for touch DNA analysis and its application to STR analysis. Forensic Sci. Int. Genet. 2019, 38, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Dierig, L.; Schmidt, M.; Wiegand, P. Looking for the pinpoint: Optimizing identification, recovery and DNA extraction of micro traces in forensic casework. Forensic Sci. Int. Genet. 2020, 44, 102191. [Google Scholar] [CrossRef]
- Kanokwongnuwut, P.; Kirkbride, K.P.; Linacre, A. Detection of cellular material in lip-prints. Forensic Sci. Med. Pathol. 2019, 15, 362–368. [Google Scholar] [CrossRef]
- Kanokwongnuwut, P.; Kirkbride, P.; Linacre, A. Visualising latent DNA on swabs. Forensic Sci. Int. 2018, 291, 115–123. [Google Scholar] [CrossRef] [Green Version]
- Kitchner, E.; Chavez, J.; Ceresa, L.; Bus, M.M.; Budowle, B.; Gryczynski, Z. A novel approach for visualization and localization of small amounts of DNA on swabs to improve DNA collection and recovery process. Analyst 2021, 146, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, T.; Ikegaya, H.; Watanabe, K.; Miyasaka, S. Immunohistochemical staining of skin-expressed proteins to identify exfoliated epidermal cells for forensic purposes. Forensic Sci. Int. 2019, 303, 109940. [Google Scholar] [CrossRef]
- Malegori, C.; Alladio, E.; Oliveri, P.; Manis, C.; Vincenti, M.; Garofano, P.; Barni, F.; Berti, A. Identification of invisible biological traces in forensic evidences by hyperspectral NIR imaging combined with chemometrics. Talanta 2020, 215, 120911. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, P.; Liu, H.; Zhao, Z.; Xiong, L.; He, W.; Kwok, R.T.K.; Lam, J.W.Y.; Ye, R.; Tang, B.Z. Robust Serum Albumin-Responsive AIEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Appl. Mater. Interfaces 2019, 11, 17306–17312. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.E.; Nazeer, S.S.; Sivakumar, T.T.; Nair, B.J.; Jayasree, R.S. Forensic application of fluorescence spectroscopy: An efficient technique to predict the presence of human saliva. J. Lumin. 2018, 203, 696–701. [Google Scholar] [CrossRef]
- Raj, C.K.; Garlapati, K.; Karunakar, P.; Badam, R.; Soni, P.; Lavanya, R. Saliva as Forensic Evidence using Fluorescent Spectroscopy: A Pilot Study. J. Clin. Diagn. Res. 2018, 12, ZC27–ZC29. [Google Scholar] [CrossRef]
- Butler, J.; Chaseling, J.; Wright, K. A Comparison of Four Presumptive Tests for the Detection of Blood on Dark Materials. J. Forensic Sci. 2019, 64, 1838–1843. [Google Scholar] [CrossRef]
- Burrill, J.; Daniel, B.; Frascione, N. Illuminating touch deposits through cellular characterization of hand rinses and body fluids with nucleic acid fluorescence. Forensic Sci. Int. Genet. 2020, 46, 102269. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.; Miller, M.; Yadavalli, V.K.; Ehrhardt, C.J. Open source software tool for the automated detection and characterization of epithelial cells from trace biological samples. Forensic Sci. Int. 2020, 312, 110300. [Google Scholar] [CrossRef] [PubMed]
- Kishbaugh, J.M.; Cielski, S.; Fotusky, A.; Lighthart, S.; Maguire, K.; Quarino, L.; Conte, J. Detection of prostate specific antigen and salivary amylase in vaginal swabs using SERATEC® immunochromatographic assays. Forensic Sci. Int. 2019, 304, 109899. [Google Scholar] [CrossRef]
- Sari, D.; Hitchcock, C.; Collins, S.; Cochrane, C.; Bruce, D. Amylase testing on intimate samples from pre-pubescent, post-pubescent and post-menopausal females: Implications for forensic casework in sexual assault allegations. Aust. J. Forensic Sci. 2020, 52, 618–625. [Google Scholar] [CrossRef]
- Suttipasit, P. Forensic Spermatozoa Detection. Am. J. Forensic Med. Pathol. 2019, 40, 304–311. [Google Scholar] [CrossRef]
- Abbas, N.; Lu, X.; Badshah, M.A.; In, J.B.; Heo, W.I.; Park, K.Y.; Lee, M.-K.; Kim, C.H.; Kang, P.; Chang, W.-J.; et al. Development of a protein microarray chip with enhanced fluorescence for identification of semen and vaginal fluid. Sensors 2018, 18, 3874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, K.R.; Glynn, C.L. Investigating the Isolation and Amplification of microRNAs for Forensic Body Fluid Identification. MicroRNA 2018, 7, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, E.; Ingold, S.; Dorum, G.; Haas, C.; Lagace, R.; Ballantyne, J. Assigning forensic body fluids to DNA donors in mixed samples by targeted RNA/DNA deep seqeuncing of coding region SNPs using ion torrent technology. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 23–24. [Google Scholar] [CrossRef]
- Kamanna, S.; Henry, J.; Voelcker, N.; Linacre, A.; Kirkbride, K.P. A complementary forensic ‘proteo-genomic’ approach for the direct identification of biological fluid traces under fingernails. Anal. Bioanal. Chem. 2018, 410, 6165–6175. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, K.; Akutsu, T. Development of a DNA methylation-based semen-specific SNP typing method: A new approach for genotyping from a mixture of body fluids. Forensic Sci. Int. Genet. 2018, 37, 227–234. [Google Scholar] [CrossRef]
- Mishra, I.K.; Singh, B.; Mishra, A.; Mohapatra, B.K.; Kaushik, R.; Behera, C. Touch DNA as forensic aid: A review. Indian J. Forensic Med. Toxicol. 2020, 14, 58–62. [Google Scholar]
- Yudianto, A.; Indah Nuraini, M.; Furqoni, A.H.; Manyanza Nzilibili, S.M.; Harjanto, P. The use of touch DNA analysis in forensic identification focusing on Short Tandem Repeat-Combined DNA Index System loci THO1, CSF1PO and TPOX. Infect. Dis. Rep. 2020, 12, 8716. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.Y.; Tan, J.; Lim, Z.G.; Kwok, R.; Lim, W.; Syn, C.K.C. DNA profiling success rates of commonly submitted crime scene items. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 597–599. [Google Scholar] [CrossRef]
- Ferrara, M.; Sessa, F.; Rendine, M.; Spagnolo, L.; De Simone, S.; Riezzo, I.; Ricci, P.; Pascale, N.; Salerno, M.; Bertozzi, G.; et al. A multidisciplinary approach is mandatory to solve complex crimes: A case report. Egypt. J. Forensic Sci. 2019, 9, 11. [Google Scholar] [CrossRef]
- Naue, J.; Sänger, T.; Lutz-Bonengel, S. Get it off, but keep it: Efficient cleaning of hair shafts with parallel DNA extraction of the surface stain. Forensic Sci. Int. Genet. 2020, 45, 102210. [Google Scholar] [CrossRef] [PubMed]
- Cahill, M.J.; Chapman, B. The novel use of a spray-on rubber coating to recover cellular material from the surface of bricks. Forensic Sci. Int. Genet. 2020, 49, 102404. [Google Scholar] [CrossRef] [PubMed]
- Brower, A.; Akridge, B.; Siemens-Bradley, N. Human DNA collection from police dogs: Technique and application. Forensic Sci. Med. Pathol. 2021, 17, 230–234. [Google Scholar] [CrossRef]
- Musse, J.O.; Marques, J.A.M.; Remualdo, V.; Pitlovanciv, A.K.; da Silva, C.A.L.; Corte-Real, F.; Vieira, D.N.; Vieira, W.A.; Paranhos, L.R.; Corte-Real, A.T. Deoxyribonucleic acid extraction and quantification from human saliva deposited on foods with bitemarks. J. Contemp. Dent. Pract. 2019, 20, 548–551. [Google Scholar] [PubMed]
- Thakar, M.K.; Sahajpal, V.; Bhambara, A.K.; Bhandari, D.; Sharma, A. DNA profiling of saliva traces habitually deposited on various documents: A pilot study. Egypt. J. Forensic Sci. 2020, 10, 14. [Google Scholar] [CrossRef]
- Aparna, R.; Shanti Iyer, R. Tears and Eyewear in Forensic Investigation—A Review. Forensic Sci. Int. 2020, 306, 110055. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.M.; Watts, J.E.M. The development of a rapid and reliable method (SAPSWash): For the extraction and recovery of spermatozoa from superabsorbent polymer containing products. Forensic Sci. Int. 2020, 316, 110501. [Google Scholar] [CrossRef]
- Vanderheyden, N.; Verhoeven, E.; Vermeulen, S.; Bekaert, B. Survival of forensic trace evidence on improvised explosive devices: Perspectives on individualisation. Sci. Rep. 2020, 10, 12813. [Google Scholar] [CrossRef] [PubMed]
- Tasker, E.; Roman, M.G.; Akosile, M.; Mayes, C.; Hughes, S.; LaRue, B. Efficacy of “touch” DNA recovery and room-temperature storage from assault rifle magazines. Leg. Med. 2020, 43, 101658. [Google Scholar] [CrossRef] [PubMed]
- Booth, N.; Chapman, B. DNA recovery from fired hollow point ammunition. Aust. J. Forensic Sci. 2019, 51, S107–S110. [Google Scholar] [CrossRef] [Green Version]
- Sterling, S.A.; Mason, K.E.; Anex, D.S.; Parker, G.J.; Hart, B.; Prinz, M. Combined DNA Typing and Protein Identification from Unfired Brass Cartridges. J. Forensic Sci. 2019, 64, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Thanakiatkrai, P.; Rerkamnuaychoke, B. Direct STR typing from fired and unfired bullet casings. Forensic Sci. Int. 2019, 301, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.M.; Bonds, R.M.; Holland, C.A.; McElhoe, J.A. Recovery of mtDNA from unfired metallic ammunition components with an assessment of sequence profile quality and DNA damage through MPS analysis. Forensic Sci. Int. Genet. 2019, 39, 86–96. [Google Scholar] [CrossRef]
- Jansson, L.; Forsberg, C.; Akel, Y.; Dufva, C.; Ansell, C.; Ansell, R.; Hedman, J. Factors affecting DNA recovery from cartridge cases. Forensic Sci. Int. Genet. 2020, 48, 102343. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.L.; Tiedge, T.M.; Butkus, J.M.; Earp, T.J.; Lindner, S.E.; Roy, R. Determination of human identity from Anopheles stephensi mosquito blood meals using direct amplification and massively parallel sequencing. Forensic Sci. Int. Genet. 2020, 48, 102347. [Google Scholar] [CrossRef] [PubMed]
- Bonsu, D.O.M.; Higgins, D.; Austin, J.J. Forensic touch DNA recovery from metal surfaces—A review. Sci. Justice 2020, 60, 206–215. [Google Scholar] [CrossRef]
- Comte, J.; Baechler, S.; Gervaix, J.; Lock, E.; Milon, M.-P.; Delémont, O.; Castella, V. Touch DNA collection—Performance of four different swabs. Forensic Sci. Int. Genet. 2019, 43, 102113. [Google Scholar] [CrossRef]
- Janssen, K.; Aune, M.; Olsen, M.; Olsen, G.H.; Berg, T. Biological stain collection—Absorbing paper is superior to cotton swabs. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 468–469. [Google Scholar] [CrossRef]
- Sherier, A.J.; Kieser, R.E.; Novroski, N.M.M.; Wendt, F.R.; King, J.L.; Woerner, A.E.; Ambers, A.; Garofano, P.; Budowle, B. Copan microFLOQ® Direct Swab collection of bloodstains, saliva, and semen on cotton cloth. Int. J. Legal Med. 2020, 134, 45–54. [Google Scholar] [CrossRef]
- Kanokwongnuwut, P.; Kirkbride, K.P.; Linacre, A. An assessment of tape-lifts. Forensic Sci. Int. Genet. 2020, 47, 102292. [Google Scholar] [CrossRef] [PubMed]
- Damsteeg-van Berkel, S.; Beemster, F.; Dankelman, J.; Loeve, A.J. The influence of contact force on forensic trace collection efficiency when sampling textiles with adhesive tape. Forensic Sci. Int. 2019, 298, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Zorbo, S.; Jeuniaux, P.P.J.M.H. DNA Recovery From Tape-Lifting Kits: Methodology and Practice. J. Forensic Sci. 2020, 65, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Zieger, M.; Schneider, C.; Utz, S. DNA recovery from gelatin fingerprint lifters by direct proteolytic digestion. Forensic Sci. Int. 2019, 295, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Fieldhouse, S.; Parsons, R.; Bleay, S.; Walton-Williams, L. The effect of DNA recovery on the subsequent quality of latent fingermarks: A pseudo-operational trial. Forensic Sci. Int. 2020, 307, 110076. [Google Scholar] [CrossRef] [PubMed]
- Harush-Brosh, Y.; Hefetz, I.; Hauzer, M.; Mayuoni-Kirshenbaum, L.; Mashiach, Y.; Faerman, M.; Levin-Elad, M. Clean and clear (out): A neat method for the recovery of latent fingermarks from crime-scenes. Forensic Sci. Int. 2020, 306, 110049. [Google Scholar] [CrossRef]
- Harush-Brosh, Y.; Mayuoni-Kirshenbaum, L.; Mashiach, Y.; Hauzer, M.; Hefetz, I.; Bengiat, R.; Levin-Elad, M.; Faerman, M. An efficient and eco-friendly workflow for dual fingermark processing and STR profiling. Forensic Sci. Int. Genet. 2020, 47, 102310. [Google Scholar] [CrossRef]
- Hartless, S.; Walton-Williams, L.; Williams, G. Critical evaluation of touch DNA recovery methods for forensic purposes. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 379–380. [Google Scholar] [CrossRef]
- Bonsu, D.O.M.; Higgins, D.; Henry, J.; Austin, J.J. Evaluation of the efficiency of Isohelix™ and Rayon swabs for recovery of DNA from metal surfaces. Forensic Sci. Med. Pathol. 2021, 17, 199–207. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Messina, G.; Ricci, P.; Ledda, C.; Rapisarda, V.; Cantatore, S.; Turillazzi, E.; Pomara, C. Touch DNA: Impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study. Sci. Rep. 2019, 9, 9542. [Google Scholar] [CrossRef] [Green Version]
- Kanokwongnuwut, P.; Martin, B.; Taylor, D.; Kirkbride, K.P.; Linacre, A. How many cells are required for successful DNA profiling? Forensic Sci. Int. Genet. 2021, 51, 102453. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Philpott, M.K.; Olsen, A.; Tootham, M.; Yadavalli, V.K.; Ehrhardt, C.J. Technical note: Survey of extracellular and cell-pellet-associated DNA from ‘touch’/trace samples. Forensic Sci. Int. 2021, 318, 110557. [Google Scholar] [CrossRef] [PubMed]
- Burrill, J.; Kombara, A.; Daniel, B.; Frascione, N. Exploration of cell-free DNA (cfDNA) recovery for touch deposits. Forensic Sci. Int. Genet. 2021, 51, 102431. [Google Scholar] [CrossRef] [PubMed]
- Burrill, J.; Rammenou, E.; Alawar, F.; Daniel, B.; Frascione, N. Corneocyte lysis and fragmented DNA considerations for the cellular component of forensic touch DNA. Forensic Sci. Int. Genet. 2021, 51, 102428. [Google Scholar] [CrossRef]
- Kaur, S.; Saini, V.; Dalal, R. UV-Visible spectroscopic effect on Haemoglobin & DNA degradation: A forensic approach. Forensic Sci. Int. 2020, 307, 110078. [Google Scholar] [PubMed]
- Badu-Boateng, A.; Twumasi, P.; Salifu, S.P.; Afrifah, K.A. A comparative study of different laboratory storage conditions for enhanced DNA analysis of crime scene soil-blood mixed sample. Forensic Sci. Int. 2018, 292, 97–109. [Google Scholar] [CrossRef]
- Corradini, B.; Alù, M.; Magnanini, E.; Galinier, M.E.; Silingardi, E. The importance of forensic storage support: DNA quality from 11-year-old saliva on FTA cards. Int. J. Legal Med. 2019, 133, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Francisco, D.D.O.; Lopez, L.F.; Gonçalves, F.D.T.; Fridman, C. Casework direct kit as an alternative extraction method to enhance touch DNA samples analysis. Forensic Sci. Int. Genet. 2020, 47, 102307. [Google Scholar] [CrossRef]
- LeSassier, D.S.; Schulte, K.Q.; Manley, T.E.; Smith, A.R.; Powals, M.L.; Albright, N.C.; Ludolph, B.C.; Weber, K.L.; Woerner, A.E.; Gardner, M.W.; et al. Artificial fingerprints for cross-comparison of forensic DNA and protein recovery methods. PLoS ONE 2019, 14, e0223170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wu, S.; Yan, Y.; Dong, Y.; Shen, X.; Huang, C. Application of magnetic particles in forensic science. TrAC Trends Anal. Chem. 2019, 121, 115674. [Google Scholar] [CrossRef]
- Schulte, K.Q.; Hewitt, F.C.; Manley, T.E.; Reed, A.J.; Baniasad, M.; Albright, N.C.; Powals, M.E.; LeSassier, D.S.; Smith, A.R.; Zhang, L.; et al. Fractionation of DNA and protein from individual latent fingerprints for forensic analysis. Forensic Sci. Int. Genet. 2021, 50, 102405. [Google Scholar] [CrossRef] [PubMed]
- Hayden, D.D.; Wallin, J.M. A comparative study for the isolation of exogenous trace DNA from fingernails. Forensic Sci. Int. Genet. 2019, 39, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Timken, M.D.; Klein, S.B.; Kubala, S.; Scharnhorst, G.; Buoncristiani, M.R.; Miller, K.W.P. Automation of the standard DNA differential extraction on the Hamilton AutoLys STAR system: A proof-of-concept study. Forensic Sci. Int. Genet. 2019, 40, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Auka, N.; Valle, M.; Cox, B.D.; Wilkerson, P.D.; Cruz, T.D.; Reiner, J.E.; Seashols-Williams, S.J. Optical tweezers as an effective tool for spermatozoa isolation from mixed forensic samples. PLoS ONE 2019, 14, e0211810. [Google Scholar] [CrossRef]
- Clark, C.P.; Xu, K.; Scott, O.; Hickey, J.; Tsuei, A.C.; Jackson, K.; Landers, J.P. Acoustic trapping of sperm cells from mock sexual assault samples. Forensic Sci. Int. Genet. 2019, 41, 42–49. [Google Scholar] [CrossRef]
- Wright, S.N.; Huge, B.J.; Dovichi, N.J. Capillary zone electrophoresis separation and collection of spermatozoa for the forensic analysis of sexual assault evidence. Electrophoresis 2020, 41, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Anslinger, K.; Graw, M.; Bayer, B. Deconvolution of blood-blood mixtures using DEPArray TM separated single cell STR profiling. Rechtsmedizin 2019, 29, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Henry, J.; Scandrett, L. Assessment of the Yfiler® Plus PCR amplification kit for the detection of male DNA in semen-negative sexual assault cases. Sci. Justice 2019, 59, 480–485. [Google Scholar] [CrossRef]
- Owers, R.; McDonald, A.; Montgomerie, H.; Morse, C. A casework study comparing success rates and expectations of detecting male DNA using two different Y-STR multiplexes on vaginal swabs in sexual assault investigations where no semen has been detected. Forensic Sci. Int. Genet. 2018, 37, 1–5. [Google Scholar] [CrossRef]
- Dawnay, N.; Flamson, R.; Hall, M.J.R.; Steadman, D.W. Impact of sample degradation and inhibition on field-based DNA identification of human remains. Forensic Sci. Int. Genet. 2018, 37, 46–53. [Google Scholar] [CrossRef]
- Avila, E.; Cavalheiro, C.P.; Felkl, A.B.; Graebin, P.; Kahmann, A.; Alho, C.S. Brazilian forensic casework analysis through MPS applications: Statistical weight-of-evidence and biological nature of criminal samples as an influence factor in quality metrics. Forensic Sci. Int. 2019, 303, 109938. [Google Scholar] [CrossRef] [PubMed]
- Mortera, J. DNA Mixtures in Forensic Investigations: The Statistical State of the Art. Annu. Rev. Stat. Appl 2020, 7, 111–142. [Google Scholar] [CrossRef]
- Buckleton, J.S.; Bright, J.A.; Cheng, K.; Budowle, B.; Coble, M.D. NIST interlaboratory studies involving DNA mixtures (MIX13): A modern analysis. Forensic Sci. Int. Genet. 2018, 37, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Szkuta, B.; Ansell, R.; Boiso, L.; Connolly, E.; Kloosterman, A.D.; Kokshoorn, B.; McKenna, L.G.; Steensma, K.; van Oorschot, R.A.H. Assessment of the transfer, persistence, prevalence and recovery of DNA traces from clothing: An inter-laboratory study on worn upper garments. Forensic Sci. Int. Genet. 2019, 42, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Szkuta, B.; Ansell, R.; Boiso, L.; Connolly, E.; Kloosterman, A.D.; Kokshoorn, B.; McKenna, L.G.; Steensma, K.; van Oorschot, R.A.H. DNA transfer to worn upper garments during different activities and contacts: An inter-laboratory study. Forensic Sci. Int. Genet. 2020, 46, 102268. [Google Scholar] [CrossRef] [PubMed]
- Goray, M.; Kokshoorn, B.; Steensma, K.; Szkuta, B.; van Oorschot, R.A.H. DNA detection of a temporary and original user of an office space. Forensic Sci. Int. Genet. 2020, 44, 102203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, P.; Hicks, T.; Butler, J.M.; Connolly, E.; Gusmão, L.; Kokshoorn, B.; Morling, N.; van Oorschot, R.A.H.; Parson, W.; Prinz, M.; et al. DNA commission of the International society for forensic genetics: Assessing the value of forensic biological evidence—Guidelines highlighting the importance of propositions. Part II: Evaluation of biological traces considering activity level propositions. Forensic Sci. Int. Genet. 2020, 44, 102186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, A.R.; Lednev, I.K. Crime clock—Analytical studies for approximating time since deposition of bloodstains. Forensic Chem. 2020, 19, 100248. [Google Scholar] [CrossRef]
- Stotesbury, T.; Cossette, M.L.; Newell-Bell, T.; Shafer, A.B.A. An Exploratory Time Since Deposition Analysis of Whole Blood Using Metrics of DNA Degradation and Visible Absorbance Spectroscopy. Pure Appl. Geophys. 2021, 178, 735–743. [Google Scholar] [CrossRef]
- Cossette, M.L.; Stotesbury, T.; Shafer, A.B.A. Quantifying visible absorbance changes and DNA degradation in aging bloodstains under extreme temperatures. Forensic Sci. Int. 2021, 318, 110627. [Google Scholar] [CrossRef]
- Bird, T.A.G.; Walton-Williams, L.; Williams, G. Time since deposition of biological fluids using RNA degradation. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 401–402. [Google Scholar] [CrossRef]
- Asaghiar, F.; Williams, G.A. Evaluating the use of hypoxia sensitive markers for body fluid stain age prediction. Sci. Justice 2020, 60, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Mameli, A.; Scudiero, C.M.; Delogu, G.; Ghiani, M.E. Successful analysis of a 100 years old semen stain generating a complete DNA STR profile. J. Forensic Leg. Med. 2019, 61, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Romano, C.G.; Mangiaracina, R.; Donato, L.; D’Angelo, R.; Scimone, C.; Sidoti, A. Aged fingerprints for DNA profile: First report of successful typing. Forensic Sci. Int. 2019, 302, 109905. [Google Scholar] [CrossRef] [PubMed]
- Alketbi, S.K.; Goodwin, W. The effect of time and environmental conditions on Touch DNA. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 701–703. [Google Scholar] [CrossRef]
- Lee, L.Y.C.; Wong, H.Y.; Lee, J.Y.; Waffa, Z.B.M.; Aw, Z.Q.; Fauzi, S.N.A.B.M.; Hoe, S.Y.; Lim, M.-L.; Syn, C.K.-C. Persistence of DNA in the Singapore context. Int. J. Legal Med. 2019, 133, 1341–1349. [Google Scholar] [CrossRef]
- Meixner, E.; Kallupurackal, V.; Kratzer, A.; Voegeli, P.; Thali, M.J.; Bolliger, S.A. Persistence and detection of touch DNA and blood stain DNA on pig skin exposed to water. Forensic Sci. Med. Pathol. 2020, 16, 243–251. [Google Scholar] [CrossRef]
- Romero-García, C.; Rosell-Herrera, R.; Revilla, C.J.; Baeza-Richer, C.; Gomes, C.; Palomo-Díez, S.; Arroyo-Pardo, E.; López-Parra, A.M. Effect of the activity in secondary transfer of DNA profiles. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 578–579. [Google Scholar] [CrossRef]
- Helmus, J.; Poetsch, J.; Pfeifer, M.; Bajanowski, T.; Poetsch, M. Cleaning a crime scene 2.0—What to do with the bloody knife after the crime? Int. J. Legal Med. 2020, 134, 171–175. [Google Scholar] [CrossRef]
- Noël, S.; Lagacé, K.; Raymond, S.; Granger, D.; Loyer, M.; Bourgoin, S.; Jolicoeur, C.; Séguin, D. Repeatedly washed semen stains: Optimal screening and sampling strategies for DNA analysis. Forensic Sci. Int. Genet. 2019, 38, 9–14. [Google Scholar] [CrossRef]
- Karadayi, S.; Moshfeghi, E.; Arasoglu, T.; Karadayi, B. Evaluating the persistence of laundered semen stains on fabric using a forensic light source system, prostate-specific antigen Semiquant test and DNA recovery-profiling. Med. Sci. Law 2020, 60, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Basyoni, H.A.; Mohamed, K.M.; El-Barrany, U.M.; Rashed, L.A.; Aboubakr, H.M.; Razik, H.A.A. How possible is it to recover semen DNA from laundered cotton and polyester fabrics? Indian J. Forensic Med. Toxicol. 2020, 14, 2941–2948. [Google Scholar]
- Hofmann, M.; Adamec, J.; Anslinger, K.; Bayer, B.; Graw, M.; Peschel, O.; Schulz, M.M. Detectability of bloodstains after machine washing. Int. J. Legal Med. 2019, 133, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Fonneløp, A.E.; Johannessen, H.; Heen, G.; Molland, K.; Gill, P. A retrospective study on the transfer, persistence and recovery of sperm and epithelial cells in samples collected in sexual assault casework. Forensic Sci. Int. Genet. 2019, 43, 102153. [Google Scholar] [CrossRef]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schyma, C.; Madea, B.; Müller, R.; Zieger, M.; Utz, S.; Grabmüller, M. DNA-free does not mean RNA-free—The unwanted persistence of RNA. Forensic Sci. Int. 2021, 318, 110632. [Google Scholar] [CrossRef]
- Boyko, T.; Mitchell, R.J.; van Oorschot, R.A.H. DNA within cars: Prevalence of DNA from driver, passenger and others on steering wheels. Aust. J. Forensic Sci. 2019, 51, S91–S94. [Google Scholar] [CrossRef]
- Boyko, T.; Szkuta, B.; Mitchell, R.J.; van Oorschot, R.A.H. Prevalence of DNA from the driver, passengers and others within a car of an exclusive driver. Forensic Sci. Int. 2020, 307, 110139. [Google Scholar] [CrossRef]
- De Wolff, T.R.; Aarts, L.H.J.; van den Berge, M.; Boyko, T.; van Oorschot, R.A.H.; Zuidberg, M.; Kokshoorn, B. Prevalence of DNA of regular occupants in vehicles. Forensic Sci. Int. 2021, 320, 110713. [Google Scholar] [CrossRef]
- Szkuta, B.; Reither, J.B.; Conlan, X.A.; van Oorschot, R.A.H. The presence of background DNA on common entry points to homes. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 784–786. [Google Scholar] [CrossRef]
- Albani, P.P.; Patel, J.; Fleming, R.I. DNA on feminine sanitary products. Forensic Sci. Int. 2018, 293, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.; Kenna, J.; Flanagan, L.; Lee Gorman, M.; Boland, C.; Ryan, J. A Study of the Background Levels of Male DNA on Underpants Worn by Females. J. Forensic Sci. 2020, 65, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Reither, J.B.; Gray, E.; Durdle, A.; Conlan, X.A.; van Oorschot, R.A.H.; Szkuta, B. Background DNA on flooring: The effect of cleaning. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 787–790. [Google Scholar] [CrossRef]
- Helmus, J.; Pfeifer, M.; Feiner, L.-K.; Krause, L.J.; Bajanowski, T.; Poetsch, M. Unintentional effects of cleaning a crime scene—When the sponge becomes an accomplice in DNA transfer. Int. J. Legal Med. 2019, 133, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Hefetz, I.; Einot, N.; Faerman, M.; Horowitz, M.; Almog, J. Touch DNA: The effect of the deposition pressure on the quality of latent fingermarks and STR profiles. Forensic Sci. Int. Genet. 2019, 38, 105–112. [Google Scholar] [CrossRef] [PubMed]
- De Wolff, T.; Aarts, L.H.J.; van den Berge, M.; Boyko, T.; van Oorschot, R.A.H.; Zuidberg, M.; Kokshoorn, B. Prevalence of DNA in vehicles: Linking clothing of a suspect to car occupancy. Aust. J. Forensic Sci. 2019, 51, S103–S106. [Google Scholar] [CrossRef]
- Ramos, P.; Handt, O.; Taylor, D. Investigating the position and level of DNA transfer to undergarments during digital sexual assault. Forensic Sci. Int. Genet. 2020, 47, 102316. [Google Scholar] [CrossRef]
- Gosch, A.; Euteneuer, J.; Preuß-Wössner, J.; Courts, C. DNA transfer to firearms in alternative realistic handling scenarios. Forensic Sci. Int. Genet. 2020, 48, 102355. [Google Scholar] [CrossRef]
- Butcher, E.V.; van Oorschot, R.A.H.; Morgan, R.M.; Meakin, G.E. Opportunistic crimes: Evaluation of DNA from regularly-used knives after a brief use by a different person. Forensic Sci. Int. Genet. 2019, 42, 135–140. [Google Scholar] [CrossRef]
- Samie, L.; Taroni, F.; Champod, C. Estimating the quantity of transferred DNA in primary and secondary transfers. Sci. Justice 2020, 60, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Euteneuer, J.; Gosch, A.; Cachée, P.; Courts, C. A distant relationship?—Investigation of correlations between DNA isolated from backspatter traces recovered from firearms, wound profile characteristics, and shooting distance. Int. J. Legal Med. 2020, 134, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Thornbury, D.; Goray, M.; van Oorschot, R.A.H. Indirect DNA transfer without contact from dried biological materials on various surfaces. Forensic Sci. Int. Genet. 2021, 51, 102457. [Google Scholar] [CrossRef] [PubMed]
- Otten, L.; Banken, S.; Schürenkamp, M.; Schulze-Johann, K.; Sibbing, U.; Pfeiffer, H.; Vennemann, M. Secondary DNA transfer by working gloves. Forensic Sci. Int. Genet. 2019, 43, 102126. [Google Scholar] [CrossRef]
- Goray, M.; Pirie, E.; van Oorschot, R.A.H. DNA transfer: DNA acquired by gloves during casework examinations. Forensic Sci. Int. Genet. 2019, 38, 167–174. [Google Scholar] [CrossRef]
- Van den Berge, M.; Wagner, S.; Meijers, E.; Kokshoorn, B.; Kloosterman, A.; van der Scheer, M.; Sijen, T. Minimizing hand-to-glove DNA contamination. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 19–20. [Google Scholar] [CrossRef]
- Nontiapirom, K.; Bunakkharasawat, W.; Sojikul, P.; Panvisavas, N. Assessment and prevention of forensic DNA contamination in DNA profiling from latent fingerprint. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 546–548. [Google Scholar] [CrossRef]
- Basset, P.; Castella, V. Positive impact of DNA contamination minimization procedures taken within the laboratory. Forensic Sci. Int. Genet. 2019, 38, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.W.; Gibson, G. Classification of individuals and the potential to detect sexual contact using the microbiome of the pubic region. Forensic Sci. Int. Genet. 2019, 41, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Coil, D.A.; Neches, R.Y.; Lang, J.M.; Jospin, G.; Brown, W.E.; Cavalier, D.; Hampton-Marcell, J.; Gilbert, J.A.; Eisen, J.A. Bacterial communities associated with cell phones and shoes. PeerJ 2020, 8, e9235. [Google Scholar] [CrossRef] [PubMed]
- Tackmann, J.; Arora, N.; Schmidt, T.S.B.; Rodrigues, J.F.M.; Von Mering, C. Ecologically informed microbial biomarkers and accurate classification of mixed and unmixed samples in an extensive cross-study of human body sites. Microbiome 2018, 6, 192. [Google Scholar] [CrossRef]
- Yao, T.; Han, X.; Guan, T.; Zhai, C.; Liu, C.; Liu, C.; Zhu, B.; Chen, L. Exploration of the microbiome community for saliva, skin, and a mixture of both from a population living in Guangdong. Int. J. Legal Med. 2021, 135, 53–62. [Google Scholar] [CrossRef]
- Phan, K.; Barash, M.; Spindler, X.; Gunn, P.; Roux, C. Retrieving forensic information about the donor through bacterial profiling. Int. J. Legal Med. 2020, 134, 21–29. [Google Scholar] [CrossRef]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Investigation of direct and indirect transfer of microbiomes between individuals. Forensic Sci. Int. Genet. 2020, 45, 102212. [Google Scholar] [CrossRef]
- Assenmacher, D.M.; Fields, S.D.; Crupper, S.S. Comparison of Commercial Kits for Recovery and Analysis of Bacterial DNA From Fingerprints. J. Forensic Sci. 2020, 65, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Quaak, F.C.A.; van de Wal, Y.; Maaskant-van Wijk, P.A.; Kuiper, I. Combining human STR and microbial population profiling: Two case reports. Forensic Sci. Int. Genet. 2018, 37, 196–199. [Google Scholar] [CrossRef]
- Lindgren, P.; Myrtennäs, K.; Forsman, M.; Johansson, A.; Stenberg, P.; Nordgaard, A.; Ahlinder, J. A likelihood ratio-based approach for improved source attribution in microbiological forensic investigations. Forensic Sci. Int. 2019, 302, 109869. [Google Scholar] [CrossRef]
- Young, J.M.; Linacre, A. Massively parallel sequencing is unlocking the potential of environmental trace evidence. Forensic Sci. Int. Genet. 2021, 50, 102393. [Google Scholar] [CrossRef]
- Jurkevitch, E.; Pasternak, Z. A walk on the dirt: Soil microbial forensics from ecological theory to the crime lab. FEMS Microbiol. Rev. 2021, 45, fuaa053. [Google Scholar] [CrossRef] [PubMed]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Challenges in Human Skin Microbial Profiling for Forensic Science: A Review. Genes 2020, 11, 1015. [Google Scholar] [CrossRef]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Investigation into the presence and transfer of microbiomes within a forensic laboratory setting. Forensic Sci. Int. Genet. 2021, 52, 102492. [Google Scholar] [CrossRef] [PubMed]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Identifying background microbiomes in an evidence recovery laboratory: A preliminary study. Sci. Justice 2021, 61, 280–290. [Google Scholar] [CrossRef]
- Taylor, D.; Kokshoorn, B.; Hicks, T. Structuring cases into propositions, assumptions, and undisputed case information. Forensic Sci. Int. Genet. 2020, 44, 102199. [Google Scholar] [CrossRef] [Green Version]
- Buckleton, J.; Taylor, D.; Bright, J.-A.; Hicks, T.; Curran, J. When evaluating DNA evidence within a likelihood ratio framework, should the propositions be exhaustive? Forensic Sci. Int. Genet. 2021, 50, 102406. [Google Scholar] [CrossRef]
- Taylor, D.; Samie, L.; Champod, C. Using Bayesian networks to track DNA movement through complex transfer scenarios. Forensic Sci. Int. Genet. 2019, 42, 69–80. [Google Scholar] [CrossRef]
- Volgin, L. The importance of evaluating findings given activity level propositions in order to avoid misleading evidence. Aust. J. Forensic Sci. 2019, 51, S10–S13. [Google Scholar] [CrossRef]
- De March, I.; Taroni, F. Bayesian networks and dissonant items of evidence: A case study. Forensic Sci. Int. Genet. 2020, 44, 102172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samie, L.; Champod, C.; Taylor, D.; Taroni, F. The use of Bayesian Networks and simulation methods to identify the variables impacting the value of evidence assessed under activity level propositions in stabbing cases. Forensic Sci. Int. Genet. 2020, 48, 102334. [Google Scholar] [CrossRef] [PubMed]
- Gill, P. DNA evidence and miscarriages of justice. Forensic Sci. Int. 2019, 294, e1–e3. [Google Scholar] [CrossRef]
- Perepechina, I.O. Considering DNA transfer issues in a retrospective analysis of forensic examinations. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 853–855. [Google Scholar] [CrossRef]
- Dunhill, T.; Chapman, B. Meta-analysis of the secondary transfer of DNA. Aust. J. Forensic Sci. 2019, 51, S44–S47. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A.; Szkuta, B.; van Oorschot, R.A.H.; Yang, W.; Conlan, X.A. Impact of surface roughness on the deposition of saliva and fingerprint residue on non-porous substrates. Forensic Chem. 2021, 23, 100318. [Google Scholar] [CrossRef]
- Thornbury, D.; Goray, M.; van Oorschot, R.A.H. Drying properties and DNA content of saliva samples taken before, during and after chewing gum. Aust. J. Forensic Sci. 2021, 1–10. [Google Scholar] [CrossRef]
- Kelly, P.; Connolly, E. The prevalence and persistence of saliva in vehicles. Forensic Sci. Int. Genet. 2021, 53, 102530. [Google Scholar] [CrossRef]
- Puliatti, L.; Handt, O.; Taylor, D. The level of DNA an individual transfers to untouched items in their immediate surroundings. Forensic Sci. Int. Genet. 2021, 54, 102561. [Google Scholar] [CrossRef] [PubMed]
- Tanzhaus, K.; Reiß, M.-T.; Zaspel, T. “I’ve never been at the crime scene!”—Gloves as carriers for secondary DNA transfer. Int. J. Legal Med. 2021, 135, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Danko, D.; Bezdan, D.; Afshin, E.E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.J.; Chng, K.R.; Donnellan, D.; Hecht, J.; Jackson, K.; et al. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393.e3317. [Google Scholar] [CrossRef]
- Gill, P.; Bleka, Ø.; Roseth, A.; Fonneløp, A.E. An LR framework incorporating sensitivity analysis to model multiple direct and secondary transfer events on skin surface. Forensic Sci. Int. Genet. 2021, 53, 102509. [Google Scholar] [CrossRef]
- Taylor, D.; Volgin, L.; Kokshoorn, B.; Champod, C. The importance of considering common sources of unknown DNA when evaluating findings given activity level propositions. Forensic Sci. Int. Genet. 2021, 53, 102518. [Google Scholar] [CrossRef] [PubMed]
- Ypma, R.J.F.; Maaskant van Wijk, P.A.; Gill, R.; Sjerps, M.; van den Berge, M. Calculating LRs for presence of body fluids from mRNA assay data in mixtures. Forensic Sci. Int. Genet. 2021, 52, 102455. [Google Scholar] [CrossRef]
- Meakin, G.E.; Kokshoorn, B.; van Oorschot, R.A.H.; Szkuta, B. Evaluating forensic DNA evidence: Connecting the dots. WIREs Forensic Sci. 2020, 3, e1404. [Google Scholar]
- Jones, N.S.; Fornaro, E. National Institute of Justice Forensic Science Research and Development Symposium; RTI Press: Research Triangle, NC, USA, 2021. [Google Scholar] [CrossRef]
- National Institute of Justice. Available online: https://nij.ojp.gov (accessed on 15 August 2021).
- European Network of Forensic Science Institutes (ENFSI). Monopoly Programmes. Available online: https://enfsi.eu/projects (accessed on 15 August 2021).
- International Society of Forensic Genetics (ISFG). Conferences. Available online: https://www.isfg.org/Meeting (accessed on 15 August 2021).
- Gordon Research Conferences (GRC). Forensic Analysis of Human DNA. Available online: https://www.grc.org/forensic-analysis-of-human-dna-conference/ (accessed on 15 August 2021).
- American Academy of Forensic Sciences (AAFS). Conference Proceedings. Available online: https://aafs.org/aafs/Resources/Proceedings/AAFS/Resources/Proceedings.aspx?hkey=b8e1fc6b-2c69–411a-a386–7d38929ca963 (accessed on 10 October 2021).
- Promega. International Symposium on Human Identification (ISHI). Available online: https://www.ishinews.com (accessed on 15 August 2021).
- Budowle, B.; van Oorschot, R.A.H.; Morling, N.; Martinez de Pancorbo, M.; Doutremepuich, C.; Piters, A.; Esponda, A.; Monique, G. Les Progrès Récents en Empreintes Génétiques et en ADN de Transfert (Recent Progress on Forensic Sciences and DNA Transfer); Librairie Mollat: Bordeaux, France, 2020; Available online: https://www.expertise-adn.fr/actualites-adn/les-progres-recents-en-empreintes-genetiques-et-en-adn-de-transfert (accessed on 15 August 2021).
- International Society of Forensic Genetics (ISFG). Summer School. Available online: https://isfgsummerschool.events.idloom.com/virtual-edition-2021 (accessed on 15 August 2021).
- University of Lausanne. Statistics and the Evaluation of Forensic Evidence. Available online: https://www.formation-continue-unil-epfl.ch/formation/statistics-evaluation-forensic-evidence-cas/ (accessed on 15 August 2021).
- University of Lausanne. Challenging Forensic Science: How Science Should Speak to Court. Available online: https://www.coursera.org/learn/challenging-forensic-science (accessed on 15 August 2021).
- Forensic Technology Center of Excellence; National Institute of Justice. Probabilistic Genotyping of Evidentiary DNA Typing Results: Online Workshop Series. Available online: https://forensiccoe.org/online-workshop-series-probabilistic-genotyping-of-evidentiary-dna-typing-results (accessed on 15 August 2021).
- Netherlands Register of Court Experts (NRGD). Register Open for Applications DNA Activity Level. 2021. Available online: https://english.nrgd.nl/news/register-open-for-applications-dna-activity-level.aspx (accessed on 8 October 2021).
- Netherlands Register of Court Experts (NRGD). Standards: Human DNA Analysis and Interpretation (001.1–001.3). 2021. Available online: https://english.nrgd.nl/binaries/10321%20-%20Standards%20Human%20DNA%20Analysis%20and%20Interpretation%20v4.1_tcm40–493992.pdf (accessed on 10 October 2021).
- Kokshoorn, B.; Aarts, L.H.J.; Ansell, R.; Connolly, E.; Drotz, W.; Kloosterman, A.D.; McKenna, L.G.; Szkuta, B.; van Oorschot, R.A.H. Sharing data on DNA transfer, persistence, prevalence and recovery: Arguments for harmonization and standardization. Forensic Sci. Int. Genet. 2018, 37, 260–269. [Google Scholar] [CrossRef]
- Université Du Québec À Trois-Rivières. BDATT-TTADB (Transfer Traces Activity DataBase). Available online: http://www.uqtr.ca/LRC/BDATT-TTADB (accessed on 15 August 2021).
- Cadola, L.; Charest, M.; Lavallée, C.; Crispino, F. The occurrence and genesis of transfer traces in forensic science: A structured knowledge database. J. Can. Soc. Forensic Sci 2021, 54, 86–100. [Google Scholar] [CrossRef]
- GOV.UK. Forensic Science Providers: Codes of Practice and Conduct. Available online: https://www.gov.uk/government/collections/forensic-science-providers-codes-of-practice-and-conduct (accessed on 15 August 2021).
- Gill, P.; Hicks, T.; Butler, J.M.; Connolly, E.; Gusmão, L.; Kokshoorn, B.; Morling, N.; van Oorschot, R.A.H.; Parson, W.; Prinz, M.; et al. DNA Commission of the International Society for Forensic Genetics: Assessing the value of forensic biological evidence—Guidelines highlighting the importance of propositions: Part I: Evaluation of DNA profiling comparisons given (sub-) source propositions. Forensic Sci. Int. Genet. 2018, 36, 189–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. Forensic Sciences—Part 5: Reporting. ISO/CD 21043–5. 2021. Available online: https://www.iso.org/standard/73896.html?browse=tc (accessed on 16 August 2021).
- Butler, J.M.; Iyer, H.; Press, R.; Taylor, M.K.; Vallone, P.M.; Willis, S. National Institute of Standards and Technology. DNA Mixture Interpretation: A NIST Scientific Foundation Review. 2021. Available online: https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8351-draft.pdf (accessed on 10 October 2021).
- Roux, C.; Willis, S.; Weyermann, C. Shifting forensic science focus from means to purpose: A path forward for the discipline? Sci. Justice 2021, 61, 678–686. [Google Scholar] [CrossRef]
- De Koeijer, J.A.; Sjerps, M.J.; Vergeer, P.; Berger, C.E.H. Combining evidence in complex cases—A practical approach to interdisciplinary casework. Sci. Justice 2020, 60, 20–29. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Forensic Science Australia New Zealand. An Introductory Guide to Evaluative Reporting. 2017. Available online: http://www.anzpaa.org.au/forensic-science/our-work/projects/evaluative-reporting (accessed on 10 October 2021).
- Willis, S.M.; McKenna, L.; McDermott, S.D.; O’Donnell, G.; Barrett, A.; Rasmusson, B.; Höglund, T.; Berger, C.E.H.; Sierps, M.J.; Lucena-Molina, J.J.; et al. ENFSI Guideline for Evaluative Reporting in Forensic Science. 2015. Available online: http://enfsi.eu/wp-content/uploads/2016/09/m1_guideline.pdf (accessed on 10 October 2021).
- Kokshoorn, B.; Aarts, B.; De Blaeij, T.; Maaskant-van Wijk, P.; Blankers, B. Bewijskracht van onderzoek naar biologische sporen en DNA. Deel 3: Activiteitniveau. Expert. en Recht 2014, 6, 213–219. [Google Scholar]
- Robertson, P.; Aitken, C.; Royal Statistical Society. The Logic of Forensic Proof: Inferential Reasoning in Criminal Evidence and Forensic Science. 2014. Available online: https://rss.org.uk/RSS/media/File-library/Publications/rss-inferential-reasoning-criminal-evidence-forensic-science.pdf (accessed on 10 October 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Oorschot, R.A.H.; Meakin, G.E.; Kokshoorn, B.; Goray, M.; Szkuta, B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes 2021, 12, 1766. https://doi.org/10.3390/genes12111766
van Oorschot RAH, Meakin GE, Kokshoorn B, Goray M, Szkuta B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes. 2021; 12(11):1766. https://doi.org/10.3390/genes12111766
Chicago/Turabian Stylevan Oorschot, Roland A. H., Georgina E. Meakin, Bas Kokshoorn, Mariya Goray, and Bianca Szkuta. 2021. "DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges" Genes 12, no. 11: 1766. https://doi.org/10.3390/genes12111766
APA Stylevan Oorschot, R. A. H., Meakin, G. E., Kokshoorn, B., Goray, M., & Szkuta, B. (2021). DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes, 12(11), 1766. https://doi.org/10.3390/genes12111766