Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities
Abstract
:1. Introduction
2. Species with Y-Bearing Females
2.1. Myopus Schisticolor
2.2. Dicrostonyx Torquatus
2.3. Akodon Species
2.4. Mus Minutoides
2.5. Lasiopodomys Mandarinus
2.6. Conclusions
3. Species That Have Lost the Y
3.1. Ellobius Species
3.2. Tokudaia Osimensis and T. tokunoshimensis
3.3. Microtus Oregoni
3.4. Conclusions
4. Other Species
5. Discussion
5.1. Curious Similarities
5.2. What Causes the Evolution of These Weird Systems?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beukeboom, L.W.; Perrin, N. The Evolution of Sex Determination; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Jeffries, D.L.; Lavanchy, G.; Sermier, R.; Sredl, M.J.; Miura, I.; Borzée, A.; Barrow, L.N.; Canestrelli, D.; Crochet, P.-A.; Dufresnes, C.; et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- El Taher, A.; Ronco, F.; Matschiner, M.; Salzburger, W.; Böhne, A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv. 2020. [Google Scholar] [CrossRef]
- Veyrunes, F.; Waters, P.D.; Miethke, P.; Rens, W.; McMillan, D.; Alsop, A.E.; Grützner, F.; Deakin, J.E.; Whittington, C.M.; Schatzkamer, K.; et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008, 18, 965–973. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall Graves, J.A. Sex chromosome specialization and degeneration in mammals. Cell 2006, 124, 901–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellott, D.W.; Hughes, J.F.; Skaletsky, H.; Brown, L.G.; Pyntikova, T.; Cho, T.-J.; Koutseva, N.; Zaghlul, S.; Graves, T.; Rock, S.; et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014, 508, 494–499. [Google Scholar] [CrossRef]
- Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423, 825–837. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Riel, J.M.; Ruthig, V.A.; Ortega, E.A.; Mitchell, M.J.; Ward, M.A. Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science 2016, 351, 514–516. [Google Scholar] [CrossRef] [Green Version]
- Pokorná, M.; Kratochvíl, L. Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. Lond. 2009, 156, 168–183. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.E.; Jones, K.W.; Polani, P.E.; de Almeida, J.C.; Briggs, J.H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 1959, 1, 711–713. [Google Scholar] [CrossRef]
- Jacobs, B.P.A.; Strong, D.J.A. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 1959, 183, 302–303. [Google Scholar] [CrossRef]
- Parma, P.; Veyrunes, F.; Pailhoux, E. Sex Reversal in Non-Human Placental Mammals. Sex. Dev. 2016, 10, 326–344. [Google Scholar] [CrossRef]
- Fredga, K. Bizarre mammalian sex determining mechanisms. In Differences between the Sexes; Cambridge University Press: Cambridge, UK, 1994; pp. 419–432. [Google Scholar]
- Marshall Graves, J.A. Sex chromosomes and sex determination in weird mammals. Cytogenet. Genome Res. 2002, 96, 161–168. [Google Scholar] [CrossRef]
- Matthey, R. La formule chromosomique et le problème de la détermination sexuelle chez Ellobius lutescens. Arch. Julius-Klaus-Stift. Vererbungsforch. 1953, 28, 271–280. [Google Scholar]
- Marshall Graves, J.A. Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu. Rev. Genet. 2008, 42, 565–586. [Google Scholar] [CrossRef]
- Gil-Fernández, A.; Saunders, P.A.; Martín-Ruiz, M.; Ribagorda, M.; López-Jiménez, P.; Jeffries, D.L.; Parra, M.T.; Viera, A.; Rufas, J.S.; Perrin, N.; et al. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet. 2020, 16, e1008959. [Google Scholar] [CrossRef] [PubMed]
- Gil-Fernández, A.; Matveevsky, S.; Martín-Ruiz, M.; Ribagorda, M.; Parra, M.T.; Viera, A.; Rufas, J.S.; Kolomiets, O.; Bakloushinskaya, I.; Page, J. Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: Turning an X into a Y chromosome? Chromosoma 2021, 130, 113–131. [Google Scholar] [CrossRef]
- Zhou, Y.; Shearwin-Whyatt, L.; Li, J.; Song, Z.; Hayakawa, T.; Stevens, D.; Fenelon, J.C.; Peel, E.; Cheng, Y.; Pajpach, F.; et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 2021, 592, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Stöck, M.; Kratochvíl, L.; Kuhl, H.; Rovatsos, M.; Evans, B.J.; Suh, A.; Valenzuela, N.; Veyrunes, F.; Zhou, Q.; Gamble, T.; et al. A brief review of vertebrate sex evolution with a pledge for integrative research: Towards “sexomics”. Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200426. [Google Scholar] [CrossRef] [PubMed]
- Bashamboo, A.; McElreavey, K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex. Dev. 2016, 10, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Vernet, N.; Szot, M.; Mahadevaiah, S.K.; Ellis, P.J.I.; Decarpentrie, F.; Ojarikre, O.A.; Rattigan, Á.; Taketo, T.; Burgoyne, P.S. The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 2014, 141, 855–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloutier, J.M.; Mahadevaiah, S.K.; ElInati, E.; Tóth, A.; Turner, J. Mammalian meiotic silencing exhibits sexually dimorphic features. Chromosoma 2016, 125, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baudat, F.; de Massy, B.; Veyrunes, F. Sex chromosome quadrivalents in oocytes of the African pygmy mouse Mus minutoides that harbors non-conventional sex chromosomes. Chromosoma 2019, 128, 397–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgoyne, P.S.; Mahadevaiah, S.K.; Turner, J.M.A. The consequences of asynapsis for mammalian meiosis. Nat. Rev. Genet. 2009, 10, 207–216. [Google Scholar] [CrossRef]
- Liu, W.S.; Nordqvist, K.; Lau, Y.-F.C.; Fredga, K. Characterization of the Xp21-23 region in the wood lemming, a region involved in XY sex reversal. J. Exp. Zool. 2001, 290, 551–557. [Google Scholar] [CrossRef]
- Akhverdyan, M.; Fredga, K. EM studies of female meiosis in wood lemmings with different sex chromosome constitutions. J. Exp. Zool. 2001, 290, 504–516. [Google Scholar] [CrossRef]
- Fredga, K.; Setterfield, L.; Mittwoch, U. Gonadal development and birth weight in X*X and X*Y females of the wood lemming, Myopus schisticolor. Cytogenet. Cell Genet. 2000, 91, 97–101. [Google Scholar] [CrossRef]
- Fredga, K.; Gropp, A.; Winking, H.; Frank, F. Fertile XX- and XY-type females in the wood lemming Myopus schisticolor. Nature 1976, 261, 225–227. [Google Scholar] [CrossRef]
- Herbst, E.W.; Fredga, K.; Frank, F.; Winking, H.; Gropp, A. Cytological identification of two X-chromosome types in the wood lemming (Myopus schisticolor). Chromosoma 1978, 69, 185–191. [Google Scholar] [CrossRef]
- Liu, W.S.; Eriksson, L.; Fredga, K. XY sex reversal in the wood lemming is associated with deletion of Xp21-23, revealed by chromosome microdissection and fluorescence in situ hybridization. Chromosom. Res. 1998, 6, 379–384. [Google Scholar] [CrossRef]
- Mukherjee, K.; Conway de Macario, E.; Macario, A.J.L.; Brocchieri, L. Chaperonin genes on the rise: New divergent classes and intense duplication in human and other vertebrate genomes. BMC Evol. Biol. 2010, 10, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gileva, E.A.; Fedorov, V.B. Sex ratio, XY females and absence of inbreeding in a population of the Wood Lemming, Myopus schisticolor Lilljeborg, 1844. Heredity 1991, 66, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Fredga, K.; Gropp, A.; Winking, H.; Frank, F. A hypothesis explaining the exceptional sex ratio in the wood lemming (Myopus schisticolor). Hereditas 1977, 85, 101–104. [Google Scholar] [CrossRef]
- Bondrup-Nielsen, S.; Ims, S.; Fredriksson, R.; Fredga, K. Demography of the wood lemming (Myopus schisticolor). In The Biology of Lemmings; Academic Press: London, UK, 1993; pp. 493–508. [Google Scholar]
- Winking, H.; Gropp, A.; Fredga, K. Sex determination and phenotype in wood lemmings with XXY and related karyotypic anomalies. Hum. Genet. 1981, 58, 98–104. [Google Scholar] [CrossRef]
- Gropp, A.; Winking, H.; Frank, F.; Noack, G.; Fredga, K. Sex-chromosome aberrations in wood lemmings (Myopus schisticolor). Cytogenet. Genome Res. 1976, 17, 343–358. [Google Scholar] [CrossRef]
- Schempp, W.; Wiberg, U.; Fredga, K. Correlation between sexual phenotype and X-chromosome inactivation pattern in the X*XY wood lemming. Cytogenet. Genome Res. 1985, 39, 30–34. [Google Scholar] [CrossRef]
- Gileva, E.A. A contrasted pattern of chromosome evolution in two genera of lemmings, Lemmus and Dicrostonyx (Mammalia, Rodentia). Genetica 1983, 60, 173–179. [Google Scholar] [CrossRef]
- Fredga, K. Aberrant sex chromosome mechanisms in mammals evolutionary aspects. In Mechanisms of Gonadal Differentiation in Vertebrates; Springer: Berlin/Heidelberg, Germany, 1983; pp. 23–30. [Google Scholar]
- Fredga, K.; Bulmer, M. Aberrant chromosomal sex-determining mechanisms in mammals, with special reference to species with XY females. Phil. Trans. R. Soc. Lond. B 1988, 322, 83–95. [Google Scholar]
- Buzan, E.V.; Krystufek, B.; Hänfling, B.; Hutchinson, W.F. Mitochondrial phylogeny of Arvicolinae using comprehensive taxonomic sampling yields new insights. Biol. J. Linn. Soc. 2008, 94, 825–835. [Google Scholar] [CrossRef] [Green Version]
- Gileva, E.A.; Chebotar, N.A. Fertile XO males and females in the varying lemming, Dicrostonyx torquatus Pall. Heredity 1979, 42, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Gileva, E.A. Chromosomal diversity and an aberrant genetic system of sex determination in the arctic lemming, Dicrostonyx torquatus Pallas (1779). Genetica 1980, 52–53, 99–103. [Google Scholar] [CrossRef]
- Gileva, E.A.; Benenson, I.E.; Konopistseva, L.A.; Puchkov, V.F.; Makaranets, I.A. XO Females in the Varying Lemming, Dicrostonyx torquatus: Reproductive Performance and its Evolutionary Significance. Evolution 1982, 36, 601–609. [Google Scholar] [PubMed]
- Bull, J.J.; Bulmer, M.G. The evolution of XY females in mammals. Heredity 1981, 47, 347–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gileva, E.A. Meiotic drive in the sex chromosome system of the varying lemming, Dicrostonyx torquatus Pall. (Rodentia, Microtinae). Heredity 1987, 59, 383–389. [Google Scholar] [CrossRef]
- Bianchi, N.O.; Contreras, C.M. The chromosomes of the field mouse Akodon azarae (Cricetidae, Rodentia) with special reference to sex chromosome anomalies. Cytogenet. Genome Res. 1967, 6, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Lizarralde, M.S.; Bianchi, N.O.; Merani, M.S. Cytogenetics of South American Akodont Rodents (Cricetidae). VII. Origin of sex chromosome polymorphism in Akodon azarae. Cytologia 1982, 47, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Solari, A.J.; Espinosa, M.B.; Vitullo, A.D.; Merani, M.S. Meiotic behavior of gonosomically variant females of Akodon azarae (Rodentia, Cricetidae). Cytogenet. Genome Res. 1989, 52, 57–61. [Google Scholar] [CrossRef]
- Lobato, L.; Cantos, G.; Araujol, B.; Bianchi, N.O.; Merani, S. Cytogenetics of the South American Akodont rodents (Cricetidae) X. Akodon mollis: A species with XY females and B chromosomes. Genetica 1982, 57, 199–205. [Google Scholar] [CrossRef]
- Bianchi, N.O.; de la Chapelle, A.; Vidal-Rioja, L.; Merani, S. The sex-determining zinc finger sequences in XY females of Akodon azarae (Rodentia, Cricetidae). Cytogenet. Genome Res. 1989, 52, 162–166. [Google Scholar] [CrossRef]
- Bianchi, N.O.; Bianchi, M.S.; Bailliet, G.; de la Chapelle, A. Characterization and sequencing of the sex determining region Y gene (Sry) in Akodon (Cricetidae) species with sex reversed females. Chromosoma 1993, 102, 389–395. [Google Scholar] [CrossRef]
- Espinosa, M.B.; Vitullo, A.D. Offspring sex-ratio and reproductive performance in heterogametic females of the South American field mouse Akodon azarae. Hereditas 1996, 124, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, N.O. Akodon sex reversed females: The never ending story. Cytogenet. Genome Res. 2002, 96, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, H.E.; Edwards, S.V. Multiple origins of XY female mice (genus Akodon): Phylogenetic and chromosomal evidence. Proc. R. Soc. B 2000, 267, 1825–1831. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, H.E.; Hoekstra, J.M. An Unusual Sex-Determination System in South American Field Mice (Genus Akodon): The Role of Mutation, Selection, and Meiotic Drive in Maintaining XY Females. Evolution 2001, 55, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.I.; Pinna-Senn, E.; Dalmasso, G.; Lisanti, J.A. Chromosomal aspects and inheritance of the XY female condition in Akodon azarae (Rodentia, Sigmodontinae). Mamm. Biol. 2009, 74, 125–129. [Google Scholar] [CrossRef]
- Veyrunes, F.; Chevret, P.; Catalan, J.; Castiglia, R.; Watson, J.; Dobigny, G.; Robinson, T.J.; Britton-Davidian, J. A novel sex determination system in a close relative of the house mouse. Proc. R. Soc. B 2010, 277, 1049–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veyrunes, F.; Perez, J.; Paintsil, S.N.C.; Fichet-Calvet, E.; Britton-Davidian, J. Insights into the evolutionary history of the X-Linked sex reversal mutation in Mus minutoides: Clues from sequence analyses of the Y-linked Sry gene. Sex. Dev. 2013, 7, 244–252. [Google Scholar] [CrossRef]
- Veyrunes, F.; Perez, J. X inactivation in a mammal species with three sex chromosomes. Chromosoma 2018, 127, 261–267. [Google Scholar] [CrossRef]
- Britton-Davidian, J.; Robinson, T.J.; Veyrunes, F. Systematics and evolution of the African pygmy mice, subgenus Nannomys: A review. Acta Oecol. 2012, 42, 41–49. [Google Scholar] [CrossRef]
- Veyrunes, F.; Watson, J.; Robinson, T.J.; Britton-Davidian, J. Accumulation of rare sex chromosome rearrangements in the African pygmy mouse, Mus (Nannomys) minutoides: A whole-arm reciprocal translocation (WART) involving an X-autosome fusion. Chromosom. Res. 2007, 15, 223–230. [Google Scholar] [CrossRef]
- Veyrunes, F.; Catalan, J.; Sicard, B.; Robinson, T.J.; Duplantier, J.-M.; Granjon, L.; Dobigny, G.; Britton-Davidian, J. Autosome and sex chromosome diversity among the African pygmy mice, subgenus Nannomys (Murinae; Mus). Chromosom. Res. 2004, 12, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Veyrunes, F.; Catalan, J.; Tatard, C.; Cellier-Holzem, E.; Watson, J.; Chevret, P.; Robinson, T.J.; Britton-Davidian, J. Mitochondrial and chromosomal insights into karyotypic evolution of the pygmy mouse, Mus minutoides, in South Africa. Chromosom. Res. 2010, 18, 563–574. [Google Scholar] [CrossRef]
- Veyrunes, F.; Perez, J.; Borremans, B.; Gryseels, S.; Richards, L.R.; Duran, A.; Chevret, P.; Robinson, T.J.; Britton-Davidian, J. A new cytotype of the African pygmy mouse Mus minutoides in Eastern Africa. Implications for the evolution of sex-autosome translocations. Chromosom. Res. 2014, 22, 533–543. [Google Scholar] [CrossRef]
- Jotterand-Bellomo, M. Le caryotype et la spermatogénèse de Mus setulosus (bandes Q, C, G et coloration argentique). Genetica 1981, 56, 217–227. [Google Scholar] [CrossRef]
- Gil-Fernández, A.; Ribagorda, M.; Martín-Ruiz, M.; López-Jiménez, P.; Laguna, T.; Gómez, R.; Parra, M.T.; Viera, A.; Veyrunes, F.; Page, J. Meiotic Behavior of Achiasmate Sex Chromosomes in the African Pygmy Mouse Mus mattheyi Offers New Insights into the Evolution of Sex Chromosome Pairing and Segregation in Mammals. Genes 2021, 12, 1434. [Google Scholar] [CrossRef] [PubMed]
- Matthey, R. Nouvelles contributions à la cytogénétique des Mus africains du sous-genre Leggada. Experientia 1966, 22, 400–401. [Google Scholar] [CrossRef]
- Rahmoun, M.; Perez, J.; Saunders, P.A.; Boizet-Bonhoure, B.; Wilhelm, D.; Poulat, F.; Veyrunes, F. Anatomical and Molecular Analyses of XY Ovaries from the African Pygmy Mouse Mus minutoides. Sex. Dev. 2014, 8, 356–363. [Google Scholar] [CrossRef]
- Saunders, P.A.; Perez, J.; Rahmoun, M.; Ronce, O.; Crochet, P.-A.; Veyrunes, F. XY females do better than the XX in the African pygmy mouse, Mus minutoides. Evolution 2014, 68, 2119–2127. [Google Scholar] [CrossRef]
- Saunders, P.A.; Franco, T.; Sottas, C.; Maurice, T.; Ganem, G.; Veyrunes, F. Masculinised Behaviour of XY Females in a Mammal with Naturally Occuring Sex Reversal. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Ginot, S.; Claude, J.; Perez, J.; Veyrunes, F. Sex reversal induces size and performance differences among females of the African pygmy mouse, Mus minutoides. J. Exp. Biol. 2017, 220, 1947–1951. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Quinn, A.; Ng, E.T.; Veyrunes, F.; Koopman, P. Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, S.; Kuroki, S.; Ryo Maed, R.; Okashita, N.; Koopman, P.; Tachibana, M. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 2020, 370, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Gonen, N.; Futtner, C.R.; Wood, S.; Alexandra Garcia-Moreno, S.; Salamone, I.M.; Samson, S.C.; Sekido, R.; Poulat, F.; Maatouk, D.M.; Lovell-Badge, R. Sex reversal following deletion of a single distal enhancer of Sox9. Science 2018, 360, 1469–1471. [Google Scholar] [CrossRef] [Green Version]
- Saunders, P.A.; Perez, J.; Ronce, O.; Veyrunes, F. Multiple Sex Chromosome Drivers in a Mammal with Three Sex Chromosomes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Kovalskaya, I.M.; Orlov, V.N. Unusual sex chromosomes and intrapopulation chromosomal polymorphism in the Chines vole. Tsitologiia 1974, 16, 497–503. [Google Scholar]
- Zhu, B.; Dong, Y.; Gao, J.; Li, P.; Pang, Y.; Liu, H.; Chen, H. Numerical and structural variations of the X chromosomes and no. 2 autosomes in mandarin vole, Microtus mandarinus (Rodentia). Hereditas 2006, 143, 130–137. [Google Scholar] [CrossRef]
- Zhu, B.; Gao, H.; Wang, H.; Gao, J.; Zhang, Y.; Dong, Y.; Hou, J.; Nan, X. The origin of the genetical diversity of Microtus mandarinus chromosomes. Hereditas 2003, 139, 90–95. [Google Scholar] [CrossRef]
- Liu, H.; Yan, N.; Zhu, B. Two new karyotypes and bandings in Microtus mandarinus faeceus (Rodentia). Hereditas 2010, 147, 123–126. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, Y.; Xiang, X.; Zhang, X.; Zhu, B.C. Sex determination of Microtus mandarinus mandarinus is independent of Sry gene. Mamm. Genome 2008, 19, 61–68. [Google Scholar] [CrossRef]
- Gladkikh, O.L.; Romanenko, S.A.; Lemskaya, N.A.; Serdyukova, N.A.; O’Brien, P.C.M.; Kovalskaya, J.M.; Smorkatcheva, A.V.; Golenishchev, F.N.; Perelman, P.L.; Trifonov, V.A.; et al. Rapid karyotype evolution in Lasiopodomys involved at least two autosome—Sex chromosome translocations. PLoS ONE 2016, 11, e0167653. [Google Scholar] [CrossRef]
- Romanenko, S.A.; Smorkatcheva, A.V.; Kovalskaya, J.M.; Prokopov, D.Y.; Lemskaya, N.A.; Gladkikh, O.L.; Serdyukova, N.A.; Trifonov, V.A.; Molodtseva, A.S.; O’Brien, P.C.M.; et al. Complex Structure of Lasiopodomys mandarinus vinogradovi Sex chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism. Genes 2020, 11, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.W. On the Form and Origins of the Bizarre Sex Chromosomal System of the Mandarin Vole. J. Hered. 2021, 112, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Waters, P.D.; Ruiz-Herrera, A. Meiotic Executioner Genes Protect the Y from Extinction. Trends Genet. 2020, 36, 728–738. [Google Scholar] [CrossRef]
- Cortez, D.; Marin, R.; Toledo-Flores, D.; Froidevaux, L.; Liechti, A.; Waters, P.D.; Grützner, F.; Kaessmann, H. Origins and functional evolution of Y chromosomes across mammals. Nature 2014, 508, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pacheco, M.; Tenorio, M.; Almonte, L.; Fajardo, V.; Godínez, A.; Fernández, D.; Cornejo-Páramo, P.; Díaz-Barba, K.; Halbert, J.; Liechti, A.; et al. Expression Evolution of Ancestral XY Gametologs across All Major Groups of Placental Mammals. Genome Biol. Evol. 2020, 12, 2015–2028. [Google Scholar] [CrossRef] [PubMed]
- Nakasuji, T.; Ogonuki, N.; Chiba, T.; Kato, T.; Shiozawa, K.; Yamatoya, K.; Tanaka, H.; Kondo, T.; Miyado, K.; Miyasaka, N.; et al. Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction. PLoS Genet. 2017, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018, 16, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Matthey, R. Un nouveau type de chromosomes sexuels chez un mammifère. Experientia 1954, 10, 18. [Google Scholar] [CrossRef]
- Bakloushinskaya, I.; Matveevsky, S. Unusual Ways to Lose a Y Chromosome and Survive with Changed Autosomes: A Story of Mole Voles Ellobius (Mammalia, Rodentia). OBM Genet. 2018, 2, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Just, W.; Rau, W.; Vogen, W.; Akhverdian, M.; Fredga, K.; Marshall Graves, J.A.; Lyapunova, E. Absence of Sry in species of the vole Ellobius. Nat. Genet. 1995, 11, 117–118. [Google Scholar] [CrossRef] [PubMed]
- Mulugeta, E.; Wassenaar, E.; Sleddens-Linkels, E.; van IJcken, W.F.J.; Heard, E.; Grootegoed, J.A.; Just, W.; Gribnau, J.; Baarends, W.M. Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes. Genome Res. 2016, 26, 1202–1210. [Google Scholar] [CrossRef] [Green Version]
- Matveevsky, S.; Kolomiets, O.; Bogdanov, A.; Hakhverdyan, M.; Bakloushinskaya, I. Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes 2017, 8, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri-Fam, S.; Sreenivasan, R.; Bernard, P.; Knower, K.C.; Sekido, R.; Lovell-Badge, R.; Just, W.; Harley, V.R. Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens. Chromosom. Res. 2012, 20, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Just, W.; Baumstark, A.; Hameister, H.; Schreiner, B.; Reisert, I.; Hakhverdyan, M.; Vogel, W. The sex determination in Ellobius lutescens remains bizarre. Cytogenet. Genome Res. 2002, 96, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Just, W.; Baumstark, A.; Süss, A.; Graphodatsky, A.; Rens, W.; Schäfer, N.; Bakloushinskaya, I.; Hameister, H.; Vogel, W. Ellobius lutescens: Sex Determination and Sex Chromosome. Sex. Dev. 2007, 1, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Baumstark, A.; Akhverdyan, M.; Schulze, A.; Reisert, I.; Vogel, W.; Just, W. Exclusion of SOX9 as the testis determining factor in Ellobius lutescens: Evidence for another testis determining gene besides SRY and SOX9. Mol. Genet. Metab. 2001, 72, 61–66. [Google Scholar] [CrossRef]
- Baumstark, A.; Hameister, H.; Hakhverdyan, M.; Bakloushinskaya, I.; Just, W. Characterization of Pisrt1/Foxl2 in Ellobius lutescens and exclusion as sex-determining genes. Mamm. Genome 2005, 16, 281–289. [Google Scholar] [CrossRef]
- Kolomiets, O.L.; Vorontsov, N.N.; Lyapunova, E.A.; Mazurova, T.F. Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica 1991, 84, 179–189. [Google Scholar] [CrossRef]
- Castro-Sierra, E.; Wolf, U. Replication patterns of the unpaired chromosome No. 9 of the rodent Ellobius lutescens. Cytogenet. Genome Res. 1967, 6, 268–275. [Google Scholar] [CrossRef]
- Lyapunova, E.A.; Vorontsov, N.N.; Zakarjan, G.G. Zygotic mortality in Ellobius lutescens (Rodentia: Microtinae). Experientia 1975, 31, 417–418. [Google Scholar] [CrossRef]
- Kolomiets, O.L.; Matveevsky, S.N.; Bakloushinskaya, I.Y. Sexual dimorphism in prophase I of meiosis in the Northern mole vole (Ellobius talpinus Pallas, 1770) with isomorphic (XX) chromosomes in males and females. Comp. Cytogenet. 2010, 4, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Matveevsky, S.; Bakloushinskaya, I.; Kolomiets, O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Endo, H.; Tsuchiya, K. A new species of Ryukyu spiny rat, Tokudaia (Muridae: Rodentia), from Tokunoshima Island, Kagoshima Prefecture, Japan. Mammal Study 2006, 31, 47–57. [Google Scholar] [CrossRef]
- Endo, H.; Hattori, S.; Hayashi, Y.; Tsuchiya, K. Morphological comparisons between three species of the Ryukyu spiny rats. Mammal Study 2008, 33, 1–10. [Google Scholar] [CrossRef]
- Honda, T.; Itoh, M. An unusual sex chromosome constitution found in the Amami spinous country-rat, tokudaia osimensis osimensis. Jpn. J. Genet. 1977, 52, 247–249. [Google Scholar] [CrossRef] [Green Version]
- Honda, T.; Itoh, M.; Suzuki, H.; Hayashi, K. Karyotypical differences of the amami spinous countryrats, tokudaia osimensis osimensis obtained from two neighbouring islands. Jpn. J. Genet. 1978, 53, 297–299. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamada, F.; Hashimoto, T.; Abe, S.; Matsuda, Y.; Kuroiwa, A. Exceptional minute sex-specific region in the X0 mammal, Ryukyu spiny rat. Chromosom. Res. 2007, 15, 175–187. [Google Scholar] [CrossRef]
- Kobayashi, T.; Yamada, F.; Hashimoto, T.; Abe, S.; Matsuda, Y.; Kuroiwa, A. Centromere repositioning in the X chromosome of XO/XO mammals, Ryukyu spiny rat. Chromosom. Res. 2008, 16, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Soullier, S.; Hanni, C.; Catzeflis, F.; Berta, P.; Laudet, V. Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mamm. Genome 1998, 9, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Sutou, S.; Mitsui, Y.; Tsuchiya, K. Sex determination without the Y chromosome in two Japanese rodents Tokudaia osimensis osimensis and Tokudaia osimensis spp. Mamm. Genome 2001, 12, 17–21. [Google Scholar] [CrossRef]
- Arakawa, Y.; Nishida-Umehara, C.; Matsuda, Y.; Sutou, S.; Suzuki, H. X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenet. Genome Res. 2002, 99, 303–309. [Google Scholar] [CrossRef]
- Kuroiwa, A.; Ishiguchi, Y.; Yamada, F.; Shintaro, A.; Matsuda, Y. The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 2010, 119, 519–526. [Google Scholar] [CrossRef]
- Kimura, R.; Murata, C.; Kuroki, Y.; Kuroiwa, A. Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia. PLoS ONE 2014, 9, 1–8. [Google Scholar] [CrossRef]
- Otake, T.; Kuroiwa, A. Molecular mechanism of male differentiation is conserved in the SRY-absent mammal, Tokudaia osimensis. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Washio, K.; Mizushima, S.; Jogahara, T.; Kuroiwa, A. Regulation of the Sox3 Gene in an X0/X0 Mammal without Sry, the Amami Spiny Rat, Tokudaia osimensis. Cytogenet. Genome Res. 2020, 159, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kuroiwa, A.; Handa, S.; Nishiyama, C.; Chiba, E.; Yamada, F.; Abe, S.; Matsuda, Y. Additional copies of CBX2 in the genomes of males of mammals lacking SRY, the Amami spiny rat (Tokudaia osimensis) and the Tokunoshima spiny rat (Tokudaia tokunoshimensis). Chromosom. Res. 2011, 19, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Murata, C.; Kuroki, Y.; Imoto, I.; Kuroiwa, A. Ancestral Y-linked genes were maintained by translocation to the X and Y chromosomes fused to an autosomal pair in the Okinawa spiny rat Tokudaia muenninki. Chromosom. Res. 2016, 24, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Murata, C.; Yamada, F.; Kawauchi, N.; Matsuda, Y.; Kuroiwa, A. Multiple copies of SRY on the large Y chromosome of the Okinawa spiny rat, Tokudaia muenninki. Chromosom. Res. 2010, 18, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Ogata, Y.; Nishikata, M.; Kitada, K.; Mizushima, S.; Jogahara, T.; Kuroiwa, A. Spiny rat SRY lacks a long Q-rich domain and is not stable in transgenic mice. Dev. Dyn. 2019, 248, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Murata, C.; Yamada, F.; Kawauchi, N.; Matsuda, Y.; Kuroiwa, A. The Y chromosome of the Okinawa spiny rat, Tokudaia muenninki, was rescued through fusion with an autosome. Chromosom. Res. 2012, 20, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Matthey, R. Cytologie Comparée des Muridae. L’origine des Ellobii. Experientia 1956, 12, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Matthey, R. Un nouveau type de détermination chromosomique du sexe chez les mammiferes Ellobius lutescens Th. et Microtus (Chilotus) oregoni Bachm. (Murides-Microtines). Experientia 1958, 14, 240–241. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.; Jainchill, J.; Stenius, C. The Creeping Vole (Microtus oregoni) as a Gonosomic Mosaic. I. The OY/XY Constitution of the Male. Cytogenetics 1963, 2, 232–239. [Google Scholar] [CrossRef]
- Ohno, S.; Stenius, C.; Christian, L. The XO as the normal female of the creeping vole (Microtus oregoni). Chromosom. Today 1966, 1, 182–187. [Google Scholar]
- Couger, M.B.; Roy, S.W.; Anderson, N.; Gozashti, L.; Pirro, S.; Millward, L.S.; Kim, M.; Kilburn, D.; Liu, K.J.; Wilson, T.M.; et al. Sex chromosome transformation and the origin of a male-specific X chromosome in the creeping vole. Science 2021, 372, 592–600. [Google Scholar] [CrossRef]
- Charlesworth, B.; Dempsey, N.D. A model of the evolution of the unusual sex chromosome system of Microtus oregoni. Heredity 2001, 86, 387–394. [Google Scholar] [CrossRef]
- Hayman, D.L.; Martin, P.G. Sex chromosome mosaicism in the marsupial genera Isoodon and Perameles. Genetics 1965, 52, 1201–1206. [Google Scholar] [CrossRef]
- Johnston, P.G.; Watson, C.M.; Adams, M.; Paull, D.J. Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Cytogenet. Genome Res. 2002, 99, 119–124. [Google Scholar] [CrossRef]
- Corin-Frederic, J. Les formules gonosomiques dites aberrantes chez les Mammifères Euthériens. Chromosoma 1969, 27, 268–287. [Google Scholar] [CrossRef]
- Jorge, W.; Pereira, H.R.J., Jr. Chromosomal studies in the Xenarthra. In The Biology of the Xenarthra; University Press of Florida: Gainesville, FL, USA, 2008; pp. 196–204. [Google Scholar]
- Jorge, W.; Best, R.C.; Wetzel, R.M. Chromosome Studies on the Silky Anteater Cyclopes Didactylus L. (Myrmecophagidae: Xenarthra, Edentata). Caryologia 1985, 38, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Matthey, R. Le problème de la détermination du sexe chez Acomys selousi de Winton. (Rodentia-Murinae). Rev. Suisse Zool. 1965, 72, 119–144. [Google Scholar] [CrossRef]
- Barome, P.O.; Volobouev, V.; Monnerot, M.; Mfune, J.K.; Chitaukali, W.; Gautun, J.C.; Denys, C. Phylogeny of Acomys spinosissimus (Rodentia, Muridae) from north Malawi and Tanzania: Evidence from morphological and molecular analysis. Biol. J. Linn. Soc. 2001, 73, 321–340. [Google Scholar] [CrossRef]
- Verheyen, W.; Hulselmans, J.; Wendelen, W.; Leirs, H.; Corti, M. Contribution to the systematics and zoogeography of the East-African Acomys spinosissimus Peters 1852 species complex and the description of two new species (Rodentia: Muridae). Zootaxa 2011, 3059, 1–35. [Google Scholar] [CrossRef]
- Castiglia, R.; Makundi, R.; Corti, M. The origin of an unusual sex chromosome constitution in Acomys sp. (Rodentia, Muridae) from Tanzania. Genetica 2007, 131, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Castiglia, R.; Annesi, F. Cytotaxonomic considerations on the sex chromosome variation observed within Acomys ngurui Verheyen et al. 2011 (Rodentia Muridae). Zootaxa 2012, 38, 35–38. [Google Scholar] [CrossRef]
- Jotterand-Bellomo, M. Chromosome analysis of five specimens of Mus bufo-triton (Muridae) from Burundi (Africa): Three cytogenetic entities, a special type of chromosomal sex determination, taxonomy, and phylogeny. Cytogenet. Genome Res. 1988, 48, 88–91. [Google Scholar] [CrossRef]
- Jiménez, R.; Carnero, A.; Burgos, M.; Sánchez, A.; de la Guardia, R.D. Achiasmatic giant sex chromosomes in the vole Microtus cabrerae (Rodentia, Microtidae). Cytogenet. Genome Res. 1991, 57, 56–58. [Google Scholar]
- Bullejos, M.; Sánchez, A.; Burgos, M.; Hera, C.; Jiménez, R.; de la Guardia, R.D. Multiple, polymorphic copies of SRY in both males and females of the vole Microtus cabrerae. Cytogenet. Genome Res. 1997, 79, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Burgos, M.; Jiménez, R.; de la Guardia, R.D. XY females in Microtus cabrerae (Rodentia, Microtidae): A case of possibly Y-linked sex reversal. Cytogenet. Genome Res. 1988, 49, 275–277. [Google Scholar] [CrossRef]
- Peterson, R.L.; Nagorsen, D.W. Chromosomes of Fifteen Species of Bats (Chiroptera) from Kenya and Rhodesia; Royal Ontario Museum: Toronto, Canada, 1975. [Google Scholar]
- Denys, C.; Kadjo, B.; Missoup, A.D.; Monadjem, A.; Aniskine, V. New records of bats (Mammalia: Chiroptera) and karyotypes from Guinean Mount Nimba (West Africa). Ital. J. Zool. 2013, 80, 279–290. [Google Scholar] [CrossRef]
- Jiménez, R.; Barrionuevo, F.J.; Burgos, M. Natural Exceptions to Normal Gonad Development in Mammals. Sex. Dev. 2013, 7, 147–162. [Google Scholar] [CrossRef]
- Jimenez, R.; Burgos, M.; Sanchez, A.; Sinclair, A.H.; Alarcon, F.J.; Marin, J.J.; Ortega, E.; Diaz de la Guardia, R. Fertile females of the mole Talpa occidentalis are phenotypic intersexes with ovotestes. Development 1993, 118, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, A.; Bullejos, M.; Burgos, M.; Hera, C.; Stamatopoulos, C.; Díaz de la Guardia, R.; Jiménez, R. Females of four mole species of genus Talpa (Insectivora, mammalia) are true hermaphrodites with ovotestes. Mol. Reprod. Dev. 1996, 44, 289–294. [Google Scholar] [CrossRef]
- Barrionuevo, F.J.; Zurita, F.; Burgos, M.; Jiménez, R. Testis-like development of gonads in female moles. New insights on mammalian gonad organogenesis. Dev. Biol. 2004, 268, 39–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmona, F.D.; Motokawa, M.; Tokita, M.; Tsuchiya, K.; Jimenez, R.; Sánchez-Villagra, M.R. The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. J. Exp. Zool. Part B Mol. Dev. Evol. 2008, 310, 259–266. [Google Scholar] [CrossRef]
- Carmona, F.D.; Lupiáñez, D.G.; Martín, J.E.; Burgos, M.; Jiménez, R.; Zurita, F. The spatio-temporal pattern of testis organogenesis in mammals—Insights from the mole. Int. J. Dev. Biol. 2009, 53, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Romanenko, S.A.; Perelman, P.L.; Trifonov, V.A.; Graphodatsky, A.S. Chromosomal evolution in Rodentia. Heredity 2012, 108, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Romanenko, S.A.; Volobouev, V. Non-Sciuromorph Rodent karyotypes in evolution. Cytogenet. Genome Res. 2012, 137, 233–245. [Google Scholar] [CrossRef]
- Kauppi, L.; Jasin, M.; Keeney, S. The tricky path to recombining X and Y chromosomes in meiosis. Ann. N. Y. Acad. Sci. 2012, 1267, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Kauppi, L.; Barchi, M.; Baudat, F.; Romanienko, P.J.; Keeney, S.; Jasin, M. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 2011, 331, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P. Sex chromosome pairing during male meiosis in marsupials. Chromosoma 1982, 86, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Page, J.; Berríos, S.; Parra, M.T.; Viera, A.; Suja, J.Á.; Prieto, I.; Barbero, J.L.; Rufas, J.S.; Fernández-Donoso, R. The program of sex chromosome pairing in meiosis is highly conserved across marsupial species: Implications for sex chromosome evolution. Genetics 2005, 170, 793–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, R.; Parra, M.T.; Viera, A.; Calvente, A.; Gómez, R.; Suja, J.Á.; Rufas, J.S.; Page, J. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: The role of SYCP3 protein. PLoS Genet. 2007, 3, 2122–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, R.; Sánchez, A.; Marchal, J.A.; Viera, A.; Parra, M.T.; Rufas, J.S.; Page, J. A synaptonemal complex-derived mechanism for meiotic segregation precedes the evolutionary loss of homology between sex chromosomes in arvicolid mammals. Chromosoma 2012, 121, 433–446. [Google Scholar] [CrossRef]
- Borodin, P.M.; Basheva, E.A.; Golenischev, F.N.; Dashkevich, O.A.; Kartavtseva, I.N.; Lisachov, A.P.; Torgasheva, A.A. Parallel occurrence of asynaptic sex chromosomes in gray voles (Microtus Schrank, 1798). Paleontol. J. 2013, 47, 1035–1040. [Google Scholar] [CrossRef]
- Wolf, K.W.; Winking, H.; Fredga, K. Relationship between nucleoli and sex chromosomes during meiosis of the male wood lemming Myopus schisticolor: A fine-structure study. Biol. Cell 1987, 60, 15–24. [Google Scholar] [CrossRef]
- Berend, S.A.; Hale, D.W.; Engstrom, M.D.; Greenbaum, I.F. Cytogenetics of collared lemmings (Dicrostonyx groenlandicus) I. Meiotic behavior and evolution of the neo-XY sex-chromosome system. Cytogenet. Genome Res. 1997, 79, 288–292. [Google Scholar] [CrossRef]
- Dobigny, G.; Ozouf-Costaz, C.; Bonillo, C.; Volobouev, V. Viability of X-autosome translocations in mammals: An epigenomic hypothesis from a rodent case-study. Chromosoma 2004, 113, 34–41. [Google Scholar] [CrossRef]
- Yoshida, K.; Kitano, J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 2012, 66, 3198–3208. [Google Scholar] [CrossRef] [Green Version]
- Cocquet, J.; Ellis, P.J.I.; Mahadevaiah, S.K.; Affara, N.A.; Vaiman, D.; Burgoyne, P.S. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet. 2012, 8, e1002900. [Google Scholar] [CrossRef]
- Moretti, C.; Blanco, M.; Ialy-Radio, C.; Serrentino, M.E.; Gobe, C.; Friedman, R.; Battail, C.; Leduc, M.; Ward, M.A.; Vaiman, D.; et al. Battle of the sex chromosomes: Competition between X and Y chromosome-encoded proteins for partner interaction and chromatin occupancy drives multicopy gene expression and evolution in muroid rodents. Mol. Biol. Evol. 2020, 37, 3453–3468. [Google Scholar] [CrossRef] [PubMed]
- Blackmon, H.; Demuth, J.P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays 2015, 37, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Blackmon, H.; Demuth, J.P. Estimating tempo and mode of Y chromosome turnover: Explaining Y chromosome loss with the fragile Y hypothesis. Genetics 2014, 197, 561–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raudsepp, T.; Chowdhary, B.P. The Eutherian Pseudoautosomal Region. Cytogenet. Genome Res. 2016, 147, 81–94. [Google Scholar] [CrossRef]
- Vernet, N.; Mahadevaiah, S.K.; de Rooij, D.G.; Burgoyne, P.S.; Ellis, P.J.I. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum. Mol. Genet. 2016, 25, 5300–5310. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, V.V.; Hochwagen, A. The meiotic checkpoint network: Step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 2014, 6, a016675. [Google Scholar] [CrossRef]
- Bengtsson, B.O. Evolution of the sex ratio in the wood lemming, Myopus schisticolor. In Measuring Selection in Natural Populations; Fenchel, T.M., Christiansen, F.B., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 333–343. [Google Scholar]
- Maynard Smith, J.; Stenseth, N.C. On The Evolutionary Stability of The Female-Biased Sex-Ratio in The Wood Lemming (Myopus schisticolor): The Effect of Inbreeding. Heredity 1978, 41, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Bulmer, M.G.; Taylor, P.D. Sex ratio under the haystack model. J. Theor. Biol. 1980, 86, 83–89. [Google Scholar] [CrossRef]
- Carothers, A.D. Population dynamics and the evolution of sex-determination in lemmings. Genet. Res. 1980, 36, 199–209. [Google Scholar] [CrossRef]
- Benenson, I.E. On the maintenance of the unique system of sex determination in Lemmings. Oikos 1983, 41, 211–218. [Google Scholar] [CrossRef]
- Bulmer, M. Sex ratio evolution in Lemmings. Heredity 1988, 61, 231–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozielska, M.; Weissing, F.J.; Beukeboom, L.W.; Pen, I. Segregation distortion and the evolution of sex-determining mechanisms. Heredity 2010, 104, 100–112. [Google Scholar] [CrossRef] [Green Version]
- Ubeda, F.; Patten, M.M.; Wild, G.; Francisco, U. On the origin of sex chromosomes from meiotic drive. Proc. R. Soc. B 2015, 282, 20141932. [Google Scholar] [CrossRef]
- Scott, M.F.; Osmond, M.M.; Otto, S.P. Haploid selection, sex ratio bias, and transitions between sex-determining systems. PLoS Biol. 2018, 16, e2005609. [Google Scholar] [CrossRef] [Green Version]
- Moore, E.C.; Roberts, R.B. Polygenic sex determination. Curr. Biol. 2013, 23, R510–R512. [Google Scholar] [CrossRef] [Green Version]
- Capel, B. Vertebrate sex determination: Evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 2017, 18, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Vaiman, D.; Pailhoux, E. Mammalian sex reversal and intersexuality: Deciphering the sex-determination cascade. Trends Genet. 2000, 16, 488–494. [Google Scholar] [CrossRef]
- Quinn, A.; Koopman, P. The molecular genetics of sex determination and sex reversal in mammals. Semin. Reprod. Med. 2012, 30, 351–363. [Google Scholar] [CrossRef] [PubMed]
Species | Females | Males | Asynaptic Sex Chromosomes in Male Meiosis | Sex-Autosome Translocation | Biased Transmission of Sex Chromosomes |
---|---|---|---|---|---|
Myopus schisticolor | XX, XX*, and X*Y | XY | Yes | No | X*-drive in X*Y females |
Dicrostonyx torquatus | XX, XX*, and X*Y | XY | Yes | Multiple | Y-drive in males |
Akodon sp. | XX, XX*, and X*Y | XY | No | No | Suspected Y-drive in males and X*Y females |
Mus minutoides | XX, XX*, and X*Y | XY | Yes | Multiple | Conditional male drive |
Lasiopodomis mandarinus | XX, XX*, and X*Y | XY | Yes | Multiple | Conditional male drive |
Ellobius lutescens | X0 | X0 | NA | No | Unknown |
Ellobius tancrei/talpinus/alaicus | XX | XX | No | No | Unknown |
Tokudaia osimensis/tokunoshimensis | X0 | X0 | NA | No, but yes in sister species T. muenninki | Unknown |
Microtus oregoni | XM0 | XPXM | NA | No, but possible X–Y fusion | XM-drive in females XM loss in males |
Other species | Microtus cabrerae, Mus triton | Choloepus hoffmanni, Mus triton | Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saunders, P.A.; Veyrunes, F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes 2021, 12, 1770. https://doi.org/10.3390/genes12111770
Saunders PA, Veyrunes F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes. 2021; 12(11):1770. https://doi.org/10.3390/genes12111770
Chicago/Turabian StyleSaunders, Paul A., and Frédéric Veyrunes. 2021. "Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities" Genes 12, no. 11: 1770. https://doi.org/10.3390/genes12111770