Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. SARS-CoV-2 WGS Dataset
2.2. SARS-CoV-2 Lineage Assignment
2.3. Selection of High-Quality Representative SARS-CoV-2 Genomes
2.4. SCREENED Settings
2.5. In Silico Analytical Specificity Evaluation
3. Results
3.1. SCREENED In Silico Specificity Re-Evaluation of RT-qPCR Assays Used for SARS-CoV-2 Detection
3.2. Impact of Emerging SARS-CoV-2 VOC on RT-qPCR Assays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An Interactive Web-Based Dashboard to Track COVID-19 in Real Time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Neto, M.L.R.; Almeida, H.G.; Esmeraldo, J.D.; Nobre, C.B.; Pinheiro, W.R.; de Oliveira, C.R.T.; da Costa Sousa, I.; Lima, O.M.M.L.; Lima, N.N.R.; Moreira, M.M.; et al. When Health Professionals Look Death in the Eye: The Mental Health of Professionals Who Deal Daily with the 2019 Coro-navirus Outbreak. Psychiatry Res. 2020, 288, 112972. [Google Scholar]
- Adams, J.G.; Walls, R.M. Supporting the Health Care Workforce During the COVID-19 Global Epidemic. JAMA 2020, 323, 1439–1440. [Google Scholar] [CrossRef] [Green Version]
- Dondorp, A.M.; Hayat, M.; Aryal, D.; Beane, A.; Schultz, M.J. Respiratory Support in COVID-19 Patients, with a Focus on Resource-Limited Settings. Am. J. Trop. Med. Hyg. 2020, 102, 1191–1197. [Google Scholar] [CrossRef]
- Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian Health System and the COVID-19 Challenge. Lancet Public Health 2020, 5, e253. [Google Scholar] [CrossRef]
- Szcześniak, D.; Gładka, A.; Misiak, B.; Cyran, A.; Rymaszewska, J. The SARS-CoV-2 and Mental Health: From Biological Mechanisms to Social Consequences. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 104, 110046. [Google Scholar] [CrossRef]
- Ahmad, T.; Haroon; Baig, M.; Hui, J. Coronavirus Disease 2019 (COVID-19) Pandemic and Economic Impact. Pak. J. Med. Sci. 2020, 36, S73–S78. [Google Scholar] [CrossRef]
- Autrán-Gómez, A.M.; Favorito, L.A. The Social, Economic and Sanitary Impact of COVID-19 Pandemic. Int. Braz J. Urol 2020, 46, 3–5. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Hodel, K.V.S.; Barbosa-Júnior, V.G.; Soares, M.B.P.; Badaró, R. The Main Molecular and Serological Methods for Diagnosing COVID-19: An Overview Based on the Literature. Viruses 2020, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansouni, C.P. Diagnostic Testing for Severe Acute Respiratory Syndrome–Related Coronavirus 2. Ann. Intern. Med. 2020, 172, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, N.; Cheng, K.W.; Qamar, N.; Huang, K.C.; Johnson, J.A. Weathering COVID-19 Storm: Successful Control Measures of Five Asian Countries. Am. J. Infect. Control. 2020, 48, 851–852. [Google Scholar] [CrossRef] [PubMed]
- Cha, V. Asia’s COVID-19 Lessons for the West: Public Goods, Privacy, and Social Tagging. Wash. Q. 2020, 43, 33–50. [Google Scholar] [CrossRef]
- Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection Technologies and Recent Developments in the Diagnosis of COVID-19 Infection. Appl. Microbiol. Biotechnol. 2021, 441–455. [Google Scholar] [CrossRef]
- WHO Molecular Assays to Diagnose COVID-19: Summary Table of Available Protocols. Available online: https://www.who.int/publications/m/item/molecular-assays-to-diagnose-covid-19-summary-table-of-available-protocols (accessed on 1 March 2021).
- Loeffelholz, M.J.; Tang, Y.W. Laboratory Diagnosis of Emerging Human Coronavirus Infections–the State of the Art. Emerg. Microbes Infect. 2020, 9, 747–756. [Google Scholar] [CrossRef]
- Lippi, G.; Simundic, A.M.; Plebani, M. Potential Preanalytical and Analytical Vulnerabilities in the Laboratory Diagnosis of Coronavirus Disease 2019 (COVID-19). Clin. Chem. Lab. Med. 2020, 58, 1070–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, A. Molecular Diagnostic Technologies for COVID-19: Limitations and Challenges. J. Adv. Res. 2020, 26, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.; Kellogg, D.E.; Mckinney, N.; Spasic, D.; Goda, L.; Levenson, C.; Sninsky, J.J. Effects of Primer-Template Mismatches on the Polymerase Chain Reaction: Human Immunodeficiency Virus type 1 Model Studies. Nucleic Acids Res. 1990, 18, 999–1005. [Google Scholar] [CrossRef]
- Lefever, S.; Pattyn, F.; Hellemans, J.; Vandesompele, J. Single-Nucleotide Polymorphisms and Other Mismatches Reduce Performance of Quantitative PCR Assays. Clin. Chem. 2013, 59, 1470–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopherson, C.; Sninsky, J.; Kwok, S. The Effects of Internal Primer-Template Mismatches on RT-PCR: HIV-1 Model Studies. Nucleic Acids Res. 1997, 25, 654–658. [Google Scholar] [CrossRef] [Green Version]
- Whiley, D.M.; Sloots, T.P. Sequence Variation in Primer Targets Affects the Accuracy of Viral Quantitative PCR. J. Clin. Virol. 2005, 34, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Duchene, S.; Featherstone, L.; Haritopoulou-Sinanidou, M.; Rambaut, A.; Lemey, P.; Baele, G. Temporal Signal and the Phylodynamic Threshold of SARS-CoV-2. Virus Evol. 2020, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhang, Z.; He, F. The Phylogenetic Relationship Within SARS-CoV-2s: An Expanding Basal Clade. Mol. Phylogenet. Evol. 2020, 107017. [Google Scholar] [CrossRef]
- Giovanetti, M.; Benedetti, F.; Campisi, G.; Ciccozzi, A.; Fabris, S.; Ceccarelli, G.; Tambone, V.; Caruso, A.; Angeletti, S.; Zella, D.; et al. Evolution Patterns of SARS-CoV-2: Snapshot on its Genome Variants. Biochem. Biophys. Res. Commun. 2020, 538, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.S.; Abdelwhab, E.M.; Memish, Z.A. Insights into SARS-CoV-2 Evolution, Potential Antivirals, and Vaccines. Virology 2021, 558, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gouv, W. Biomedicine & Pharmacotherapy Impact of Virus Genetic Variability and Host Immunity for the Success of COVID-19 Vaccines. Biomed Pharm. 2021, 136. [Google Scholar] [CrossRef]
- Van Poelvoorde, L.A.E.; Saelens, X.; Thomas, I.; Roosens, N.H. Next-Generation Sequencing: An Eye-Opener for the Surveillance of Antiviral Resistance in Influenza. Trends Biotechnol. 2020, 38, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.A.; Collier, D.A.; Datir, R.P.; Ferreira, I.A.T.M.; Gayed, S.; Jahun, A.; Hosmillo, M.; Rees-Spear, C.; Mlcochova, P.; Lumb, I.U.; et al. SARS-CoV-2 Evolution During Treatment of Chronic Infection. Nature 2021. [Google Scholar] [CrossRef]
- Bazykin, G.; Stanevich, O.; Danilenko, D.; Fadeev, A.; Komissarova, K.; Ivanova, A.; Sergeeva, M.; Safina, K.; Nabieva, E.; Klink, G.; et al. Emergence of Y453F and Δ69-70HV Mutations in a Lymphoma Patient with Long-Term COVID-19. Available online: https://virological.org/t/emergence-of-y453f-and-69-70hv-mutations-in-a-lymphoma-patient-with-long-term-covid-19/580 (accessed on 15 January 2021).
- Public Health England. Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01. Technical Briefing 1. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959438/Technical_Briefing_VOC_SH_NJL2_SH2.pdf (accessed on 21 January 2021).
- Public Health England. Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01. Technical Briefing 2. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf (accessed on 21 January 2021).
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated Transmissibility and Impact of SARS-CoV-2 Lineage B.1.1.7 in England. Science 2021, 372. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Wibmer, K.; et al. Emergence and Rapid Spread of a New Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Lineage with Multiple Spike Mutations in South Africa. medRxiv 2020, 10. [Google Scholar]
- Naveca, F.; Nascimento, V.; Souza, V.; Corado, A.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Gonçalves, L.; et al. Phylogenetic Relationship of SARS-CoV-2 Sequences from Amazonas with Emerging Brazilian Variants Harboring Mutations E484K and N501Y in the Spike Protein. Available online: https://virological.org/t/phylogenetic-relationship-of-sars-cov-2-sequences-from-amazonas-with-emerging-brazilian-variants-harboring-mutations-e484k-and-n501y-in-the-spike-protein/585 (accessed on 15 January 2021).
- Naveca, F.; da Costa, C.; Nascimento, V.; Souza, V.; André, C.; Nascimento, F.; Costa, Á.; Duarte, D.; Silva, G.; Mejía, M.; et al. SARS-CoV-2 Reinfection by the New Variant of Concern (VOC) P.1 in Amazonas, Brazil. Available online: https://virological.org/t/sars-cov-2-reinfection-by-the-new-variant-of-concern-voc-p-1-in-amazonas-brazil/596 (accessed on 27 January 2021).
- Samavati, L.; Uhal, B.D. ACE2, Much More Than Just a Receptor for SARS-CoV-2. Front. Cell. Infect. Microbiol. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bchetnia, M.; Girard, C.; Duchaine, C.; Laprise, C. The outbreak of the Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review of the Current Global Status. J. Infect. Public Health 2020, 13, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
- Luan, B.; Wang, H.; Huynh, T. Molecular Mechanism of the N501Y Mutation for Enhanced Binding between SARS-CoV-2’s Spike Protein and Human ACE2 Receptor. Febs Lett. 2021. [Google Scholar] [CrossRef]
- Dai, L.; Gao, G.F. Viral Targets for Vaccines Against COVID-19. Nat. Rev. Immunol. 2021, 21, 73–82. [Google Scholar] [CrossRef]
- Greaney, A.J.; Loes, A.N.; Crawford, K.H.D.; Starr, T.N.; Malone, K.D.; Chu, H.Y.; Bloom, J.D. Comprehensive Mapping of Mutations in the SARS-CoV-2 Receptor-Binding Domain that Affect Recognition by Polyclonal Human Plasma Antibodies. Cell Host Microbe 2021, 29, 463–476.e6. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.R.; Prusty, D.; Manna, S.K. Structural Basis of Fitness of Emerging SARS-COV-2 Variants and Considerations for Screening, Testing and Surveillance Strategy to Contain their Threat. medRxiv 2021. [Google Scholar] [CrossRef]
- Arena, F.; Pollini, S.; Rossolini, G.M.; Margaglione, M. Summary of the Available Molecular Methods for Detection of SARS-CoV-2 During the Ongoing Pandemic. Int. J. Mol. Sci. 2021, 22, 98. [Google Scholar] [CrossRef]
- Jain, A.; Rophina, M.; Mahajan, S.; Krishnan, B.B.; Sharma, M.; Mandal, S.; Fernandez, T.; Sultanji, S.; Jolly, B.; Mathew, S.; et al. Analysis of the Potential Impact of Genomic Variants in Global SARS-CoV-2 Genomes on Molecular Diagnostic Assays. Int. J. Infect. Dis. 2021, 102, 460–462. [Google Scholar] [CrossRef]
- Ramírez, J.D.; Muñoz, M.; Patiño, L.H.; Ballesteros, N.; Paniz-Mondolfi, A. Will the emergent SARS-CoV2 B.1.1.7 Lineage Affect Molecular Diagnosis of COVID19? J. Med. Virol. 2021, 1–3. [Google Scholar] [CrossRef]
- Vanneste, K.; Garlant, L.; Broeders, S.; Van Gucht, S.; Roosens, N.H. Application of Whole Genome Data for in Silico Evaluation of Primers and Probes Routinely Employed for the Detection of Viral Species by RT-qPCR Using Dengue Virus as a Case Study. Bmc Bioinform. 2018, 19, 1–18. [Google Scholar] [CrossRef]
- Gand, M.; Vanneste, K.; Thomas, I.; Van Gucht, S.; Capron, A.; Herman, P.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Use of Whole Genome Sequencing Data for a First in Silico Specificity Evaluation of the RT-qPCR Assays Used for SARS-CoV-2 Detection. Int. J. Mol. Sci. 2020, 21, 5585. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Holmes, E.C.; O’Toole, Á.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for Clustering the Next-Generation Sequencing Data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Godzik, A. Cd-hit: A Fast Program for Clustering and Comparing Large sets of Protein or Nucleotide Sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.-W.; Yip, C.C.-Y.; To, K.K.-W.; Tang, T.H.-C.; Wong, S.C.-Y.; Leung, K.-H.; Fung, A.Y.-F.; Ng, A.C.-K.; Zou, Z.; Tsoi, H.-W.; et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic Characterisation and Epidemiology of 2019 Novel Coronavirus: Implications for Virus Origins and Receptor Binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Société française microbiologie (SFM) Rapport tests moléculaires reçus par la SFM. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2021/02/LISTE-RAPPORTS-TESTS-MOLECULAIRES_130121.pdf (accessed on 21 March 2021).
- Visseaux, B.; Le Hingrat, Q.; Collin, G.; Ferré, V.; Storto, A.; Ichou, H.; Bouzid, D.; Poey, N.; de Montmollin, E.; Descamps, D.; et al. Evaluation of the RealStar® SARS-CoV-2 RT-PCR kit RUO performances and limit of detection. J. Clin. Virol. 2020, 129, 104520. [Google Scholar] [CrossRef]
- Casto, A.M.; Huang, M.L.; Nalla, A.; Perchetti, G.; Sampoleo, R.; Shrestha, L.; Wei, Y.; Zhu, H.; Greninger, A.L.; Jerome, K.R. Comparative performance of SARS-CoV-2 Detection Assays Using Seven Different Primer/Probe Sets and one Assay Kit. medRxiv 2020, 58, 1–6. [Google Scholar] [CrossRef]
- Pujadas, E.; Ibeh, N.; Hernandez, M.M.; Waluszko, A.; Sidorenko, T.; Flores, V.; Shiffrin, B.; Chiu, N.; Young-Francois, A.; Nowak, M.D.; et al. Comparison of SARS-CoV-2 Detection from Nasopharyngeal Swab Samples by the Roche Cobas 6800 SARS-CoV-2 Test and a Laboratory-Developed Real-Time RT-PCR test. J. Med. Virol. 2020, 92, 1695–1698. [Google Scholar] [CrossRef] [PubMed]
- Perng, C.L.; Jian, M.J.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Chiu, S.K.; Chung, H.Y.; Wang, Y.H.; Liao, S.J.; et al. Novel Rapid Identification of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by Real-Time RT-PCR Using BD Max Open System in Taiwan. Peer J. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- van Kasteren, P.B.; van der Veer, B.; van den Brink, S.; Wijsman, L.; de Jonge, J.; van den Brandt, A.; Molenkamp, R.; Reusken, C.B.E.M.; Meijer, A. Comparison of Seven Commercial RT-PCR Diagnostic Kits for COVID-19. J. Clin. Virol. 2020, 128, 104412. [Google Scholar] [CrossRef]
- Bordi, L.; Piralla, A.; Lalle, E.; Giardina, F.; Colavita, F.; Tallarita, M.; Sberna, G.; Novazzi, F.; Meschi, S.; Castilletti, C.; et al. Rapid and Sensitive Detection of SARS-CoV-2 RNA Using the SimplexaTM COVID-19 Direct Assay. J. Clin. Virol. 2020, 128, 104416. [Google Scholar] [CrossRef]
- Iglói, Z.; Leven, M.; Abdel-Karem Abou-Nouar, Z.; Weller, B.; Matheeussen, V.; Coppens, J.; Koopmans, M.; Molenkamp, R. Comparison of Commercial Realtime Reverse Transcription PCR Assays for the Detection of SARS-CoV-2. J. Clin. Virol. 2020, 129, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Skegg, D.; Gluckman, P.; Boulton, G.; Hackmann, H.; Karim, S.S.A.; Piot, P.; Woopen, C. Future Scenarios for the COVID-19 Pandemic. Lancet 2021, 6736, 2–3. [Google Scholar] [CrossRef]
- Artesi, M.; Bontems, S.; Göbbels, P.; Franckh, M.; Maes, P.; Boreux, R.; Meex, C.; Melin, P.; Hayette, M.-P.; Bours, V.; et al. A Recurrent Mutation at Position 26340 of SARS-CoV-2 Is Associated with Failure of the E Gene Quantitative Reverse Transcription-PCR Utilized in a Commercial Dual-Target Diagnostic Assay. J. Clin. Microbiol. 2020, 58, e01598-20. [Google Scholar] [CrossRef] [PubMed]
- Reuters WHO COVID Envoy Fears Third Wave, Calls Europe Response “Incomplete”. Available online: https://www.reuters.com/article/us-health-coronavirus-who-envoy-idUSKBN28206N (accessed on 29 January 2021).
Assay * | Target | Oligonucleotide Sequence (5’–3’) | Length (bp) | Amplicon Location ** | Source |
---|---|---|---|---|---|
1 | N | Fw GGGGAACTTCTCCTGCTAGAAT Rv CAGACATTTTGCTCTCAAGCTG P TTGCTGCTGCTTGACAGATT | 22 22 20 | 28880–28979 | China CDC, China [14] |
2 | RdRp-P2 | Fw GTGARATGGTCATGTGTGGCGG Rv CARATGTTAAASACACTATTAGCATA P CAGGTGGAACCTCATCAGGAGATGC | 22 26 25 | 15430–15530 | Charité Hospital, Germany [14] |
2 *** | E *** | Fw ACAGGTACGTTAATAGTTAATAGCGT Rv ATATTGCAGCAGTACGCACACA P ACACTAGCCATCCTTACTGCGCTTCG | 26 22 26 | 26268–26381 | |
2 | N | Fw CACATTGGCACCCGCAATC Rv GAGGAACGAGAAGAGGCTTG P ACTTCCTCAAGGAACAACATTGCCA | 19 20 25 | 28705–28833 | |
3 | RdRp_IP2 | Fw ATGAGCTTAGTCCTGTTG Rv CTCCCTTTGTTGTGTTGT P AGATGTCTTGTGCTGCCGGTA | 18 18 21 | 12689–12797 | Institut Pasteur Paris, France [14] |
3 | RdRp_IP4 | Fw GGTAACTGGTATGATTTCG Rv CTGGTCAAGGTTAATATAGG P TCATACAAACCACGCCAGG | 19 20 19 | 14079–14186 | |
4 | N-1 | Fw GACCCCAAAATCAGCGAAAT Rv TCTGGTTACTGCCAGTTGAATCTG P ACCCCGCATTACGTTTGGTGGACC | 20 24 24 | 28286–28358 | US CDC, USA [14] |
4 | N-2 | Fw TTACAAACATTGGCCGCAAA Rv GCGCGACATTCCGAAGAA P ACAATTTGCCCCCAGCGCTTCAG | 20 18 23 | 29163–29230 | |
4 | N-3 | Fw GGGAGCCTTGAATACACCAAAA Rv ACAATTTGCCCCCAGCGCTTCAG P AYCACATTGGCACCCGCAATCCTG | 22 23 24 | 28680–28752 | |
8 | S | Fw CCTACTAAATTAAATGATCTCTGCTTTACT Rv CAAGCTATAACGCAGCCTGTA P CGCTCCAGGGCAAACTGGAAAG | 30 21 22 | 22711–22869 | Chan et al. [50] |
9 | ORF1a | Fw AGAAGATTGGTTAGATGATGATAGT Rv TTCCATCTCTAATTGAGGTTGAACC P TCCTCACTGCCGTCTTGTTGACCA | 25 25 24 | 3192–3310 | Lu et al. [51] |
Assay | Target | Negative RT-qPCR Result †,* | Inclusivity (Present Study *) | Inclusivity (Previous Study **) |
---|---|---|---|---|
1 | N | 30,445 (13%) | 63.89% | 86.03% |
2 | RdRp-P2 | 96 (9.4%) | 99.89% | 100% |
2 | E | 8 (0%) | 99.99% | 100% |
2 | N | 316 (2.2%) | 99.63% | 99.81% |
3 | RdRp_IP2 | 169 (6.5%) | 99.80% | 99.88% |
3 | RdRp_IP4 | 44 (0%) | 99.95% | 100% |
4 | N-1 | 181 (2.2%) | 99.79% | 99.73% |
4 | N-2 | 833 (0%) | 99.01% | 99.96% |
4 | N-3 | 100 (1%) | 99.88% | 100% |
8 | S | 28 (3.6%) | 99.97% | 100% |
9 | ORF1a | 95 (0%) | 99.89% | 100% |
Assay | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
Target | N | RdRp-P2 | E | N | RdRp _IP2 | RdRp _IP4 | N-1 | N-2 | N-3 | S | ORF1a |
Clusters * | 496 | 89 | 116 | 291 | 157 | 124 | 199 | 123 | 152 | 160 | 231 |
First cluster ** | 30.3% | 97.5% | 98.2% | 94.7% | 98.4% | 98.4% | 96.1% | 95.7% | 97.1% | 98.6% | 91.1% |
Second cluster ** | 28.8% | 1.3% | 0.5% | 0.7% | 0.2% | 0.3% | 0.5% | 1.8% | 0.7% | 0.2% | 4.8% |
Third cluster ** | 26.9% | 0.4% | 0.4% | 0.6% | 0.1% | 0.1% | 0.4% | 0.9% | 0.2% | 0.1% | 1.7% |
Assay | Target | Amplicon Start Pos. * | Amplicon End Pos. * | Nucleotide Change* | Amino Acid Change | Impact on Primer or Probe Sequences (5’–3’) ** | FN Results *** |
---|---|---|---|---|---|---|---|
9 | ORF1a | 3192 | 3310 | C3267T v1 | T1001I | None | No |
1 | N | 28880 | 28979 | C28977T v1 | S235F | Rv CAAACATTTTGCTCTCAAGCTG | Depending on other mutations |
8 | S | 22711 | 22869 | G22813T v2 | K417N | P CGCTCCAGGGCAAACTGGAAAT | No |
1 | N | 28880 | 28979 | C28887T v2 | T205I | Fw GGGGAATTTCTCCTGCTAGAAT | No |
3 | RdRp_IP2 | 12689 | 12797 | C12778T v3 | Synonymous | None | No |
8 | S | 22711 | 22869 | A22812C v3 | K417T | P CGCTCCAGGGCAAACTGGAACG | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gand, M.; Vanneste, K.; Thomas, I.; Van Gucht, S.; Capron, A.; Herman, P.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants. Genes 2021, 12, 565. https://doi.org/10.3390/genes12040565
Gand M, Vanneste K, Thomas I, Van Gucht S, Capron A, Herman P, Roosens NHC, De Keersmaecker SCJ. Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants. Genes. 2021; 12(4):565. https://doi.org/10.3390/genes12040565
Chicago/Turabian StyleGand, Mathieu, Kevin Vanneste, Isabelle Thomas, Steven Van Gucht, Arnaud Capron, Philippe Herman, Nancy H. C. Roosens, and Sigrid C. J. De Keersmaecker. 2021. "Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants" Genes 12, no. 4: 565. https://doi.org/10.3390/genes12040565
APA StyleGand, M., Vanneste, K., Thomas, I., Van Gucht, S., Capron, A., Herman, P., Roosens, N. H. C., & De Keersmaecker, S. C. J. (2021). Deepening of In Silico Evaluation of SARS-CoV-2 Detection RT-qPCR Assays in the Context of New Variants. Genes, 12(4), 565. https://doi.org/10.3390/genes12040565