Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei (Garrulax canorus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material and RNA-Sequencing
2.2. De novo Transcriptome Assembly
2.3. Transcriptome Annotation
2.4. Differential Expression Analysis
2.5. Chromosomal Enrichment Analysis
2.6. Evolutionary Rates Analysis (Ka/Ks)
3. Results
3.1. RNA Sequencing, de novo Assembly of Chinese Hwamei Transcriptome and Transcript Annotation
3.2. Sex-Biased Gene Expression Characteristics
3.3. Genome Distribution of Sex-Biased Genes
3.4. Accelerated Protein Evolution and Codon Usage Bias of Sex-Biased Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fairbairn, D.J.; Blanckenhorn, W.U.; Szekely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Chervinski, J. Sexual Dimorphism in Tilapia. Nat. Cell Biol. 1965, 208, 703. [Google Scholar] [CrossRef]
- Ellegren, H.; Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 2007, 8, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Connallon, T.; Knowles, L.L. Intergenomic conflict revealed by patterns of sex-biased gene expression. Trends Genet. 2005, 21, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Snyder, M. Sexual dimorphism in mammalian gene expression. Trends Genet. 2005, 21, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Albritton, S.E.; Kranz, A.-L.; Rao, P.; Kramer, M.; Dieterich, C.; Ercan, S. Sex-Biased Gene Expression and Evolution of the X Chromosome in Nematodes. Genetics 2014, 197, 865–883. [Google Scholar] [CrossRef] [Green Version]
- Kassam, I.; Wu, Y.; Yang, J.; Visscher, P.M.; McRae, A.F. Tissue-specific sex differences in human gene expression. Hum. Mol. Genet. 2019, 28, 2976–2986. [Google Scholar] [CrossRef]
- Mueller, J.C.; Kuhl, H.; Timmermann, B.; Kempenaers, B. Characterization of the genome and transcriptome of the blue titCyanistes caeruleus: Polymorphisms, sex-biased expression and selection signals. Mol. Ecol. Resour. 2016, 16, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Marinotti, O.; Calvo, E.; Nguyen, Q.K.; Dissanayake, S.; Ribeiro, J.M.C.; James, A.A. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol. Biol. 2006, 15, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, Z.; He, S. Both Male-Biased and Female-Biased Genes Evolve Faster in Fish Genomes. Genome Biol. Evol. 2016, 8, 3433–3445. [Google Scholar] [CrossRef] [Green Version]
- Naurin, S.; Hansson, B.; Hasselquist, D.; Kim, Y.-H.; Bensch, S. The sex-biased brain: Sexual dimorphism in gene expression in two species of songbirds. BMC Genom. 2011, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- Catalan, A.; Macias-Muñoz, A.; Briscoe, A.D. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol. Biol. Evol. 2018, 35, 2120–2134. [Google Scholar] [CrossRef] [PubMed]
- Rice, W.R. Sex Chromosomes and the Evolution of Sexual Dimorphism. Evolution 1984, 38, 735. [Google Scholar] [CrossRef]
- Rice, W.R.; Chippindale, A.K. Intersexual ontogenetic conflict. J. Evol. Biol. 2008, 14, 685–693. [Google Scholar] [CrossRef]
- Itoh, Y.; Melamed, E.; Yang, X.; Kampf, K.; Wang, S.; Yehya, N.; Van Nas, A.; Replogle, K.; Band, M.R.; Clayton, D.F.; et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 2007, 6, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsch, J.; Ellegren, H. The evolutionary causes and consequences of sex-biased gene expression. Nat. Rev. Genet. 2013, 14, 83–87. [Google Scholar] [CrossRef]
- Zhang, Z.; Hambuch, T.M.; Parsch, J. Molecular Evolution of Sex-Biased Genes in Drosophila. Mol. Biol. Evol. 2004, 21, 2130–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papa, F.; Windbichler, N.; Waterhouse, R.M.; Cagnetti, A.; D’Amato, R.; Persampieri, T.; Lawniczak, M.K.; Nolan, T.; Papathanos, P.A. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res. 2017, 27, 1536–1548. [Google Scholar] [CrossRef] [Green Version]
- Mank, J.E.; Nam, K.; Brunström, B.; Ellegren, H. Ontogenetic Complexity of Sexual Dimorphism and Sex-Specific Selection. Mol. Biol. Evol. 2010, 27, 1570–1578. [Google Scholar] [CrossRef] [Green Version]
- Mank, J.E.; Hultin-Rosenberg, L.; Axelsson, E.; Ellegren, H. Rapid Evolution of Female-Biased, but Not Male-Biased, Genes Expressed in the Avian Brain. Mol. Biol. Evol. 2007, 24, 2698–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grath, S.; Parsch, J. Sex-Biased Gene Expression. Annu. Rev. Genet. 2016, 50, 29–44. [Google Scholar] [CrossRef]
- Harrison, P.W.; Wright, A.E.; Zimmer, F.; Dean, R.; Montgomery, S.H.; Pointer, M.A.; Mank, J.E. Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl. Acad. Sci. USA 2015, 112, 4393–4398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riede, T.; Fisher, J.H.; Goller, F. Sexual Dimorphism of the Zebra Finch Syrinx Indicates Adaptation for High Fundamental Frequencies in Males. PLoS ONE 2010, 5, e11368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auger, A.P.; Auger, C.J.; Pfaff, D.W.; Joels, M. Hormones, Brain and Behavior: Sexual Differentiation of Brain and Behavior in Birds; Academic Press LTd-Elsevier Science Ltd.: Cambridge, MA, USA, 2017. [Google Scholar]
- Nottebohm, F.; Arnold, A.P. Sexual dimorphism in vocal control areas of the songbird brain. Science 1976, 194, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Mank, J.E. The transcriptional architecture of phenotypic dimorphism. Nat. Ecol. Evol. 2017, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-H.; Li, J.-W.; Han, L.-X.; Yao, C.-T.; Shi, H.; Lei, F.-M.; Yen, C. Species delimitation in the Hwamei Garrulax canorus. Ibis 2006, 148, 698–706. [Google Scholar] [CrossRef]
- Chen, D.; Qian, C.; Ren, Q.; Wang, P.; Yuan, J.; Jiang, L.; Bi, D.; Zhang, Q.; Wang, Y.; Kan, X. Complete mitochondrial genome of the Chinese Hwamei Garrulax canorus (Aves: Passeriformes): The first representative of the Leiothrichidae family with a duplicated control region. Genet. Mol. Res. 2015, 14, 8964–8976. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Davidson, N.M.; Oshlack, A. Corset: Enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Eddy, S.R. A new generation of homology search tools based on probabilistic inference. Genome Inform. 2009, 23, 205–211. [Google Scholar]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [Green Version]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellegren, H. Evolutionary stasis: The stable chromosomes of birds. Trends Ecol. Evol. 2010, 25, 283–291. [Google Scholar] [CrossRef]
- Shetty, S.; Griffin, D.K.; Graves, J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosom. Res. 1999, 7, 289–295. [Google Scholar] [CrossRef]
- O’Brien, K.P. Inparanoid: A comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 2004, 33, D476–D480. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, J.; Zhao, X.-Q.; Wang, J.; Wong, G.K.-S.; Yu, J. KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging. Genom. Proteom. Bioinform. 2006, 4, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P.M.; Stenico, M.; Peden, J.F.; Lloyd, A.T. Codon usage: Mutational bias, translational selection, or both? Biochem. Soc. Trans. 1993, 21, 835–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akashi, H. Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics 1994, 136, 927–935. [Google Scholar] [CrossRef]
- Hambuch, T.M.; Parsch, J. Patterns of Synonymous Codon Usage in Drosophila melanogaster Genes With Sex-Biased Expression. Genetics 2005, 170, 1691–1700. [Google Scholar] [CrossRef] [Green Version]
- Michaud, D.R.; Poley, J.D.; Fast, M.D. Sex-biased gene expression and evolution of candidate reproductive transcripts in adult stages of salmon lice (Lepeophtheirus salmonis). Facets 2019, 4, 254–274. [Google Scholar] [CrossRef]
- Lipinska, A.; Cormier, A.; Luthringer, R.; Peters, A.F.; Corre, E.; Gachon, C.M.; Cock, J.M.; Coelho, S.M. Sexual Dimorphism and the Evolution of Sex-Biased Gene Expression in the Brown Alga Ectocarpus. Mol. Biol. Evol. 2015, 32, 1581–1597. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, C.N.; Mukai, M.; Gonser, R.A.; Wingfield, J.C.; London, S.E.; Tuttle, E.M.; Clayton, D.F. Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior. PeerJ 2014, 2, e396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, Y.; Harrigan, R.J.; Ruegg, K.C.; Anderson, E.C.; Ng, T.C.; Lao, S.; Lohmueller, K.E.; Smith, T.B. Genomic divergence across ecological gradients in the Central African rainforest songbird (Andropadus virens). Mol. Ecol. 2017, 26, 4966–4977. [Google Scholar] [CrossRef]
- Bentz, A.B.; Thomas, G.W.C.; Rusch, D.B.; Rosvall, K.A. Tissue-specific expression profiles and positive selection analysis in the tree swallow (Tachycineta bicolor) using a de novo transcriptome assembly. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Dolinski, A.C.; Homola, J.J.; Jankowski, M.D.; Owen, J.C. De novo transcriptome assembly and data for the blue-winged teal (Spatula discors). Data Brief 2020, 30, 105380. [Google Scholar] [CrossRef]
- Ranz, J.M.; Castillo-Davis, C.I.; Meiklejohn, C.D.; Hartl, D.L. Sex-Dependent Gene Expression and Evolution of the Drosophila Transcriptome. Science 2003, 300, 1742–1745. [Google Scholar] [CrossRef]
- Mank, J.E.; Hultin-Rosenberg, L.; Webster, M.T.; Ellegren, H. The unique genomic properties of sex-biased genes: Insights from avian microarray data. BMC Genom. 2008, 9, 148. [Google Scholar] [CrossRef] [Green Version]
- Sharma, E.; Künstner, A.; Fraser, B.A.; Zipprich, G.; Kottler, V.A.; Henz, S.R.; Weigel, D.; Dreyer, C. Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata. BMC Genom. 2014, 15, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Oh, H.; Corcoran, J.; Kim, J.; Park, K.; Park, C.G.; Choi, M. Sex-biased gene expression in antennae of Drosophila suzukii. Arch. Insect Biochem. Physiol. 2020, 104, e21660. [Google Scholar] [CrossRef] [PubMed]
- Sigeman, H.; Ponnikas, S.; Videvall, E.; Zhang, H.; Chauhan, P.; Naurin, S.; Hansson, B. Insights into Avian Incomplete Dosage Compensation: Sex-Biased Gene Expression Coevolves with Sex Chromosome Degeneration in the Common Whitethroat. Genes 2018, 9, 373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pointer, M.A.; Harrison, P.W.; Wright, A.E.; Mank, J.E. Masculinization of Gene Expression Is Associated with Exaggeration of Male Sexual Dimorphism. PLoS Genet. 2013, 9, e1003697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, V.B.; Ellegren, H. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 2006, 60, 1945. [Google Scholar] [CrossRef]
- Khodursky, S.; Svetec, N.; Durkin, S.M.; Zhao, L. The evolution of sex-biased gene expression in the Drosophila brain. Genome Res. 2020, 30, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Parisi, M.; Nuttall, R.; Naiman, D.; Bouffard, G.; Malley, J.; Andrews, J.; Eastman, S.; Oliver, B. Paucity of Genes on the Drosophila X Chromosome Showing Male-Biased Expression. Science 2003, 299, 697–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huylmans, A.K.; Macon, A.; Vicoso, B. Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome. Mol. Biol. Evol. 2017, 34, 2637–2649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlesworth, B.; Coyne, J.A.; Barton, N.H. The Relative Rates of Evolution of Sex Chromosomes and Autosomes. Am. Nat. 1987, 130, 113–146. [Google Scholar] [CrossRef]
- Ellegren, H.; Hultin-Rosenberg, L.; Brunström, B.; Dencker, L.; Kultima, K.; Scholz, B. Faced with inequality: Chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 2007, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Itoh, Y.; Replogle, K.; Kim, Y.-H.; Wade, J.; Clayton, D.F.; Arnold, A.P. Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Res. 2010, 20, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Uebbing, S.; Künstner, A.; Mäkinen, H.; Ellegren, H. Transcriptome Sequencing Reveals the Character of Incomplete Dosage Compensation across Multiple Tissues in Flycatchers. Genome Biol. Evol. 2013, 5, 1555–1566. [Google Scholar] [CrossRef] [Green Version]
- Walters, J.R.; Hardcastle, T.J.; Jiggins, C.D. Sex Chromosome Dosage Compensation in Heliconius Butterflies: Global yet Still Incomplete? Genome Biol. Evol. 2015, 7, 2545–2559. [Google Scholar] [CrossRef] [Green Version]
- Pala, I.; Naurin, S.; Stervander, M.; Hasselquist, D.; Bensch, S.; Hansson, B. Evidence of a neo-sex chromosome in birds. Heredity 2011, 108, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Pala, I.; Hasselquist, D.; Bensch, S.; Hansson, B. Patterns of Molecular Evolution of an Avian Neo-sex Chromosome. Mol. Biol. Evol. 2012, 29, 3741–3754. [Google Scholar] [CrossRef] [Green Version]
- Sigeman, H.; Ponnikas, S.; Hansson, B. Whole-genome analysis across 10 songbird families within Sylvioidea reveals a novel autosome–sex chromosome fusion. Biol. Lett. 2020, 16, 20200082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whittle, C.A.; Johannesson, H. Evolutionary Dynamics of Sex-Biased Genes in a Hermaphrodite Fungus. Mol. Biol. Evol. 2013, 30, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Dutoit, L.; Mugal, C.F.; Bolívar, P.; Wang, M.; Nadachowska-Brzyska, K.; Smeds, L.; Yazdi, H.P.; Gustafsson, L.; Ellegren, H. Sex-biased gene expression, sexual antagonism and levels of genetic diversity in the collared flycatcher (Ficedula albicollis) genome. Mol. Ecol. 2018, 27, 3572–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.E.; Harrison, P.W.; Zimmer, F.; Montgomery, S.H.; Pointer, M.A.; Mank, J.E. Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution. Mol. Ecol. 2015, 24, 1218–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mank, J.E.; Axelsson, E.; Ellegren, H. Fast-X on the Z: Rapid evolution of sex-linked genes in birds. Genome Res. 2007, 17, 618–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Unigene | Transcript | |
---|---|---|
Total Number | 95,962 | 227,595 |
Total Length | 135,516,981 | 450,438,412 |
Mean Length | 1412 | 1979 |
N50 Length | 3221 | 4437 |
Databases | Nr | Nt | GO | KEGG | PFAM | Swiss-Prot | KOG | At least one | All |
---|---|---|---|---|---|---|---|---|---|
Annotated Unigenes | 28,626 | 52,049 | 25,265 | 10,894 | 25,265 | 20,707 | 8382 | 58,762 | 5017 |
Criteria | Cerebrum | Syrinx | Overlap | |
---|---|---|---|---|
Actively Expressed Genes | FPKM ≥ 1 at least two replicates | 19,926 | 23,753 | 15,360 |
Male-Biased Genes | q < 0.05 and male-biased | 252 | 202 | 114 |
Female-Biased Genes | q < 0.05 and female-biased | 249 | 248 | 122 |
Male-Specific Genes | Male/female > 3 and FPKM < 1 in females | 15 | 32 | 7 |
Female-Specific Genes | Female/male > 3 and FPKM < 1 in males | 142 | 200 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Lin, J.-Q.; Sun, L.; Xu, Y.-C.; Fang, S.-G. Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei (Garrulax canorus). Genes 2021, 12, 569. https://doi.org/10.3390/genes12040569
Jiang H, Lin J-Q, Sun L, Xu Y-C, Fang S-G. Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei (Garrulax canorus). Genes. 2021; 12(4):569. https://doi.org/10.3390/genes12040569
Chicago/Turabian StyleJiang, Hua, Jian-Qing Lin, Li Sun, Yan-Chun Xu, and Sheng-Guo Fang. 2021. "Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei (Garrulax canorus)" Genes 12, no. 4: 569. https://doi.org/10.3390/genes12040569
APA StyleJiang, H., Lin, J. -Q., Sun, L., Xu, Y. -C., & Fang, S. -G. (2021). Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei (Garrulax canorus). Genes, 12(4), 569. https://doi.org/10.3390/genes12040569