Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Echocardiographic Study
2.3. Cardiac Magnetic Resonance
2.4. RNA Isolation and miRs Quantification
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollack, A.; Kontorovich, A.R.; Fuster, V.; Dec, G.W. Viral myocarditis-diagnosis, treatment options, and current controversies. Nat. Rev. Cardiol. 2015, 12, 670–680. [Google Scholar] [CrossRef]
- Kostakou, P.M.; Kostopoulos, V.S.; Tryfou, E.S.; Giannaris, V.D.; Rodis, I.E.; Olympios, C.D.; Kouris, N.T. Subclinical left ventricular dysfunction and correlation with regional strain analysis in myocarditis with normal ejection fraction. A new diagnostic criterion. Int. J. Cardiol. 2018, 259, 116–121. [Google Scholar] [CrossRef]
- Luetkens, J.A.; Petry, P.; Kuetting, D.; Dabir, D.; Schmeel, F.C.; Homsi, R.; Schild, H.H.; Thomas, D. Left and right ventricular strain in the course of acute myocarditis: A cardiovascular magnetic resonance study. Rofo 2018, 190, 722–732. [Google Scholar] [CrossRef] [Green Version]
- Mordi, I.; Bezerra, H.; Carrick, D.; Tzemos, N. The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc. Imaging 2015, 8, 540–549. [Google Scholar] [CrossRef] [Green Version]
- Caspar, T.; Fichot, M.; Ohana, M.; El Ghannudi, S.; Morel, O.; Ohlmann, P. Late detection of left ventricular dysfunction using two-dimensional and three-dimensional speckle-tracking echocardiography in patients with history of nonsevere acute myocarditis. J. Am. Soc. Echocardiogr. 2017, 30, 756–762. [Google Scholar] [CrossRef]
- Sluijter, J.P.G.; Verhage, V.; Deddens, J.C.; van den Akker, F.; Doevendans, P. Microvesicles and exosomes for intracardiac communication. Cardiovasc. Res. 2014, 102, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhang, S.; Marzolf, B.; Troisch, P.; Brightman, A.; Hu, Z.; Hood, L.E.; Galas, D.J. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc. Natl. Acad. Sci. USA 2009, 106, 4402–4407. [Google Scholar] [CrossRef] [Green Version]
- Gottwein, E.; Cullen, B.R. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 2008, 3, 375–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dykxhoorn, D.M. MicroRNAs in viral replication and pathogenesis. DNA Cell Biol. 2007, 26, 239–249. [Google Scholar] [CrossRef]
- Xu, H.F.; Ding, Y.J.; Zhang, Z.X.; Wang, Z.F.; Luo, C.L.; Li, B.X.; Shen, Y.W.; Tao, L.Y.; Zhao, Z.Q. MicroRNA-21 regulation of the progression of viral myocarditis to dilated cardiomyopathy. Mol. Med. Rep. 2014, 10, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Wu, W.; Xue, Y.; Gao, M.; Yan, Y.; Kong, Q.; Pang, Y.; Yang, F. MicroRNA-21 and -146b are involved in the pathogenesis of murine viralmyocarditis by regulating TH-17 differentiation. Arch. Virol. 2013, 158, 1953–1963. [Google Scholar] [CrossRef]
- Lin, J.; Xue, A.; Li, L.; Li, B.; Li, Y.; Shen, Y.; Sun, N.; Chen, R.; Xu, H.; Zhao, Z. MicroRNA-19b downregulates gap junction protein alpha1 and synergizes with microRNA-1 in Viral Myocarditis. Int. J. Mol. Sci. 2016, 17, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouraee, N.; Mowla, S.J. miRNA therapeutics in cardiovascular diseases: Promises and problems. Front. Genet. 2015, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Hromádka, M.; Černá, V.; Pešta, M.; Kucerova, A.; Jarkovsky, J.; Rajdl, D.; Rokyta, R.; Moťovská, Z. Prognostic value of microRNAs in patients after myocardial infarction: A substudy of PRAGUE-18. Dis. Markers 2019, 2019, 2925019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsten, M.F.; Dennert, R.; Jochems, S.; Kusnetsova, T.; Devaux, Y.; Hofstra, L.; Wagner, D.R.; Staessen, J.A.; Heymans, S.; Schroen, B. Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ. Cardiovasc. Genet. 2010, 3, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, A.; Cianti, R.; Bini, L.; Armini, A.; Eberini, I.; Pompella, G.; Capecchi, P.L.; Natale, M.; Abbracchio, M.P.; Laghi-Pasini, F. Using peripheral blood mononuclear cells to determine proteome profiles in human cardiac failure. Eur. J. Heart Fail. 2008, 10, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Hulanicka, M.; Garncarz, M.; Parzeniecka-Jaworska, M.; Jank, M. The transcriptomic profile of peripheral blood nuclear cells in dogs with heart failure. BMC Genom. 2014, 15, 509. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Cannavicci, A.; Dai, S.C.; Wang, C.; Kutryk, M.J.B. MicroRNA signature of human blood mononuclear cells. Mol. Cell. Biochem. 2019, 462, 167–172. [Google Scholar] [CrossRef]
- Szymanski, C.; Levy, F.; Tribouilloy, C. Should LVEF be replaced by global longitudinal strain? Heart 2014, 100, 1655–1656. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Torp, H.; Opdahl, A.; Haugaa, K.H.; Urheim, S. Myocardial strain imaging: How useful is it in clinical decision making? Eur. Heart J. 2016, 37, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Caforio, A.L.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimero-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badanol, P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. International consensus group on cardiovascular magnetic resonance in myocarditis, cardiovascular magnetic resonance in myocarditis: A JACC white paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rooij, E.; Olson, E.N. MicroRNA therapeutics for cardiovascular disease: Opportunities and obstacles. Nat. Rev. Drug Discov. 2012, 11, 860–872. [Google Scholar] [CrossRef]
- Corsten, M.F.; Papageorgiou, A.; Verhesen, W.; Carai, P.; Lindow, M.; Obad, S.; Summer, G.; Coort, S.L.; Hazebroek, M.; van Leeuwen, R.; et al. MicroRNA profiling identifies microRNA-155 as an adverse mediator of cardiac injury and dysfunction during acute viral myocarditis. Circ. Res. 2012, 111, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroen, B.; Heymans, S. Small but smart—microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc. Res. 2012, 93, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Khanna, S.; Hussain, S.R.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 2009, 82, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, L.; Tirosh-Wagner, T.; Vardi, A.; Abbas, H.; Pillar, N.; Shomron, N.; Nevo-Caspi, Y.; Paret, G. Circulating microRNAs: A potential biomarker for cardiac damage, response, and left ventricular function recovery in pediatric viral myocarditis. J. Cardiovasc. Transl. Res. 2018, 11, 319–328. [Google Scholar] [CrossRef]
- Xu, H.F.; Ding, Y.J.; Shen, Y.W.; Xue, A.M.; Xu, A.M.; Luo, C.L.; Li, B.X.; Liu, Y.L.; Zhao, Z.Q. MicroRNA- 1 represses Cx43 expression in viral myocarditis. Mol. Cell. Biochem. 2012, 362, 141–148. [Google Scholar] [CrossRef]
- Gursu, H.A.; Cetin, I.I.; Azak, E.; Kibar, A.E.; Surucu, M.; Orgun, A.; Pamuk, U. The assessment of treatment outcomes in patients with acute viral myocarditis by speckle tracking and tissue Doppler methods. Echocardiography 2019, 36, 1666–1674. [Google Scholar] [CrossRef] [PubMed]
- Thavendiranathan, P.; Poulin, F.; Lim, K.D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy—A Systematic Review. J. Am. Coll. Cardiol. 2014, 63, 2751–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Bella, G.; Carerj, S.; Recupero, A.; Donato, R.; Pugliati, P.; Falanga, G.; Pedri, S.; Vizzari, G.; Campisi, M.; Zito, C.; et al. Left ventricular endocardial longitudinal dysfunction persists after acute myocarditis with preserved ejection fraction. Echocardiography 2018, 35, 1966–1973. [Google Scholar] [CrossRef]
- He, J.; Yue, Y.; Dong, C.; Xiong, S. MiR-21 confers resistance against CVB3-Induced myocarditis by inhibiting PDCD4-mediated apoptosis. Clin. Investig. Med. 2013, 36, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Bayraktar, R.; Van Roosbroeck, K.; Calin, G.A. Cell-to-cell communication: microRNAs as hormones. Mol. Oncol. 2017, 11, 1673–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Acute Myocarditis (n = 40) | Healthy Individuals (n = 29) | 95% Confidence Interval of the Difference | p | |
---|---|---|---|---|
Age (years) | 24 ± 7 | 23 ± 6 | −1.5–4.5 | 0.32 |
BMI (kg/m2) | 26.5 ± 3.7 | 25.7 ± 3.2 | −0.1–1.5 | 0.65 |
SBP (mmHg) | 111 ± 22 | 112 ± 24 | −2.5–2.1 | 0.43 |
DBP (mmHg) | 70 ± 8 | 72 ± 10 | −1.5–2.5 | 0.48 |
Heart rate (bpm) | 77 ± 7 | 67 ± 6 | 7.8–13.7 | <0.001 |
Hct (%) | 41.6 ± 3.5 | 40.1 ± 2.5 | −0.9–1.9 | 0.49 |
Creatinine (mg/dL) | 0.96 ± 0.2 | 0.98 ± 0.1 | −0.08–0.2 | 0.34 |
Troponine I (pg/mL) | 29.5 ± 48 | 1.6 ± 0.2 | 11.4–46.3 | <0.001 |
Brain natriuretic peptide (pg/mL) | 50 ± 48 | 20 ± 6 | 10.5–18.5 | <0.001 |
CRP (ng/mL) | 5.5 ± 4 | 0.7 ± 0.3 | 3.1–5.5 | <0.001 |
WBC (103) | 13,670 ± 2910 | 6890 ± 1180 | 5635–7927 | <0.001 |
microRNA-21-5p (arbitrary units calculated by the (2−ddCt) method) | 78.2 ± 147.9 | 1.8 ± 1 | 21.5–131.2 | 0.007 |
microRNA-1-3p (arbitrary units calculated by the (2−ddCt) method) | 24.4 ± 32.9 | 10.8 ± 11.1 | 0.9–26.3 | 0.03 |
LVEF (%) | 55 ± 10 | 59 ± 4 | −0.8–0.5 | 0.027 |
LVEDD (mm) | 48 ± 4 | 46 ± 5 | −0.4–3.4 | 0.12 |
Left atrial volume index (mL/m2) | 27 ± 6 | 26 ± 7 | −0.2–1.1 | 0.24 |
GLS (%) | −16.9 ± 3 | −19 ± 0.9 | 1–3.2 | 0.001 |
Patient with kinetic disorders in echocardiogram | 36 | 0 | ||
Hypokinesis of apical interventricular septum | 25 | - | ||
Hypokinesis of inferolateral wall | 16 | - | ||
Hypokinesis of apex | 10 | - | ||
Hypokinesis of lateral wall | 11 | - | ||
Hypokinesis of inferior wall | 13 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marketou, M.; Kontaraki, J.; Patrianakos, A.; Kochiadakis, G.; Anastasiou, I.; Fragkiadakis, K.; Plevritaki, A.; Papadaki, S.T.; Chlouverakis, G.; Parthenakis, F. Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis. Genes 2021, 12, 420. https://doi.org/10.3390/genes12030420
Marketou M, Kontaraki J, Patrianakos A, Kochiadakis G, Anastasiou I, Fragkiadakis K, Plevritaki A, Papadaki ST, Chlouverakis G, Parthenakis F. Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis. Genes. 2021; 12(3):420. https://doi.org/10.3390/genes12030420
Chicago/Turabian StyleMarketou, Maria, Joanna Kontaraki, Alexandros Patrianakos, George Kochiadakis, Ioannis Anastasiou, Konstantinos Fragkiadakis, Anthoula Plevritaki, Sofia Thalia Papadaki, Gregory Chlouverakis, and Fragiskos Parthenakis. 2021. "Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis" Genes 12, no. 3: 420. https://doi.org/10.3390/genes12030420
APA StyleMarketou, M., Kontaraki, J., Patrianakos, A., Kochiadakis, G., Anastasiou, I., Fragkiadakis, K., Plevritaki, A., Papadaki, S. T., Chlouverakis, G., & Parthenakis, F. (2021). Peripheral Blood MicroRNAs as Potential Biomarkers of Myocardial Damage in Acute Viral Myocarditis. Genes, 12(3), 420. https://doi.org/10.3390/genes12030420