Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5
Abstract
:1. Introduction
2. Methods and Materials
2.1. Dataset
2.2. Molecular Dynamics Simulations
2.3. Trajectory Analysis
3. Results and Discussion
3.1. Role of DOT Regions
3.1.1. Residue Fluctuation Analysis
3.1.2. Role of DOT Regions in Compactness of Free Protein and RNA Binding in tRNA Methyltransferase Complex
3.2. Mutational Study of G37 Nucleotide of the tRNA
3.3. Structural Aspects of the Interactions between tRNA, Methyltransferase Protein and S-Adenosyl Methionine Ligand
3.4. Interaction of DOT Regions with tRNA
3.5. Energetic Contribution
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hori, H. Methylated Nucleosides in TRNA and TRNA Methyltransferases. Front. Genet. 2014, 5, 144. [Google Scholar] [CrossRef] [Green Version]
- Takeda, H.; Toyooka, T.; Ikeuchi, Y.; Yokobori, S.; Okadome, K.; Takano, F.; Oshima, T.; Suzuki, T.; Endo, Y.; Hori, H. The Substrate Specificity of TRNA (M1G37) Methyltransferase (TrmD) from Aquifex Aeolicus. Genes Cells 2006, 11, 1353–1365. [Google Scholar] [CrossRef]
- Lahoud, G.; Goto-Ito, S.; Yoshida, K.; Ito, T.; Yokoyama, S.; Hou, Y.M. Differentiating Analogous TRNA Methyltransferases by Fragments of the Methyl Donor. RNA 2011, 17, 1236–1246. [Google Scholar] [CrossRef] [Green Version]
- Sakaguchi, R.; Giessing, A.; Dai, Q.; Lahoud, G.; Liutkeviciute, Z.; Klimasauskas, S.; Piccirilli, J.; Kirpekar, F.; Hou, Y.M. Recognition of Guanosine by Dissimilar TRNA Methyltransferases. RNA 2012, 18, 1687–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto-Ito, S.; Ito, T.; Ishii, R.; Muto, Y.; Bessho, Y.; Yokoyama, S. Crystal Structure of Archaeal TRNA (M1G37) Methyltransferase ATrm5. Proteins 2008, 72, 1274–1289. [Google Scholar] [CrossRef] [PubMed]
- Fislage, M.; Roovers, M.; Tuszynska, I.; Bujnicki, J.M.; Droogmans, L.; Versées, W. Crystal Structures of the TRNA: M 2 G6 Methyltransferase Trm14/TrmN from Two Domains of Life. Nucleic Acids Res. 2012, 40, 5149–5161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, T.; Gamper, H.; Hou, Y.M. Conservation of Structure and Mechanism by Trm5 Enzymes. RNA 2013, 19, 1192–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Kramer, G.; Graham, D.E.; Appling, D.R. Yeast Mitochondrial Initiator TRNA Is Methylated at Guanosine 37 by the Trm5-Encoded TRNA (Guanine-N1-)-Methyltransferase. J. Biol. Chem. 2007, 282, 27744–27753. [Google Scholar] [CrossRef] [Green Version]
- Jaroensuk, J.; Wong, Y.H.; Zhong, W.; Liew, C.W.; Maenpuen, S.; Sahili, A.E.; Atichartpongkul, S.; Chionh, Y.H.; Nah, Q.; Thongdee, N.; et al. Crystal Structure and Catalytic Mechanism of the Essential M1G37 TRNA Methyltransferase TrmD from Pseudomonas Aeruginosa. RNA 2019, 25, 1481–1496. [Google Scholar] [CrossRef] [PubMed]
- Christian, T.; Evilia, C.; Hou, Y.M. Catalysis by the Second Class of TRNA (M1G37) Methyl Transferase Requires a Conserved Proline. Biochemistry 2006, 45, 7463–7473. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Ng, P.Q.; Shi, S.; Fan, D.; Li, J.; Zhao, J.; Wang, H.; David, R.; Mittal, P.; Do, T.; et al. Arabidopsis TRM5 Encodes a Nuclear-Localised Bifunctional TRNA Guanine and Inosine-N1-Methyltransferase That Is Important for Growth. PLoS ONE 2019, 14, e0225064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.M.; Masuda, I.; Gamper, H. Codon-Specific Translation by M1G37 Methylation of TRNA. Front. Genet. 2019, 9, 713. [Google Scholar] [CrossRef]
- Whitehouse, A.J.; Thomas, S.E.; Brown, K.P.; Fanourakis, A.; Chan, D.S.-H.; Libardo, M.D.J.; Mendes, V.; Boshoff, H.I.M.; Floto, R.A.; Abell, C.; et al. Development of Inhibitors against Mycobacterium Abscessus TRNA (M1G37) Methyltransferase (TrmD) Using Fragment-Based Approaches. J. Med. Chem. 2019, 62, 7210–7232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, W.; Pasunooti, K.K.; Balamkundu, S.; Wong, Y.H.; Nah, Q.; Gadi, V.; Gnanakalai, S.; Chionh, Y.H.; McBee, M.E.; Gopal, P.; et al. Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37-N 1)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. J Med Chem 2019, 62, 7788–7805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brulé, H.; Elliott, M.; Redlak, M.; Zehner, Z.E.; Holmes, W.M. Isolation and Characterization of the Human TRNA-(N1G37) Methyltransferase (TRM5) and Comparison to the Escherichia Coli TrmD Protein. Biochemistry 2004, 43, 9243–9255. [Google Scholar] [CrossRef]
- Ito, T.; Masuda, I.; Yoshida, K.; Goto-Ito, S.; Sekine, S.; Suh, S.W.; Hou, Y.M.; Yokoyama, S. Structural Basis for Methyl-Donor—Dependent and Sequence-Specific Binding to TRNA Substrates by Knotted Methyltransferase TrmD. Proc. Natl. Acad. Sci. USA 2015, 112, E4197–E4205. [Google Scholar] [CrossRef] [Green Version]
- Goto-Ito, S.; Ito, T.; Yokoyama, S. Trm5 and Trmd: Two Enzymes from Distinct Origins Catalyze the Identical TRNA Modification, M1g37. Biomolecules 2017, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, T.; Hou, Y.M. Distinct Determinants of TRNA Recognition by the TrmD and Trm5 Methyl Transferases. J. Mol. Biol. 2007, 373, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Yesudhas, D.; Ramakrishnan, C.; Ahmad, S.; Gromiha, M.M. Role of Disordered Regions in Transferring Tyrosine to Its Cognate TRNA. Int. J. Biol. Macromol. 2020, 150, 705–713. [Google Scholar] [CrossRef]
- Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious”(Meta) Physics. Front. Phys. 2019, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.-L. Structural Disorder in Expanding the Functionome of Aminoacyl-TRNA Synthetases. Chem. Biol. 2013, 20, 1093–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, H.J.; Kim, H.-W.; Yoon, H.-J.; Lee, B.I.I.; Suh, S.W.; Yang, J.K. Crystal Structure of TRNA (M1G37) Methyltransferase: Insights into TRNA Recognition. EMBO J. 2003, 22, 2593–2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shammas, S.L.; Crabtree, M.D.; Dahal, L.; Wicky, B.I.M.; Clarke, J. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies. J. Biol. Chem. 2016, 291, 6689–6695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robustelli, P.; Piana, S.; Shaw, D.E. The Mechanism of Coupled Folding-upon-Binding of an Intrinsically Disordered Protein. J. Am. Chem. Soc. 2020. [Google Scholar] [CrossRef] [PubMed]
- Goto-Ito, S.; Ito, T.; Kuratani, M.; Bessho, Y.; Yokoyama, S. Tertiary Structure Checkpoint at Anticodon Loop Modification in TRNA Functional Maturation. Nat. Struct. Mol. Biol. 2009, 16, 1109. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; et al. RCSB Protein Data Bank: Biological Macromolecular Structures Enabling Research and Education in Fundamental Biology, Biomedicine, Biotechnology and Energy. Nucleic Acids Res. 2019, 47, D464–D474. [Google Scholar] [CrossRef] [Green Version]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using Modeller. Curr. Protoc. Bioinforma. 2006, 15, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, M.; Sali, A. Statistical Potential for Assessment and Prediction of Protein Structures. Protein Sci. 2006, 15, 2507–2524. [Google Scholar] [CrossRef] [Green Version]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters. Proteins 2006, 65, 712–725. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roe, D.R.; Cheatham III, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, A.; Yesudhas, D.; Ahmad, S.; Gromiha, M.M. Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5. Genes 2021, 12, 399. https://doi.org/10.3390/genes12030399
Srivastava A, Yesudhas D, Ahmad S, Gromiha MM. Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5. Genes. 2021; 12(3):399. https://doi.org/10.3390/genes12030399
Chicago/Turabian StyleSrivastava, Ambuj, Dhanusha Yesudhas, Shandar Ahmad, and M. Michael Gromiha. 2021. "Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5" Genes 12, no. 3: 399. https://doi.org/10.3390/genes12030399
APA StyleSrivastava, A., Yesudhas, D., Ahmad, S., & Gromiha, M. M. (2021). Deciphering the Role of Residues Involved in Disorder-To-Order Transition Regions in Archaeal tRNA Methyltransferase 5. Genes, 12(3), 399. https://doi.org/10.3390/genes12030399