Characterization of the Bacterial Community of Rumen in Dairy Cows with Laminitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Farms and Animals
2.2. Lipopolysaccharide Concentration Detection
2.3. Lactic Acid and Histamine Concentrations Detection
2.4. DNA Extraction, Illumina MiSeq Sequencing, Bioinformatics Analyses
2.5. Statistical Analysis
3. Results
3.1. LPS, Lactic Acid, and Histamine in Plasma
3.2. PH in Rumen Fluid
3.3. The Composition of the Ruminal Bacterial Community
3.4. Changes in Ruminal Bacterial Community at the Phylum Level
3.5. Changes in Ruminal Bacterial Community at the Genus and Species Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nuss, K.; Muller, J.; Wiestner, T. Effects of induced weight shift in the hind limbs on claw loads in dairy cows. J. Dairy Sci. 2019, 102, 6431–6441. [Google Scholar] [CrossRef] [PubMed]
- Bergsten, C. Causes, risk factors, and prevention of laminitis and related claw lesions. Acta Vet. Scand. Suppl. 2003, 98, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nocek, J.E. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Thoefner, M.B.; Pollitt, C.C.; van Eps, A.W.; Milinovich, G.J.; Trott, D.J.; Wattle, O.; Andersen, P.H. Acute bovine laminitis: A new induction model using alimentary oligofructose overload. J. Dairy Sci. 2004, 87, 2932–2940. [Google Scholar] [CrossRef] [Green Version]
- Vermunt, J.J. “Subclinical” laminitis in dairy cattle. N. Z. Vet. J. 1992, 40, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Baggott, D.G.; Russell, A.M. Lameness in cattle. Br. Vet. J. 1981, 137, 113–132. [Google Scholar] [CrossRef]
- Maclean, C.W. Observations on laminitis in intensive beef units. Vet. Rec. 1966, 78, 223–231. [Google Scholar] [CrossRef]
- Thoefner, M.B.; Wattle, O.; Pollitt, C.C.; French, K.R.; Nielsen, S.S. Histopathology of oligofructose-induced acute laminitis in heifers. J. Dairy Sci. 2005, 88, 2774–2782. [Google Scholar] [CrossRef] [Green Version]
- Concha, C.; Carretta, M.D.; Alarcon, P.; Conejeros, I.; Gallardo, D.; Hidalgo, A.I.; Tadich, N.; Caceres, D.D.; Hidalgo, M.A.; Burgos, R.A. Oxidative response of neutrophils to platelet-activating factor is altered during acute ruminal acidosis induced by oligofructose in heifers. J. Vet. Sci. 2014, 15, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Garner, M.R.; Gronquist, M.R.; Russell, J.B. Nutritional requirements of Allisonella histaminiformans, a ruminal bacterium that decarboxylates histidine and produces histamine. Curr. Microbiol. 2004, 49, 295–299. [Google Scholar] [CrossRef]
- Weiss, D.J.; Evanson, O.A.; Green, B.T.; Brown, D.R. In vitro evaluation of intraluminal factors that may alter intestinal permeability in ponies with carbohydrate-induced laminitis. Am. J. Vet. Res. 2000, 61, 858–861. [Google Scholar] [CrossRef]
- Tian, M.; Li, K.; Liu, R.; Du, J.; Zou, D.; Ma, Y. Angelica polysaccharide attenuates LPS-induced inflammation response of primary dairy cow claw dermal cells via NF-kappaB and MAPK signaling pathways. BMC Vet. Res. 2021, 17, 248. [Google Scholar] [CrossRef]
- Zeineldin, M.; Barakat, R.; Elolimy, A.; Salem, A.Z.M.; Elghandour, M.M.Y.; Monroy, J.C. Synergetic action between the rumen microbiota and bovine health. Microb. Pathog. 2018, 124, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal 2018, 12, 2511–2520. [Google Scholar] [CrossRef] [PubMed]
- Gozho, G.N.; Plaizier, J.C.; Krause, D.O.; Kennedy, A.D.; Wittenberg, K.M. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J. Dairy Sci. 2005, 88, 1399–1403. [Google Scholar] [CrossRef] [Green Version]
- Pilachai, R.; Schonewille, J.T.; Thamrongyoswittayakul, C.; Aiumlamai, S.; Wachirapakorn, C.; Everts, H.; Hendriks, W.H. The effects of high levels of rumen degradable protein on rumen pH and histamine concentrations in dairy cows. J. Anim. Physiol. Anim. Nutr. 2012, 96, 206–213. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Li, X.; Guan, Y.; Wang, Y.; Yuan, X.; Sun, G.; Wang, Z.; Li, X. Inflammatory mechanism of Rumenitis in dairy cows with subacute ruminal acidosis. BMC Vet. Res. 2018, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Boosman, R.; Mutsaers, C.W.; Klarenbeek, A. The role of endotoxin in the pathogenesis of acute bovine laminitis. Vet. Q. 1991, 13, 155–162. [Google Scholar] [CrossRef]
- Irwin, L.N.; Mitchell, G.E., Jr.; Tucker, R.E.; Schelling, G.T. Histamine, tyramine, tryptamine and electrolytes during glucose induced lactic acidosis. J. Anim. Sci. 1979, 48, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.H. Bovine endotoxicosis—Some aspects of relevance to production diseases. A review. Acta Vet. Scand. 2003, 98, 141–155. [Google Scholar] [CrossRef] [Green Version]
- Barcik, W.; Pugin, B.; Bresco, M.S.; Westermann, P.; Rinaldi, A.; Groeger, D.; Van Elst, D.; Sokolowska, M.; Krawczyk, K.; Frei, R.; et al. Bacterial secretion of histamine within the gut influences immune responses within the lung. Allergy 2019, 74, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, T.Y.; Kim, Y.; Kim, S.; Lee, S.H.; Seo, S.U.; Zhou, B.O.; Eunju, O.; Kim, K.S.; Kweon, M.N. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp. Mol. Med. 2021, 53, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tian, X.; Maruyama, D.; Arjomandi, M.; Prakash, A. Lung immune tone via gut-lung axis: Gut-derived LPS and short-chain fatty acids’ immunometabolic regulation of lung IL-1beta, FFAR2, and FFAR3 expression. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L65–L78. [Google Scholar] [CrossRef] [PubMed]
- Delarocque, J.; Reiche, D.B.; Meier, A.D.; Warnken, T.; Feige, K.; Sillence, M.N. Metabolic profile distinguishes laminitis-susceptible and -resistant ponies before and after feeding a high sugar diet. BMC Vet. Res. 2021, 17, 56. [Google Scholar] [CrossRef]
- Noronha, A.D.F.; Freitas, S.L.R.; Rodrigues, D.R.; Mendes, F.R.; Miguel, M.P.; Cunha, P.H.J.; Fioravanti, M.C.S.; Silva, L.A.F. Characterization of ruminal acidosis and initial phase of laminitis inducted by oligofructose in crossbred calves. Pesqui Vet. Bras. 2019, 39, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Mgasa, M.N. Bovine pododermatitis aseptica diffusa (laminitis) aetiology, pathogenesis, treatment and control. Vet. Res. Commun. 1987, 11, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, M.; Lyu, H.J.; Rao, Z.L.; Zeng, N. Anti-inflammatory effect and mechanism of ethanol extract from Saposhnikoviae Radix in LPS-induced inflammation mouse model. Zhongguo Zhong Yao Za Zhi 2021, 46, 4800–4807. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Zhu, W.; Mao, S. Intraruminal infusion of oligofructose alters ruminal microbiota and induces acute laminitis in sheep. J. Anim. Sci. 2017, 95, 5407–5419. [Google Scholar] [CrossRef] [PubMed]
- Zeineldin, M.; Aldridge, B.; Lowe, J. Dysbiosis of the fecal microbiota in feedlot cattle with hemorrhagic diarrhea. Microb. Pathog. 2018, 115, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Zhang, H.; Yang, D.; Zhang, Y.; Xiong, B.; Jiang, L. Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows. PLoS ONE 2018, 13, e0198225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Gong, Y.; Huang, S.; Ji, S.; Wang, W.; Wang, Y.; Yang, H.; Cao, Z.; Li, S. Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle. Microorganisms 2021, 9, 1788. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, Q.; Zhong, S.; Chen, Y.; Yang, Y. Comparison of Rumen Microbiota and Serum Biochemical Indices in White Cashmere Goats Fed Ensiled or Sun-Dried Mulberry Leaves. Microorganisms 2020, 8, 981. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Han, C.; Xu, J.; Liang, X. Transcriptome response of Acetobacter pasteurianus Ab3 to high acetic acid stress during vinegar production. Appl. Microbiol. Biotechnol. 2020, 104, 10585–10599. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; You, W.; Wu, S.; Poetsch, A.; Xu, C. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol. Biofuels 2019, 12, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Zhang, H.; Chen, L.; Ruan, Y.; Chen, Y.; Liu, Q. Disease-Associated Gut Microbiota Reduces the Profile of Secondary Bile Acids in Pediatric Nonalcoholic Fatty Liver Disease. Front. Cell Infect. Microbiol. 2021, 11, 698852. [Google Scholar] [CrossRef]
- Hirasawa, M.; Takada, K. Porphyromonas gingivicanis sp. nov. and Porphyromonas crevioricanis sp. nov., isolated from beagles. Int. J. Syst. Bacteriol. 1994, 44, 637–640. [Google Scholar] [CrossRef] [Green Version]
- Gaiser, R.A.; Medema, M.H.; Kleerebezem, M.; van Baarlen, P.; Wells, J.M. Draft Genome Sequence of a Porcine Commensal, Rothia nasimurium, Encoding a Nonribosomal Peptide Synthetase Predicted To Produce the Ionophore Antibiotic Valinomycin. Microbiol. Resour. Ann. 2017, 5, e00453-17. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, Y.; Lin, X.; Xu, H.; Li, Y.; Xue, R.; Wang, G.; Sun, S.; Li, J.; Lan, Z.; et al. Genetic characterization, mechanisms and dissemination risk of antibiotic resistance of multidrug-resistant Rothia nasimurium. Infect. Genet. Evol. 2021, 90, 104770. [Google Scholar] [CrossRef]
Item | Percentage (%) of Ingredients |
---|---|
Beet pulp | 3.59 |
Cottonseed | 1.54 |
Alfalfa | 10.25 |
Ensiling | 51.24 |
Bean pulp | 11.27 |
Extruded soybean | 1.28 |
Maize | 17.68 |
Fatty powder | 0.92 |
1% gunk | 0.26 |
Mineral additive | 1.97 |
Score | Name | Description |
---|---|---|
1 | Normal | Straight back when standing in quadrupedal position and walking. Normal step. |
2 | Mild lameness | Straight back quadrupedal and arched when walking. Normal step. |
3 | Moderate lameness | Arched ack when standing and walking. Shortened step of one or more members. |
4 | Evident lameness | Arched back when standing and walking. Locomotion changed with one step at a time or avoiding the support of a limb. |
5 | Severe lameness | In addition to previous signs, the calves are reluctant or have difficulty supporting one or more limbs even when standing. |
Control | Laminitis | |
---|---|---|
PH in rumen fluid | 6.2 ± 0.17 | 5.82 ± 0.7 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Mu, R.; Li, S.; Zhang, N.; Fu, Y.; Hu, X. Characterization of the Bacterial Community of Rumen in Dairy Cows with Laminitis. Genes 2021, 12, 1996. https://doi.org/10.3390/genes12121996
Guo J, Mu R, Li S, Zhang N, Fu Y, Hu X. Characterization of the Bacterial Community of Rumen in Dairy Cows with Laminitis. Genes. 2021; 12(12):1996. https://doi.org/10.3390/genes12121996
Chicago/Turabian StyleGuo, Jian, Ruiying Mu, Shuang Li, Naisheng Zhang, Yunhe Fu, and Xiaoyu Hu. 2021. "Characterization of the Bacterial Community of Rumen in Dairy Cows with Laminitis" Genes 12, no. 12: 1996. https://doi.org/10.3390/genes12121996
APA StyleGuo, J., Mu, R., Li, S., Zhang, N., Fu, Y., & Hu, X. (2021). Characterization of the Bacterial Community of Rumen in Dairy Cows with Laminitis. Genes, 12(12), 1996. https://doi.org/10.3390/genes12121996