Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Genotyping
2.3. Phylogeny, Population Structure and Genetic Variability Based on mtDNA
2.4. Historical Demography of Populations
2.5. Species Distribution Modelling
3. Results
3.1. Phylogenetic Analysis Based on Mitochondrial DNA
3.2. Population Structure and Genetic Variability
3.3. Demographic Analyses
3.4. Species Distribution Modelling
4. Discussion
4.1. Demographic Analyses
4.2. The Demographic History of Asian Clade C3
4.3. Extensive Westward Expansion during the Last Glaciation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hewitt, G.M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2004, 359, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G.M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 1996, 58, 247–276. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Taberlet, P.; Fumagalli, L.; Wust-Saucy, A.G.; Cosson, J.F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 1998, 7, 453–464. [Google Scholar] [CrossRef]
- Horáček, I.; Sánchez Marco, A. Comments on the Weichselian small mammal assemblages in Czechoslovakia and their stratigraphical interpretation. Neues Jahrb. für Geol. und Paläontologie-Monatshefte 1984, 1984, 560–576. [Google Scholar] [CrossRef]
- Knitlová, M.; Horáček, I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe. PLoS One 2017, 12, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Knitlová, M.; Horáček, I. Genus Apodemus in the Pleistocene of Central Europe: When did the extant taxa appear? Foss. Impr. 2017, 74, 460–481. [Google Scholar] [CrossRef]
- Björklund, M.; Ranta, E.; Kaitala, V.; Bach, L.A.; Lundberg, P.; Stenseth, N.C. Quantitative trait evolution and environmental change. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.P.; Farrugia, T.J.; Kinnison, M.T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 2008, 17, 20–29. [Google Scholar] [CrossRef]
- Kanarek, A.R.; Webb, C.T. Allee effects, adaptive evolution, and invasion success. Evol. Appl. 2010, 3, 122–135. [Google Scholar] [CrossRef]
- Williams, S.E.; Shoo, L.P.; Isaac, J.L.; Hoffmann, A.A.; Langham, G. Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. PLoS Biol. 2008, 6, e325. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Whitney, K.D.; Gabler, C.A. Rapid evolution in introduced species, “invasive traits” and recipient communities: Challenges for predicting invasive potential. Divers. Distrib. 2008, 14, 569–580. [Google Scholar] [CrossRef]
- Spitzenberger, F.; Engelberger, S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae) Nový pohled na dynamiku západního okraje rozšíření myšice temnopásé. Lynx, n. s. 2014, 79, 69–79. [Google Scholar]
- Bazhenov, Y.A.; Pavlenko, M.V.; Korablev, V.P.; Kardash, A.I. Current distribution of the striped field mouse (Apodemus agrarius Pallas, 1771) in Eastern Transbaikalia: New findings in the disjunction area. Russ. J. Biol. Invasions 2015, 6, 1–5. [Google Scholar] [CrossRef]
- Pereverzeva, V.V.; Pavlenko, M.V. Diversity of the mitochondrial DNA cytochrome b gene of the field mouse Apodemus agrarius Pallas, 1771 in the south of the Russian Far East. Biol. Bull. 2014, 41, 1–11. [Google Scholar] [CrossRef]
- Pereverzeva, V.V.; Primak, A.A.; Pavlenko, M.V.; Dokuchaev, N.E.; Evdokimova, A.A. Genetic features and the putative sources of formation of isolated populations of the striped field mouse Apodemus agrarius Pallas, 1771 in Magadan oblast. Russ. J. Biol. Invasions 2017, 8, 87–100. [Google Scholar] [CrossRef]
- Frynta, D.; Exnerova, A.; Novarova, A. Intraspecific behavioural interactions in the Striped-field mouse (Apodemus agrarius) and its interspecific relationships to the Wood mouse (Apodemus sylvaticus): Dyadic encounters in a neutral cage. Acta Soc. Zool. Bohem. 1995, 59, 53–62. [Google Scholar]
- Tulis, F.; Ambros, M.; Balaž, I.; Žiak, D.; Hulejová Sládkovičová, V.; Miklós, P.; Dudich, A.; Stollmann, A. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica 2016, 43, 67–73. [Google Scholar]
- Andrzejewski, R.; Mazurkiewicz, M. Abundance of food supply and size of the bank vole’s home range. Acta Theriol. (Warsz.) 1976, 21, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D. Chronology of Micromammal Assemblages on the Territory of Belarus in the Late Glacial and Holocene Na Terytorium Białorusi. Słupskie Pr. Geol. 2016, 13, 179–196. [Google Scholar]
- Markova, A.; Puzachenko, A. Preliminary Analysis of European Small Mammal Faunas of the Eemian Interglacial: Species Composition and Species Diversity at a Regional Scale. Quaternary 2018, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Ricánková, V.P.; Robovský, J.; Riegert, J.; Zrzavý, J. Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate retreat to Siberian steppes rather than extinction. Sci. Rep. 2015, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaux, J.R.; Magnanou, E.; Paradis, E.; Nieberding, C.; Libois, R. Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol. Ecol. 2003, 12, 685–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajabi-Maham, H.; Orth, A.; Bonhomme, F. Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe. Mol. Ecol. 2008, 17, 627–641. [Google Scholar] [CrossRef]
- Suzuki, H.; Shimada, T.; Terashima, M.; Tsuchiya, K.; Aplin, K. Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol. Phylogenet. Evol. 2004, 33, 626–646. [Google Scholar] [CrossRef]
- Musser, G.G.; Carleton, M.D. Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference; Wilson, D.E., Reeder, D.M., Eds.; Johns Hopkins University Press: Baltimore, MD USA, 2005; pp. 1261–1262. ISBN 0-8018-8221-4. [Google Scholar]
- Atopkin, D.M.; Bogdanov, A.S.; Chelomina, G.N. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 2007, 43, 665–676. [Google Scholar] [CrossRef]
- Latinne, A.; Navascués, M.; Pavlenko, M.; Kartavtseva, I.; Ulrich, R.G.; Tiouchichine, M.L.; Catteau, G.; Sakka, H.; Quéré, J.P.; Chelomina, G.; et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 2020, 100, 19–31. [Google Scholar] [CrossRef]
- Andersen, L.W.; Jacobsen, M.; Vedel-Smith, C.; Jensen, T.S. Mice as stowaways? Colonization history of Danish striped field mice. Biol. Lett. 2017, 13, 20170064. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Irwin, D.M.; Kocher, T.D.; Wilson, A.C. Evolution of the cytochrome b gene of mammals. J. Mol. Evol. 1991, 32, 128–144. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L. Patterns of DNA sequence diversity and genetic structure after a range expansion: Lessons from the infinite-island model. Mol. Ecol. 2004, 13, 853–864. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef]
- Miller, M.P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 2005, 96, 722–724. [Google Scholar] [CrossRef]
- Harpending, H.C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 1994, 66, 591–600. [Google Scholar] [PubMed]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Ramos-Onsins, S.E.; Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 2002, 19, 2092–2100. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.R. Genetic Evidence for a Pleistocene Population Explosion. Evolution (N. Y). 1995, 49, 608–615. [Google Scholar] [CrossRef]
- Pacifici, M.; Santini, L.; Di Marco, M.; Baisero, D.; Francucci, L.; Grottolo Marasini, G.; Visconti, P.; Rondinini, C. Generation length for mammals. Nat. Conserv. 2013, 5, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Sato, J.J.; Tsuchiya, K.; Luo, J.; Zhang, Y.; Wang, Y.; Jiang, X. Molecular phylogeny of wood mice ( Apodemus, Muridae) in East Asia. Biol. J. Linn. Soc. 2003, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Hanazaki, K.; Tomozawa, M.; Suzuki, Y.; Kinoshita, G.; Yamamoto, M.; Irino, T.; Suzuki, H. Estimation of Evolutionary Rates of Mitochondrial DNA in Two Japanese Wood Mouse Species Based on Calibrations with Quaternary Environmental Changes. Zoolog. Sci. 2017, 34, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Tomozawa, M.; Koizumi, Y.; Tsuchiya, K.; Suzuki, H. Estimating the molecular evolutionary rates of mitochondrial genes referring to Quaternary ice age events with inferred population expansions and dispersals in Japanese Apodemus. BMC Evol. Biol. 2015, 15, 2–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A.; Shapiro, B.; Pybus, O.G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005, 22, 1185–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, S.Y.W.; Lanfear, R.; Phillips, M.J.; Barnes, I.; Thomas, J.A.; Kolokotronis, S.-O.O.; Shapiro, B. Bayesian estimation of substitution rates from ancient DNA sequences with low information content. Syst. Biol. 2011, 60, 366–375. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Liu, S.; Liu, Y.; Liao, L.; Zhang, X.; Yue, B. Phylogeography of the South China field mouse (Apodemus draco) on the Southeastern Tibetan Plateau reveals high genetic diversity and Glacial Refugia. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Yue, H.; Fan, Z.; Liu, S.; Liu, Y.; Song, Z.; Zhang, X. A Mitogenome of the Chevrier’s Field Mouse (Apodemus chevrieri ) and Genetic Variations Inferred from the Cytochrome b Gene. DNA Cell Biol. 2012, 31, 460–469. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Pudlo, P.; Veyssier, J.; Dehne-Garcia, A.; Gautier, M.; Leblois, R.; Marin, J.M.; Estoup, A. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 2014, 30, 1187–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storz, J.F.; Beaumont, M.A. Testing for genetic evidence of population expansion and contraction: An empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 2002, 56, 154–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornuet, J.M.; Santos, F.; Beaumont, M.A.; Robert, C.P.; Marin, J.M.; Balding, D.J.; Guillemaud, T.; Estoup, A. Inferring population history with DIY ABC: A user-friendly approach to approximate Bayesian computation. Bioinformatics 2008, 24, 2713–2719. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography (Cop.) 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Bintanja, R.; van de Wal, R.S.W. North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 2008, 454, 869–872. [Google Scholar] [CrossRef]
- Ehlers, J.; Gibbard, P.L.; Hughes, P.D. Quaternary glaciations—extent and chronology. A Closer Look. Dev. Quat. Sci. 2011, 15, 1–1108. [Google Scholar]
- Ehlers, J.; Astakhov, V.; Gibbard, P.L.; Mangerud, J.; Svendsen, J.I. Late Pleistocene in Eurasia, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780444536433. [Google Scholar]
- Wright, J.D. Global Climate Change in Marine Stable Isotope Records. In Quaternary Geochronology: Methods and Applications; American Geophysical Union: Washington, DC, USA, 2013; pp. 427–433. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, J.P.; Pélissié, T.; Sigé, B.; Michaux, J. Occurrence of the Stripe Field Mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. Comptes Rendus-Palevol 2008, 7, 217–225. [Google Scholar] [CrossRef]
- Izvarin, E.P.; Ulitko, A.I. Stratigraphical and paleotheriological description of Holocene sediments from Nizhneirginsky grotto (middle Urals). In Proceedings of the Quaternary Stratigraphy and Karst and Cave Sediments; Hajna, N.Z., Mihevc, A., Năpăruș-Aljančič, M., Eds.; ZRC Publishing: Postojna, Slovenia, 2018; pp. 31–33. [Google Scholar]
- Jin, C.; Kawamura, Y. Late Pleistocene mammal fauna in Northeast China Mammal fauna including woolly mammoth and woolly rhinoceros in association with Paleolithic tools. Earth Sci. (Chikyu Kagaku) 1996, 50, 3150330. [Google Scholar] [CrossRef]
- Kawamura, Y. Quaternary Rodent Faunas in the Japanese Islands (Part 2). Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Mineral. 1989, 54, 1–235. [Google Scholar]
- Kotsakis, T.; Abbazzi, L.; Angelone, C.; Argenti, P.; Barisone, G.; Fanfani, F.; Marcolini, F.; Masini, F. Plio-Pleistocene biogeography of Italian mainland micromammals. In Distribution and Migration of Tertiary Mammals in Eurasia; Reumer, J.W., Wessels, W., Eds.; Deinsea: Rotterdam, The Netherlads, 2003; pp. 313–342. [Google Scholar]
- Kowalski, K. Pleistocene rodents of Europe. Folia Quat. 2001, 72, 3–389. [Google Scholar]
- Popov, V. A Pleistocene record of Apodemus agrarius (Pallas, 1771) (Mammalia: Rodentia) in the Magura Cave, Bulgaria. Acta Zool. Bulg. 2017, 69, 121–124. [Google Scholar]
- Zhang, Y.X.; Li, Y.X.; Wang, W.; Gong, H.J. Middle pleistocene mammalian fauna of shanyangzhai cave in Qinhuangdao area, China and its zoogeographical significance. Chin. Sci. Bull. 2010, 55, 72–76. [Google Scholar] [CrossRef]
- Koh, H.S.; Jang, K.H.; Shaner, P.J.; Lee, B.K.; Yang, B.G.; Heo, S.W. Genetic divergence of Taiwan striped field mouse (Apodemus agrarius insulaemus): Sequence analysis with mtDNA cytochrome b gene. Bull. Nat. Sci. 2012, 26, 7–12. [Google Scholar]
- Koh, H.S.; Lee, W.J.; Kocher, T.D. The genetic relationships of two subspecies of striped field mice, Apodemus agrarius coreae and Apodemus agrarius chejuensis. Heredity (Edinb) 2000, 85, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Koh, H.S.; Shaner, P.J.; Csorba, G.; Wang, Y.J.; Jang, K.H.; Lee, J.H. Comparative genetics of Apodemus agrarius (Rodentia: Mammalia) from insular and continental eurasia population: Cytochrome b sequnces analyses. Acta Zool. Acad. Sci. Hung. 2014, 60, 73–84. [Google Scholar]
- Sakka, H.; Quéré, J.-P.; Kartavtseva, I.; Pavlenko, M.; Chelomina, G.; Atopkin, D.; Bogdanov, A.; Michaux, J. Comparative phylogeography of four Apodemus species (Mammalia: Rodentia) in the Asian Far East: Evidence of Quaternary climatic changes in their genetic structure. Biol. J. Linn. Soc. 2010, 100, 797–821. [Google Scholar] [CrossRef] [Green Version]
- DeGiorgio, M.; Degnan, J.H.; Rosenberg, N.A. Coalescence-Time Distributions in a Serial Founder Model of Human Evolutionary History. Genetics 2011, 189, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, S.; Deshpande, O.; Roseman, C.C.; Rosenberg, N.A.; Feldman, M.W.; Cavalli-Sforza, L.L. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. USA 2005, 102, 15942–15947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, W.S. Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. J. Hered. 2015, 106, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Ballard, J.W.O.; Whitlock, M.C. The incomplete natural history of mitochondria. Mol. Ecol. 2004, 13, 729–744. [Google Scholar] [CrossRef] [Green Version]
- Grant, W.S.; Liu, M.; Gao, T.X.; Yanagimoto, T. Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol. Phylogenet. Evol. 2012, 65, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.S.; Cheng, W. Incorporating deep and shallow components of genetic structure into the management of Alaskan red king crab. Evol. Appl. 2012, 5, 820–837. [Google Scholar] [CrossRef]
- Bandelt, H.-J. Clock debate: When times are a-changin’: Time dependency of molecular rate estimates: Tempest in a teacup. Heredity (Edinb). 2008, 100, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Emerson, B.C. Alarm Bells for the Molecular Clock? No Support for Ho et al.’s Model of Time-Dependent Molecular Rate Estimates. Syst. Biol. 2007, 56, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.Y.W.; Shapiro, B.; Phillips, M.J.; Cooper, A.; Drummond, A.J. Evidence for Time Dependency of Molecular Rate Estimates. Syst. Biol. 2007, 56, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Ye, L.; Yu, G.; Liao, M.; Li, Y. Dynamic simulations of the late MIS 3 transgressions in the East China Sea and southern Yellow Sea, China. Acta Oceanol. Sin. 2016, 35, 48–55. [Google Scholar] [CrossRef]
- Chung, C.-H.; Lim, H.S.; Yoon, H.I. Vegetation and climate changes during the Late Pleistocene to Holocene inferred from pollen record in Jinju area, South Korea. Geosci. J. 2006, 10, 423–431. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X. Last Glacial Maximum in China: Comparison between land and sea. Catena 1994, 23, 341–353. [Google Scholar] [CrossRef]
- Xue, X.; Zhou, W.; Zhou, J.; Head, J.; Jull, A.J.T. Biological records of paleoclimate and paleoenvironment changes from Guanzhong area, Shaanxi Province during the last glacial maximum. Chin. Sci. Bull. 2000, 45, 853–857. [Google Scholar] [CrossRef]
- Kawahata, H.; Ohshima, H. Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Glob. Planet. Chang. 2004, 41, 251–273. [Google Scholar] [CrossRef]
- Xu, D.; Lu, H.; Wu, N.; Liu, Z. 30 000-Year vegetation and climate change around the East China Sea shelf inferred from a high-resolution pollen record. Quat. Int. 2010, 227, 53–60. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, K.; Deng, Y.; Cao, L.; Yu, S.; Suc, J.-P.; Berne, S.; Guichard, F. A ∼200 ka pollen record from Okinawa Trough: Paleoenvironment reconstruction of glacial-interglacial cycles. Sci. China Earth Sci. 2013, 56, 1731–1747. [Google Scholar] [CrossRef] [Green Version]
- Badejo, A.O.; Choi, B.H.; Cho, H.G.; Yi, H.-I.; Shin, K.H. Environmental change in Yellow Sea during the last deglaciation to the early Holocene (15,000-8,000 BP). Quat. Int. 2016, 392, 112–124. [Google Scholar] [CrossRef]
- Liu, K. Quaternary history of the temperate forests of China. Quat. Sci. Rev. 1988, 7, 1–20. [Google Scholar] [CrossRef]
- Kim, D.; Park, B.K.-K.; Shin, I.C. Paleoenvironmental changes of the Yellow Sea during the Late Quaternary. Geo-Marine Lett. 1999, 18, 189–194. [Google Scholar] [CrossRef]
- Kawamura, Y. Quaternary Rodent Faunas in the Japanese Islands (Part 1). Mem. Fac. Sci. Kyoto Univ. Ser. Geol. Mineral. 1988, 53, 31–348. [Google Scholar]
- Kawamura, Y.; Kamei, T.; Taruno, H. Middle and Late Pleistocene Mammalian Faunas in Japan. Quart. Res. 1989, 28, 317–326. [Google Scholar] [CrossRef]
- Motokawa, M. Biogeography of Living Mammals in the Ryukyu Islands. Tropics 2000, 10, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-C.; Yoo, D.-G.; Lee, C.-W.; Lee, E.-I. Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo-Mar. Lett. 2000, 20, 64–71. [Google Scholar] [CrossRef]
- Sato, J.J. A Review of the Processes of Mammalian Faunal Assembly in Japan: Insights from Molecular Phylogenetics; Springer: Tokyo, Japan, 2017; ISBN 9784431564324. [Google Scholar]
- Yasuda, S.P.; Vogel, P.; Tsuchiya, K.; Han, S.; Lin, L.; Suzuki, H. Phylogeographic patterning of mtDNA in the widely distributed harvest mouse ( Micromys minutus ) suggests dramatic cycles of range contraction and expansion during the mid- to late Pleistocene. Can. J. Zool. 2005, 83, 1411–1420. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Filippucci, M.G.; Chelomina, G.N.; Sato, J.J.; Serizawa, K.; Nevo, E. A biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequences. Biochem. Genet. 2008, 46, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Herzig-Straschil, B.; Bihari, Z.; Spitzenberger, F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Ann. des Naturhistorischen Museums Wien 2004, 105B, 421–428. [Google Scholar]
- Stanko, M. Apodemus agrarius (Pallas 1771) (Rodentia, Muridae) in Slovakia; Equilibria s.r.o.: Kosice, Slovakia, 2014. [Google Scholar]
- Granoszewski, W.; Demske, D.; Nita, M.; Heumann, G.; Andreev, A.A. Vegetation and climate variability during the Last Interglacial evidenced in the pollen record from Lake Baikal. Glob. Planet. Chang. 2005, 46, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, P.; Bezrukova, E.; Karabanov, E.; Nakagawa, T.; Wagner, M.; Kulagina, N.; Letunova, P.; Abzaeva, A.; Granoszewski, W.; Riedel, F. Vegetation and climate dynamics during the Holocene and Eemian interglacials derived from Lake Baikal pollen records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 252, 440–457. [Google Scholar] [CrossRef]
- Lindgren, A.; Hugelius, G.; Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 2018, 560, 219–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezrukova, E.V.; Tarasov, P.E.; Solovieva, N.; Krivonogov, S.K.; Riedel, F. Last glacial-interglacial vegetation and environmental dynamics in southern Siberia: Chronology, forcing and feedbacks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 296, 185–198. [Google Scholar] [CrossRef]
- Tarasov, P.E.; Andreev, A.A.; Anderson, P.M.; Lozhkin, A.V.; Leipe, C.; Haltia, E.; Nowaczyk, N.R.; Wennrich, V.; Brigham-Grette, J.; Melles, M. A pollen-based biome reconstruction over the last 3.562 million years in the Far East Russian Arctic - new insights into climate-vegetation relationships at the regional scale. Clim. Past 2013, 9, 2759–2775. [Google Scholar] [CrossRef] [Green Version]
- Velichko, A.A.; Catto, N.; Drenova, A.N.; Klimanov, V.A.; Kremenetski, K.V.; Nechaev, V.P. Climate changes in East Europe and Siberia at the Late glacial-holocene transition. Quat. Int. 2002, 91, 75–99. [Google Scholar] [CrossRef]
- Velichko, A.A.; Kononov, Y.M.; Faustova, M.A. The last glaciation of eartsize and volume of ice-sheets. Quat. Int. 1997, 42, 43–51. [Google Scholar] [CrossRef]
- Korbut, Z.; Agata, B.; Banaszek, A.; Agata, B. The history of species reacting with range shifts to the Oceanic-Continental climate gradient in Europe. The case of the common hamster (Cricetus Cricetus). Kosmos 2016, 65, 69–79. [Google Scholar]
- Karpińska-Kołaczek, M.; Kołaczek, P.; Stachowicz-Rybka, R. Pathways of woodland succession under low human impact during the last 13,000 years in northeastern Poland. Quat. Int. 2014, 328–329, 196–212. [Google Scholar] [CrossRef]
- Kołaczek, P. Late Glacial and Holocene vegetation changes in the western part of Rzeszów foothills (Sandomierz basin) based on the pollen diagram from Krasne near Rzeszów. Acta Palaeobot. 2007, 47, 455–467. [Google Scholar]
- Brewer, S.; Giesecke, T.; Davis, B.A.S.; Finsinger, W.; Wolters, S.; Binney, H.; de Beaulieu, J.-L.; Fyfe, R.; Gil-Romera, G.; Kühl, N.; et al. Late-glacial and Holocene European pollen data. J. Maps 2017, 13, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Giesecke, T.; Brewer, S.; Finsinger, W.; Leydet, M.; Bradshaw, R.H.W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 2017, 44, 1441–1456. [Google Scholar] [CrossRef] [Green Version]
- Cheddadi, R.; Bar-Hen, A. Spatial gradient of temperature and potential vegetation feedback across Europe during the late Quaternary. Clim. Dyn. 2009, 32, 371–379. [Google Scholar] [CrossRef]
- Valsecchi, V.; Sanchez Goñi, M.F.; Londeix, L. Vegetation dynamics in the Northeastern Mediterranean region during the past 23 000 yr: Insights from a new pollen record from the Sea of Marmara. Clim. Past 2012, 8, 1941–1956. [Google Scholar] [CrossRef] [Green Version]
- Holišová, V. The food of Apodemus agrarius (Pall.). Folia Zool. 1967, 16, 1–14. [Google Scholar]
- Krajcarz, M.T.; Krajcarz, M.; Goslar, T.; Nadachowski, A. The first radiocarbon dated steppe polecat (Mustela eversmanii) from the Pleistocene of Poland. Quat. Int. 2015, 357, 237–244. [Google Scholar] [CrossRef]
- Říčanová, Š.; Bryja, J.; Cosson, J.F.; Gedeon, C.; Choleva, L.; Ambros, M.; Sedláček, F. Depleted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: Implications for conservation. Conserv. Genet. 2011, 12, 1115–1129. [Google Scholar] [CrossRef]
- Neumann, K.; Michaux, J.R.; Maak, S.; Jansman, H.A.H.; Kayser, A.; Mundt, G.; Gattermann, R. Genetic spatial structure of European common hamsters (Cricetus cricetus)--a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 2005, 14, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Rofes, J.; García-Ibaibarriaga, N.; Murelaga, X.; Arrizabalaga, Á.; Iriarte, M.J.; Cuenca-Bescós, G.; Villaluenga, A. The southwesternmost record of Sicista (Mammalia; Dipodidae) in Eurasia, with a review of the palaeogeography and palaeoecology of the genus in Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 348–349, 67–73. [Google Scholar] [CrossRef]
- Campos, P.F.; Kristensen, T.; Orlando, L.; Sher, A.; Kholodova, M.V.; Götherström, A.; Hofreiter, M.; Drucker, D.G.; Kosintsev, P.; Tikhonov, A.; et al. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 2010, 19, 4863–4875. [Google Scholar] [CrossRef] [PubMed]
Population | n | S | Eta | k | h | Hd ± S.D. | π ± S.D. |
---|---|---|---|---|---|---|---|
A. agrarius—Eurasia | 473 | 255 | 275 | 15.17 | 210 | 0.980 ± 0.003 | 0.0133 ± 0.0004 |
Eurasia—mainland | 392 | 209 | 227 | 11.46 | 172 | 0.972 ± 0.005 | 0.0101 ± 0.0002 |
Asia | 307 | 230 | 243 | 17.80 | 143 | 0.960 ± 0.007 | 0.0156 ± 0.0004 |
Asia—mainland | 226 | 179 | 191 | 13.35 | 105 | 0.929 ± 0.013 | 0.0117 ± 0.0002 |
Europe | 166 | 78 | 81 | 4.52 | 67 | 0.973 ± 0.004 | 0.0040 ± 0.0002 |
Clades | |||||||
Clade 1 | 226 | 110 | 118 | 5.71 | 97 | 0.974 ± 0.004 | 0.00501 ± 0.00020 |
Clade 2 | 59 | 12 | 12 | 1.11 | 3 | 0.133 ± 0.060 | 0.00099 ± 0.00044 |
Clade 3 | 65 | 95 | 96 | 7.86 | 44 | 0.979 ± 0.009 | 0.00690 ± 0.00035 |
Clade 4 | 15 | 25 | 26 | 6.54 | 10 | 0.895 ± 0.070 | 0.00574 ± 0.00089 |
Clade 5 | 28 | 47 | 47 | 9.36 | 17 | 0.947 ± 0.025 | 0.00821 ± 0.00049 |
Clade 6 | 64 | 63 | 63 | 7.30 | 30 | 0.958 ± 0.011 | 0.00640 ± 0.00031 |
Clade 7 | 17 | 21 | 21 | 8.12 | 8 | 0.897 ± 0.042 | 0.00712 ± 0.00108 |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation | Fixation Indices | |
---|---|---|---|---|---|---|
(1) | Among seven clades | 6 | 2196.1 | 6.433 * Va | 68.3 | FST: 0.683 * |
Within clades | 467 | 1393.0 | 2.983 * Vb | 31.9 | ||
(2) | Among three groups | 2 | 1045.5 | 4.157 * Va | 30.0 | FSC: 0.613 * |
Among five clades within Eurasia (excluding islands) | 4 | 1150.5 | 4.727 * Vb | 39.8 | FST: 0.749 * | |
Within clades | 467 | 1393.0 | 2.983 * Vc | 25.1 | FCT: 0.350 * | |
(3) | Among three groups | 2 | 1045.5 | 6.114 * Va | 50.1 | FSC: 0.377 * |
Among nine countries within Eurasia (excluding islands) | 8 | 790.0 | 2.292 * Vb | 18.8 | FST: 0.689 * | |
Within population | 467 | 1753.5 | 3.787 * Vc | 31.1 | FCT: 0.501 * |
Groups | Sudden Expansion Model | Spatial Expansion Model | ||||||
---|---|---|---|---|---|---|---|---|
Tau Est. Val. (95% CI) | Evolutionary Rate (per Site per Million Years) | Tau Est. Val. (95% CI) | Evolutionary Rate (per Site per Million Years) | |||||
2.4 × 10−2 1 | 2.7 × 10−2 2 | 3.6 × 10−2 2 | 2.4 × 10−2 1 | 2.7 × 10−2 2 | 3.6 × 10−2 2 | |||
Expansion Time (ka) Mean (95% CI) | Expansion Time (ka) Mean (95% CI) | |||||||
Populations | ||||||||
Eurasia | 14.1 (8.5–29.9) | 257.7 (156–546) | 229.0 (138.7–485.4) | 171.8 (104–364) | 11.0 (7.5–26.0) | 201.5 (137.9–474.7) | 179.1 (122.6–422.0) | 134.3 (91.9–163.3) |
Asia | - | - | - | - | 13.9 (10.1–21.7) | 154.4 (185.0–396.2) | 226.1 (164.4352.2) | 169.6 (123.3–264.1) |
Asia Mainland | - | - | - | - | 15.5 (10.9–18.2) | 282.9 (199.1–333.2) | 251.4 (177–296.2) | 188.6 (132.7–222.2) |
Europe | - | - | - | - | 2.1 (0.9–5.7) | 38.9 (16.4–103.3) | 34.6 (14.6–91.9) | 25.9 (10.9–68.9) |
Clades | ||||||||
Clade 1 | 5.4 (2.8–11.1) | 99.5 (51.7–202) | 88.4 (46.0–179.5) | 66.3 (34.5–134.7) | 3.5 (1.7–7.3) | 63.7 (30.7–134.3) | 56.6 (27.3–117.4) | 42.4 (20.4–89.5) |
Clade 3 | 8.9 (5.3–11.5) | 162.6 (96–209.4) | 144.5 (85.3–186.1) | 108.4 (64.0–139.6) | 7.4 (5.2–10.3) | 134.4 (95.1–187.6) | 119.5 (84.6–166.7) | 89.6 (63.4–125.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozyra, K.; Zając, T.M.; Ansorge, H.; Wierzbicki, H.; Moska, M.; Stanko, M.; Stopka, P. Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes. Genes 2021, 12, 642. https://doi.org/10.3390/genes12050642
Kozyra K, Zając TM, Ansorge H, Wierzbicki H, Moska M, Stanko M, Stopka P. Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes. Genes. 2021; 12(5):642. https://doi.org/10.3390/genes12050642
Chicago/Turabian StyleKozyra, Katarzyna, Tomasz M. Zając, Hermann Ansorge, Heliodor Wierzbicki, Magdalena Moska, Michal Stanko, and Pavel Stopka. 2021. "Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes" Genes 12, no. 5: 642. https://doi.org/10.3390/genes12050642
APA StyleKozyra, K., Zając, T. M., Ansorge, H., Wierzbicki, H., Moska, M., Stanko, M., & Stopka, P. (2021). Late Pleistocene Expansion of Small Murid Rodents across the Palearctic in Relation to the Past Environmental Changes. Genes, 12(5), 642. https://doi.org/10.3390/genes12050642