Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan
Abstract
:1. Introduction
2. Results
2.1. SNP Marker Distribution
2.2. Population Stratification and Genetic Relationships
2.3. Genetic Differentiation among Sub-Populations
2.4. Genetic Diversity across Sub-Populations
2.5. Clustering via Geographic Origin
3. Discussion
3.1. Population Structure
3.2. Genetic Differentiation of Populations
3.3. Genetic Diversity Indices
4. Materials and Methods
4.1. Plant Material
4.2. Genotyping
4.3. Population Structure Analysis
4.4. Genetic Diversity and Analysis of Molecular Variance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bhatta, M.; Regassa, T.; Rose, D.J.; Baenziger, P.S.; Eskridge, K.M.; Santra, D.K.; Poudel, R. Genotype, Environment, Seeding Rate, and Top-Dressed Nitrogen Effects on End-Use Quality of Modern Nebraska Winter Wheat. J. Sci. Food Agric. 2017, 97, 5311–5318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manickavelu, A.; Jighly, A.; Ban, T. Molecular Evaluation of Orphan Afghan Common Wheat (Triticum Aestivum L.) Landraces Collected by Dr. Kihara Using Single Nucleotide Polymorphic Markers. BMC Plant Biol. 2014, 14, 320. [Google Scholar] [CrossRef] [Green Version]
- Dubcovsky, J.; Dvorak, J. Erratum: Genome Plasticity a Key Factor in the Success of Polyploid Wheat under Domestication (Science (1862)). Science 2007, 318, 393. [Google Scholar]
- Tehseen, M.M.; Tonk, F.A.; Tosun, M.; Amri, A.; Sansaloni, C.P.; Kurtulus, E.; Yazbek, M.; Al-Sham&aa, K.; Ozseven, I.; Safdar, L.B.; et al. Genome-Wide Association Study of Resistance to PstS2 and Warrior Races of Puccinia Striiformis f. Sp. Tritici (Stripe Rust) in Bread Wheat Landraces. Plant Genome 2020, e20066. [Google Scholar] [CrossRef]
- Terasawa, Y.; Kawahara, T.; Sasakuma, T.; Sasanuma, T. Evaluation of the Genetic Diversity of an Afghan Wheat Collection Based on Morphological Variation, HMW Glutenin Subunit Polymorphisms, and AFLP. Breed. Sci. 2009, 59, 361–371. [Google Scholar] [CrossRef]
- Rudd, J.C.; Horsley, R.D.; McKendry, A.L.; Elias, E.M. Host Plant Resistance Genes for Fusarium Head Blight: Sources, Mechanisms, and Utility in Conventional Breeding Systems. Crop Sci. 2001, 41, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Vrinten, P.; Saito, M.; Konda, M. Rapid Classification of Partial Waxy Wheats Using PCR-Based Markers. Genome 2002, 45, 1150–1156. [Google Scholar] [CrossRef]
- Zeven, A.C. Landraces: A Review of Definitions and Classifications. Euphytica 1998, 104, 127–139. [Google Scholar] [CrossRef]
- Endresen, D.T.F.; Street, K.; Mackay, M.; Bari, A.; Pauw, E.D. Predictive Association between Biotic Stress Traits and Eco-Geographic Data for Wheat and Barley Landraces. Crop Sci. 2011, 51, 2036–2055. [Google Scholar] [CrossRef]
- Reif, J.C.; Zhang, P.; Dreisigacker, S.; Warburton, M.L.; van Ginkel, M.; Hoisington, D.; Bohn, M.; Melchinger, A.E. Wheat Genetic Diversity Trends during Domestication and Breeding. Appl. Genet. 2005, 110, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Isemura, T.; Noda, C.; Mori, S.; Yamashita, M.; Nakanishi, H.; Inoue, M.; Kamijima, O. Genetic Variation and Geographical Distribution of Azuki Bean (Vigna Angularis) Landraces Based on the Electrophoregram of Seed Storage Proteins. Breed. Sci. 2001, 51, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Hargrove, T.R.; Cabanilla, V.L. The Impact of Semidwarf Varieties on Asian Rice-Breeding Programs. BioScience 1979, 29, 731–735. [Google Scholar] [CrossRef]
- Malvar, R.A.; Butrón, A.; Alvarez, A.; Ordás, B.; Soengas, P.; Revilla, P.; Ordás, A. Evaluation of the European Union Maize Landrace Core Collection for Resistance to Sesamia Nonagrioides (Lepidoptera: Noctuidae) and Ostrinia Nubilalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2004, 97, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Gu, C.; Wang, D. Molecular Mapping of Soybean Aphid Resistance Genes in PI 567541B. Appl. Genet. 2009, 118, 473–482. [Google Scholar] [CrossRef]
- Feldman, M.; Sears, E.R. The Wild Gene Resources of Wheat. Sci. Am. 1981, 244, 102–113. [Google Scholar] [CrossRef]
- Vavilov, N.I. Centers of Origin of Cultivated Plants. N. I. Vavilov Orig. Geogr. Cultiv. Plants 1926. [Google Scholar]
- Lagudah, E.S.; Flood, R.G.; Halloran, G.M. Variation in High Molecular Weight Glutenin Subunits in Landraces of Hexaploid Wheat from Afghanistan. Euphytica 1987, 36, 3–9. [Google Scholar] [CrossRef]
- Iwaki, K.; Haruna, S.; Niwa, T.; Kato, K. Adaptation and Ecological Differentiation in Wheat with Special Reference to Geographical Variation of Growth Habit and Vrn Genotype. Plant Breed. 2001, 120, 107–114. [Google Scholar] [CrossRef]
- Kazman, M.E. Evaluation of Afghan Land Races of Wheat for Multi-Purpose Breeding. In Proceedings of the 10th International Wheat Genetics Symposium, Paestum, Italy, 1–6 September 2003; SIM.I. pp. 587–589. [Google Scholar]
- Ghimire, S.K.; Akashi, Y.; Maitani, C.; Nakanishi, M.; Kato, K. Genetic Diversity and Geographical Differentiation in Asian Common Wheat (Triticum Aestivum L.), Revealed by the Analysis of Peroxidase and Esterase Isozymes. Breed. Sci. 2005, 55, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Tuberosa, R.; Graner, A.; Varshney, R.K. Genomics of Plant Genetic Resources: An Introduction. Plant Genet. Resour. 2011, 9, 151–154. [Google Scholar] [CrossRef] [Green Version]
- Glaszmann, J.; Kilian, B.; Upadhyaya, H.; Varshney, R. Accessing Genetic Diversity for Crop Improvement. Curr. Opin. Plant Biol. 2010, 13, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilian, B.; Özkan, H.; Walther, A.; Kohl, J.; Dagan, T.; Salamini, F.; Martin, W. Molecular Diversity at 18 Loci in 321 Wild and 92 Domesticate Lines Reveal No Reduction of Nucleotide Diversity during Triticum Monococcum (Einkorn) Domestication: Implications for the Origin of Agriculture. Mol. Biol. Evol. 2007, 24, 2657–2668. [Google Scholar] [CrossRef] [Green Version]
- Rafalski, J.A. Novel Genetic Mapping Tools in Plants: SNPs and LD-Based Approaches. Plant Sci. 2002, 162, 329–333. [Google Scholar] [CrossRef]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association Mapping: Critical Considerations Shift from Genotyping to Experimental Design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar]
- Yao, F.; Zhang, X.; Ye, X.; Li, J.; Long, L.; Yu, C.; Li, J.; Wang, Y.; Wu, Y.; Wang, J.; et al. Characterization of Molecular Diversity and Genome-Wide Association Study of Stripe Rust Resistance at the Adult Plant Stage in Northern Chinese Wheat Landraces. BMC Genet. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, D.; Dreisigacker, S.; Belen, S.; Küçüközdemir, Ü.; Mert, Z.; Özer, E.; Morgounov, A. Mining Centuries Old In Situ Conserved Turkish Wheat Landraces for Grain Yield and Stripe Rust Resistance Genes. Front. Genet. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulli, P.; Zhang, J.; Chao, S.; Chen, X.; Pumphrey, M. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection. G3 GenesGenomesGenet 2016, 6, 2237–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manickavelu, A.; Joukhadar, R.; Jighly, A.; Lan, C.; Huerta-Espino, J.; Stanikzai, A.S.; Kilian, A.; Singh, R.P.; Ban, T. Genome Wide Association Mapping of Stripe Rust Resistance in Afghan Wheat Landraces. Plant Sci. 2016, 252, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; Zhang, J.; Bulli, P.; Abate, Z.; Chao, S.; Cantu, D.; Bossolini, E.; Chen, X.; Pumphrey, M.; Dubcovsky, J. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia Striiformis f. Sp. Tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum Aestivum L.). G3 (Bethesda) 2015, 449–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, A.; Feyissa, T.; Letta, T.; Abeyo, B. Genetic Diversity and Population Structure Analysis Based on the High Density SNP Markers in Ethiopian Durum Wheat (Triticum Turgidum Ssp. Durum). BMC Genet. 2020, 21, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatta, M.; Morgounov, A.; Belamkar, V.; Poland, J.; Baenziger, P.S. Unlocking the Novel Genetic Diversity and Population Structure of Synthetic Hexaploid Wheat. BMC Genom. 2018, 19, 591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, H.; Bihamta, M.R.; Mohammadi, V.; Peyghambari, S.A.; Bai, G.; Zhang, G. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. Front. Plant Sci. 2017, 8, 1293. [Google Scholar] [CrossRef]
- Allen, A.M.; Barker, G.L.A.; Wilkinson, P.; Burridge, A.; Winfield, M.; Coghill, J.; Uauy, C.; Griffiths, S.; Jack, P.; Berry, S.; et al. Discovery and Development of Exome-Based, Co-Dominant Single Nucleotide Polymorphism Markers in Hexaploid Wheat (Triticum Aestivum L.). Plant Biotechnol. J. 2013, 11, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Iehisa, J.C.M.; Shimizu, A.; Sato, K.; Nishijima, R.; Sakaguchi, K.; Matsuda, R.; Nasuda, S.; Takumi, S. Genome-Wide Marker Development for the Wheat D Genome Based on Single Nucleotide Polymorphisms Identified from Transcripts in the Wild Wheat Progenitor Aegilops Tauschii. Appl. Genet. 2014, 127, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Muleta, K.T.; Bulli, P.; Rynearson, S.; Chen, X.; Pumphrey, M. Loci Associated with Resistance to Stripe Rust (Puccinia Striiformis f. Sp. Tritici) in a Core Collection of Spring Wheat (Triticum Aestivum). PLoS ONE 2017, 12, e0179087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Brock, J.; Dyer, J.M.; Kutchan, T.; Schachtman, D.; Augustin, M.; Ge, Y.; Fahlgren, N.; Abdel-Haleem, H. Genetic Diversity and Population Structure of a Camelina Sativa Spring Panel. Front. Plant Sci. 2019, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Eltaher, S.; Sallam, A.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.M.; Poland, J.; Baenziger, P.S. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing. Front. Genet. 2018, 9, 76. [Google Scholar] [CrossRef]
- Arora, S.; Singh, N.; Kaur, S.; Bains, N.S.; Uauy, C.; Poland, J.; Chhuneja, P. Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops Tauschii. Front. Plant Sci. 2017, 8, 886. [Google Scholar] [CrossRef] [Green Version]
- Janes, J.K.; Miller, J.M.; Dupuis, J.R.; Malenfant, R.M.; Gorrell, J.C.; Cullingham, C.I.; Andrew, R.L. The K = 2 Conundrum. Mol. Ecol. 2017, 26, 3594–3602. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; He, X.; Kumar, N.; Fuentes-Davila, G.; Sharma, R.K.; Dreisigacker, S.; Juliana, P.; Ataei, N.; Singh, P.K. Genome Wide Association Study of Karnal Bunt Resistance in a Wheat Germplasm Collection from Afghanistan. Int. J. Mol. Sci. 2019, 20, 3124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Choi, Y.-M.; Lee, M.-C.; Hyun, D.Y.; Oh, S.; Jung, Y. Geographical Comparison of Genetic Diversity in Asian Landrace Wheat (Triticum Aestivum L.) Germplasm Based on High-Molecular-Weight Glutenin Subunits. Genet. Resour. Crop. Evol. 2018, 65, 1591–1602. [Google Scholar] [CrossRef]
- Frankham, R.; Ballou, S.E.J.D.; Briscoe, D.A.; Ballou, J.D. Introduction to Conservation Genetics; Cambridge University Press: Cambridge, UK, 2002; ISBN 978-0-521-63985-9. [Google Scholar]
- Sansaloni, C.; Petroli, C.; Jaccoud, D.; Carling, J.; Detering, F.; Grattapaglia, D.; Kilian, A. Diversity Arrays Technology (DArT) and next-Generation Sequencing Combined: Genome-Wide, High Throughput, Highly Informative Genotyping for Molecular Breeding of Eucalyptus. In Proceedings of the BMC Proceedings; BioMed Central: London, UK, 2011; Volume 5, p. 54. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A Cluster Matching and Permutation Program for Dealing with Label Switching and Multimodality in Analysis of Population Structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant Analysis of Principal Components: A New Method for the Analysis of Genetically Structured Populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Researchdan Update. Bioinformatics 2012, 28, 2537e2539. [Google Scholar]
- Jombart, T.; Ahmed, I. Adegenet 1.3-1: New Tools for the Analysis of Genome-Wide SNP Data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Kamvar, Z.N.; Tabima, J.F.; Grünwald, N.J. Poppr: An R Package for Genetic Analysis of Populations with Clonal, Partially Clonal, and/or Sexual Reproduction. PeerJ 2014, 2, e281. [Google Scholar] [CrossRef] [Green Version]
Chromosome | No. of SNPs | SNP Percentage | Start Position | End Position | Length (kb) | Density (kb) |
---|---|---|---|---|---|---|
1A | 212 | 4.33 | 1181 | 281,698 | 280.5 | 1.33 |
1B | 279 | 5.7 | 604 | 254,989 | 254.4 | 0.91 |
1D | 184 | 3.76 | 2442 | 233,037 | 230.6 | 1.27 |
2A | 325 | 6.64 | 833 | 290,168 | 289.3 | 0.89 |
2B | 378 | 7.72 | 593 | 550,308 | 549.7 | 1.46 |
2D | 272 | 5.55 | 262 | 227,366 | 227.1 | 0.84 |
3A | 224 | 4.57 | 105 | 243,683 | 243.6 | 1.09 |
3B | 308 | 6.29 | 179 | 404,300 | 404.1 | 1.31 |
3D | 197 | 4.02 | 798 | 313,780 | 313.0 | 1.59 |
4A | 166 | 3.39 | 282 | 395,099 | 394.8 | 2.38 |
4B | 115 | 2.35 | 1793 | 288,834 | 287.0 | 2.51 |
4D | 127 | 2.59 | 2043 | 437,139 | 435.1 | 3.44 |
5A | 281 | 5.74 | 689 | 245,844 | 245.2 | 0.87 |
5B | 308 | 6.29 | 173 | 445,996 | 445.8 | 1.45 |
5D | 183 | 3.74 | 1657 | 253,399 | 251.7 | 1.38 |
6A | 178 | 3.63 | 53 | 395,985 | 395.9 | 2.22 |
6B | 266 | 5.43 | 404 | 372,421 | 372.0 | 1.40 |
6D | 172 | 3.51 | 1168 | 215,761 | 214.6 | 1.25 |
7A | 267 | 5.45 | 333 | 418,101 | 417.8 | 1.57 |
7B | 243 | 4.96 | 2096 | 318,562 | 316.5 | 1.31 |
7D | 212 | 4.33 | 888 | 273,554 | 272.7 | 1.29 |
Population | Inferred Clusters | Mean Fst | Exp. Het | Nm | No. of Accessions |
---|---|---|---|---|---|
Pop1 | 0.618 | 0.5091 | 0.2385 | 0.241 | 238 |
Pop2 | 0.382 | 0.1412 | 0.3401 | 1.52 | 125 |
Method | Source | df | SS | MS | Est. Var. | % |
---|---|---|---|---|---|---|
Model-Based (STRUCTURE) | Among Pops | 1 | 366.5567 | 366.5567 | 0.698697 | 0.29% |
Within Pops | 361 | 86625.44 | 239.9597 | 239.9597 | 99.71% | |
Total | 362 | 86992 | 240.6584 | 100.00% | ||
Distance-Based (Cluster, DAPC) | ||||||
Among Pops | 2 | 1832.573 | 916.2863 | 6.001869 | 2.47% | |
Within Pops | 360 | 85159.43 | 236.554 | 236.554 | 97.53% | |
Total | 362 | 86992 | 242.5558 | 100.00% | ||
Based on Origin | ||||||
Among Pops | 6 | 377.9731 | 62.99552 | 0.955026 | 4.41% | |
Within Pops | 356 | 7356.361 | 20.66393 | 20.66393 | 95.58% | |
Total | 362 | 7734.334 | 21.36556 | 21.61896 | 100% |
Method | ||||||||
---|---|---|---|---|---|---|---|---|
Model-Based (STRUCTURE) | Pop1 | Pop2 | ||||||
Pop1 | 0.996 | |||||||
Pop2 | 0.004 | |||||||
Distance-Based (Cluster, DAPC) | ||||||||
Pop1 | Pop2 | Pop3 | ||||||
Pop1 | 0.977 | 0.991 | ||||||
Pop2 | 0.023 | 0.982 | ||||||
Pop3 | 0.009 | 0.018 | ||||||
Based on Origin | ||||||||
Badakhshan | Baghlan | Kabul | Konarha | Kunduz | Samangan | Takhar | ||
Badakhshan | 0.975 | 0.880 | 0.773 | 0.975 | 0.783 | 0.997 | ||
Baghlan | 0.026 | 0.907 | 0.777 | 0.993 | 0.813 | 0.973 | ||
Kabul | 0.128 | 0.098 | 0.735 | 0.896 | 0.747 | 0.877 | ||
Konarha | 0.257 | 0.252 | 0.308 | 0.768 | 0.671 | 0.772 | ||
Kunduz | 0.025 | 0.007 | 0.109 | 0.263 | 0.812 | 0.976 | ||
Samangan | 0.245 | 0.207 | 0.292 | 0.399 | 0.208 | 0.780 | ||
Takhar | 0.003 | 0.027 | 0.132 | 0.259 | 0.024 | 0.249 |
Method | Pop | Na | Ne | I | He | uHe | PPL |
---|---|---|---|---|---|---|---|
Model-Based (STRUCTURE) | Pop1 | 1.998 | 1.594 | 0.518 | 0.346 | 0.348 | 99.90% |
Pop2 | 2.000 | 1.588 | 0.514 | 0.343 | 0.345 | 100.00% | |
Mean | 1.999 | 1.591 | 0.516 | 0.345 | 0.346 | 99.95% | |
Distance-Based (Cluster, DAPC *) | |||||||
Pop1 | 1.987 | 1.567 | 0.496 | 0.331 | 0.335 | 99.20% | |
Pop2 | 1.997 | 1.593 | 0.517 | 0.345 | 0.347 | 99.80% | |
Pop3 | 1.998 | 1.578 | 0.505 | 0.337 | 0.340 | 99.90% | |
Mean | 1.994 | 1.579 | 0.506 | 0.338 | 0.341 | 99.63% | |
Based on Origin | |||||||
Badakhshan | 1.998 | 1.584 | 0.509 | 0.340 | 0.343 | 99.90% | |
Baghlan | 1.984 | 1.575 | 0.503 | 0.336 | 0.341 | 98.90% | |
Kabul | 1.312 | 1.362 | 0.304 | 0.206 | 0.231 | 54.90% | |
Konarha | 0.358 | 1.000 | 0.000 | 0.000 | 0.000 | 0.00% | |
Kunduz | 1.934 | 1.556 | 0.486 | 0.324 | 0.331 | 95.60% | |
Samangan | 0.359 | 1.000 | 0.000 | 0.000 | 0.000 | 0.00% | |
Takhar | 1.998 | 1.578 | 0.505 | 0.337 | 0.340 | 99.90% | |
Mean | 1.420 | 1.379 | 0.330 | 0.220 | 0.227 | 64.17% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tehseen, M.M.; Istipliler, D.; Kehel, Z.; Sansaloni, C.P.; da Silva Lopes, M.; Kurtulus, E.; Muazzam, S.; Nazari, K. Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan. Genes 2021, 12, 340. https://doi.org/10.3390/genes12030340
Tehseen MM, Istipliler D, Kehel Z, Sansaloni CP, da Silva Lopes M, Kurtulus E, Muazzam S, Nazari K. Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan. Genes. 2021; 12(3):340. https://doi.org/10.3390/genes12030340
Chicago/Turabian StyleTehseen, Muhammad Massub, Deniz Istipliler, Zakaria Kehel, Carolina P. Sansaloni, Marta da Silva Lopes, Ezgi Kurtulus, Sana Muazzam, and Kumarse Nazari. 2021. "Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan" Genes 12, no. 3: 340. https://doi.org/10.3390/genes12030340
APA StyleTehseen, M. M., Istipliler, D., Kehel, Z., Sansaloni, C. P., da Silva Lopes, M., Kurtulus, E., Muazzam, S., & Nazari, K. (2021). Genetic Diversity and Population Structure Analysis of Triticum aestivum L. Landrace Panel from Afghanistan. Genes, 12(3), 340. https://doi.org/10.3390/genes12030340