COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. SNPs Selection
2.2. Molecular Analyses
2.3. Statistical Analysis
3. Results
Patient Characteristics, Odds Ratio, and Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | anterior cruciate ligament |
ADD | anterior disc displacement |
DDwoR | disc displacement without reduction |
DDwR | disc displacement with reduction |
CBCT | cone beam computed tomography |
cEDS | classical type of Ehlers–Danlos syndrome |
CI | confidence interval |
CL | confidence level |
COL12A1 | collagen, Type XII, α 1 |
CTS | carpal tunnel syndrome |
DC/TMD | diagnostic criteria of temporomandibular disorders |
ICR | idiopathic condylar resorption |
MRI | magnetic resonance imaging |
n | sample size |
NT | no template control |
OI | osteogenesis imperfecta |
OR | odds ratio |
p-value | level of probability |
PCR | polymerase chain reaction |
SNP | single nucleotide polymorphism |
TMD | temporomandibular disorder |
TMJ | temporomandibular joint |
References
- Kiga, N. Histochemistry for studying structure and function of the articular disc of the human temporomandibular joint. Eur. J. Histochem. 2012, 56, e11. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, L.O.C.; Lodi, F.R.; Gomes, T.S.; Marques, S.R.; Oshima, C.T.F.; Lancellotti, C.L.P.; Rodríguez-Vázquez, J.F.; Mérida-Velasco, J.R.; Alonso, L.G. Immunohistochemical expression of types I and III collagen antibodies in the temporomandibular joint disc of human foetuses. Eur. J. Histochem. 2011, 55, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazaeli, S.; Mirahmadi, F.; Everts, V.; Smit, T.H.; Koolstra, J.H.; Ghazanfari, S. Alteration of structural and mechanical properties of the temporomandibular joint disc following elastase digestion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 3228–3240. [Google Scholar] [CrossRef] [PubMed]
- Nell, A.; Niebauer, G.; Sperr, W.; Firbas, W. Special variations of the lateral ligament the human TMJ. Clin. Anat. 1994, 7, 267–270. [Google Scholar] [CrossRef]
- Miernik, M.; Więckiewicz, W. The basic conservative treatment of temporomandibular joint anterior disc displacement without reduction—Review. In Advances in Clinical and Experimental Medicine; Wroclaw University of Medicine: Wrocław, Poland, 2015; Volume 24, pp. 731–735. [Google Scholar]
- Valladares-Neto, J.; Cevidanes, L.H.; Rocha, W.C.; Almeida, G.D.A.; de Paiva, J.B.; Rino-Neto, J. TMJ response to mandibular ad-vancement surgery: An overview of risk factors. In Journal of Applied Oral Science; Bauru School of Dentistry, University of Sao Paulo: São Paulo, Brazil, 2014; Volume 22, pp. 2–14. [Google Scholar]
- Matsubara, R.; Yanagi, Y.; Oki, K.; Hisatomi, M.; Santos, K.C.; Bamgbose, B.O.; Fujita, M.; Okada, S.; Minagi, S.; Asaumi, J. Assessment of MRI findings and clinical symptoms in patients with temporomandibular joint disorders. Dentomaxillofacial Radiol. 2018, 47, 20170412. [Google Scholar] [CrossRef] [PubMed]
- Orhan, K.; Seki, U.; Rozylo-Kalinowska, I. Diagnostic accuracy of magnetic resonance imaging and clinical signs of temporomandibular joint disorders: A 10-year research update review. Oral Radiol. 2017, 33, 81–91. [Google Scholar] [CrossRef]
- De Senna, B.R.; Marques, L.S.; França, J.P.; Ramos-Jorge, M.L.; Pereira, L.J. Condyle-disk-fossa position and relationship to clinical signs and symptoms of temporomandibular disorders in women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, e117–e124. [Google Scholar] [CrossRef] [PubMed]
- Litko-Rola, M.; Szkutnik, J.; Różyło-Kalinowska, I. The importance of multisection sagittal and coronal magnetic resonance imaging evaluation in the assessment of temporomandibular joint disc position. Clin. Oral Investig. 2021, 25, 159–168. [Google Scholar] [CrossRef]
- Okeson, J.P. Joint Intracapsular Disorders: Diagnostic and Nonsurgical Management Considerations. Dent. Clin. N. Am. 2007, 51, 85–103. [Google Scholar] [CrossRef]
- Ahn, S.-J.; Chang, M.-S.; Choi, J.-H.; Yang, I.-H.; An, J.-S.; Heo, M.-S. Relationships between temporomandibular joint disk displacements and condylar volume. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 192–198. [Google Scholar] [CrossRef]
- Kellenberger, C.J.; Bucheli, J.; Schroeder-Kohler, S.; Saurenmann, R.K.; Colombo, V.; Ettlin, D.A. Temporomandibular joint magnetic resonance imaging findings in adolescents with anterior disk displacement compared to those with juvenile idiopathic arthritis. J. Oral Rehabil. 2018, 46, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Galiano, A.; Wolford, L.; Gonçalves, J.; Gonçalves, D. Adolescent internal condylar resorption (AICR) of the temporomandibular joint can be successfully treated by disc repositioning and orthognathic surgery, part 2: Treatment outcomes. CRANIO 2017, 37, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Shaefer, J.R.; Riley, C.J.; Caruso, P.; Keith, D. Analysis of criteria for MRI diagnosis of TMJ disc displacement and arthralgia. Int. J. Dent. 2012, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information. dbSNP: Short Genetic Variations. Available online: http://www.ncbi.nlm.nih.gov/projects/SNP (accessed on 23 December 2020).
- Kaynak, M.; Nijman, F.; van Meurs, J.; Reijman, M.; Meuffels, D.E. Genetic Variants and Anterior Cruciate Ligament Rupture: A Systematic Review. In Sports Medicine; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; Volume 47, pp. 1637–1650. Available online: https://pubmed.ncbi.nlm.nih.gov/28102489/ (accessed on 29 November 2020).
- Zou, Y.; Zwolanek, D.; Izu, Y.; Gandhy, S.; Schreiber, G.; Brockmann, K.; Devoto, M.; Tian, Z.; Hu, Y.; Veit, G.; et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Hum. Mol. Genet. 2014, 23, 2339–2352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Temporomandibular Joints’ Morphology and Osteoarthritic Changes in Cone-Beam Computed Tomography Images in Patients with and without Reciprocal Clicking—A Case Control Study. Int. J. Environ. Res. Public Health 2020, 17, 3428. [Google Scholar] [CrossRef] [PubMed]
- Rechia, B.C.D.N.; Michels, B.; Faturri, A.L.; Bertoli, F.M.D.P.; Scariot, R.; De Souza, J.F.; Küchler, E.C.; Brancher, J.A. Polymorphisms in COL2A1 gene in Adolescents with Temporomandibular Disorders. J. Clin. Pediatr. Dent. 2020, 44, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohrbach, R.; Dworkin, S.F. AAPT Diagnostic Criteria for Chronic Painful Temporomandibular Disorders. J. Pain 2019, 20, 1276–1292. [Google Scholar] [CrossRef]
- Skeie, M.S.; Frid, P.; Mustafa, M.; Aßmus, J.; Rosén, A. DC/TMD Examiner Protocol: Longitudinal Evaluation on Interexaminer Reliability. Pain Res. Manag. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pihut, M.; Gorecka, M.; Ceranowicz, P.; Więckiewicz, M. The Efficiency of Anterior Repositioning Splints in the Management of Pain Related to Temporomandibular Joint Disc Displacement with Reduction. Pain Res. Manag. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dalewski, B.; Chruściel-Nogalska, M.; Frączak, B. Occlusal splint versus modified nociceptive trigeminal inhibition splint in bruxism therapy: A randomized, controlled trial using surface electromyography. Aust. Dent. J. 2015, 60, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Dalewski, B.; Kamińska, A.; Białkowska, K.; Jakubowska, A.; Sobolewska, E. Association of Estrogen Receptor 1 and Tumor Necrosis Factor α Polymorphisms with Temporomandibular Joint Anterior Disc Displacement without Reduction. Dis. Markers 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Tangavel, C.; Djuric, N.; Raveendran, M.; Soundararajan, D.C.R.; Nayagam, S.M.; Matchado, M.S.; Anand, K.S.S.V. Part 1: Profiling extra cellular matrix core proteome of human fetal nucleus pulposus in search for regenerative targets. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tassava, R.A. Expression of type XII collagen by wound epithelial, mesenchymal, and ependymal cells during blastema formation in regenerating newt (Notophthalmusviridescens) tails. J. Morphol. 1996, 230, 177–186. [Google Scholar] [CrossRef]
- Chiquet, M.; Birk, D.E.; Bönnemann, C.G.; Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 2014, 53, 51–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, D.; Farsani, G.T.; Laval, S.; Collins, J.; Sarkozy, A.; Martoni, E.; Shah, A.; Zou, Y.; Koch, M.; Bönnemann, C.G.; et al. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy. Hum. Mol. Genet. 2013, 23, 2353–2363. [Google Scholar] [CrossRef] [Green Version]
- Punetha, J.; Kesari, A.; Hoffman, E.P.; Gos, M.; Kamińska, A.; Kostera-Pruszczyk, A.; Hausmanowa-Petrusewicz, I.; Hu, Y.; Zou, Y.; Bönnemann, C.G.; et al. NovelCol12A1variant expands the clinical picture of congenital myopathies with extracellular matrix defects. Muscle Nerve 2017, 55, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Lories, R.J.; Luyten, F.P. Overview of Joint and Cartilage Biology. Genet. Bone Biol. Skelet. Dis. 2013, 209–225. [Google Scholar] [CrossRef]
- Huang, B.; Pathria, M.; Tadros, A. Muscle-Tendon-Enthesis Unit. Semin. Musculoskelet. Radiol. 2018, 22, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Harada, Y.; Mifune, Y.; Inui, A.; Sakata, R.; Muto, T.; Takase, F.; Ueda, Y.; Kataoka, T.; Kokubu, T.; Kuroda, R.; et al. Rotator cuff repair using cell sheets derived from human rotator cuff in a rat model. J. Orthop. Res. 2017, 35, 289–296. [Google Scholar] [CrossRef] [Green Version]
- September, A.V.; Posthumus, M.; Van Der Merwe, L.; Schwellnus, M.; Noakes, T.D.; Collins, M. The COL12A1 and COL14A1 genes and Achilles tendon injuries. Int. J. Sports Med. 2008, 29, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D.; Antunes, H. A novel mutation in the COL12A1 gene. Gene 2021, 768, 145266. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, K.; Posthumus, M.; Collins, M. No association between COL3A1, COL6A1 or COL12A1 gene variants and range of motion. J. Sports Sci. 2012, 31, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Jezela-Stanek, A.; Walczak, A.; Łaźniewski, M.; Kosińska, J.; Stawiński, P.; Pienkowski, V.M.; Biernacka, A.; Rydzanicz, M.; Kostrzewa, G.; Krajewski, P.; et al. Novel COL12A1 variant as a cause of mild familial extracellular matrix-related myopathy. Clin. Genet. 2019, 95, 736–738. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; Van Der Merwe, W.; Schwellnus, M.P.; Collins, M. The association between the COL12A1 gene and anterior cruciate ligament ruptures. Br. J. Sports Med. 2009, 44, 1160–1165. [Google Scholar] [CrossRef] [PubMed]
- Ficek, K.; Stepien-Slodkowska, M.; Kaczmarczyk, M.; Maciejewska-Karlowska, A.; Sawczuk, M.; Cholewinski, J.; Leonska-Duniec, A.; Zarebska, A.; Cieszczyk, P.; Zmijewski, P. Does the A9285G polymorphism in collagen type XII alpha1 gene associate with the risk of anterior cruciate ligament ruptures? Balk. J. Med. Genet. 2014, 17, 41–46. [Google Scholar]
- O’Connell, K.; Knight, H.; Ficek, K.; Leonska-Duniec, A.; Maciejewska-Karlowska, A.; Sawczuk, M.; Stepien-Slodkowska, M.; O’Cuinneagain, D.; Van Der Merwe, W.; Posthumus, M.; et al. Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. Eur. J. Sport Sci. 2014, 15, 341–350. [Google Scholar] [CrossRef] [PubMed]
- The UniProt Consortium Ongoing and Future Developments at the Universal Protein Resource. Nucleic Acids Res. 2011, 39, D214–D219. [CrossRef] [Green Version]
- Kania, A.M.; Reichenberger, E.; Baur, S.T.; Karimbux, N.Y.; Taylor, R.W.; Olsen, B.R.; Nishimura, I. Structural Variation of Type XII Collagen at Its Carboxyl-terminal NC1 Domain Generated by Tissue-specific Alternative Splicing. J. Biol. Chem. 1999, 274, 22053–22059. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.D.; Shultz, S.J.; Wideman, L.; Henrich, V.C. Collagen Gene Variants Previously Associated With Anterior Cruciate Ligament Injury Risk Are Also Associated With Joint Laxity. Sports Health A Multidiscip. Approach 2012, 4, 312–318. [Google Scholar] [CrossRef]
- Novaretti, J.V.; Astur, D.C.; Casadio, D.; Nicolini, A.P.; Pochini, A.D.C.; Andreoli, C.V.; Ejnisman, B.; Cohen, M. Higher Gene Expression of Healing Factors in Anterior Cruciate Ligament Remnant in Acute Anterior Cruciate Ligament Tear. Am. J. Sports Med. 2018, 46, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Izu, Y.; Adams, S.M.; Connizzo, B.K.; Beason, D.P.; Soslowsky, L.J.; Koch, M.; Birk, D.E. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biol. 2021, 95, 52–67. [Google Scholar] [CrossRef] [PubMed]
Total n = 250 | Case n = 124 | Control n = 126 | p-Value * | ||||||
N | % | N | % | N | % | ||||
Sex | F | 200 | 80.00 | 104 | 83.87 | 96 | 76.19 | 0.129 | |
M | 50 | 20.00 | 20 | 16.13 | 30 | 23.81 | |||
Age | <24 | 54 | 21.60 | 40 | 74.07 | 14 | 25.93 | <0.01 | |
24–33 | 70 | 28.00 | 37 | 52.86 | 33 | 47.14 | |||
34–50 | 65 | 26.00 | 33 | 50.77 | 32 | 49.23 | |||
≥50 | 61 | 24.40 | 14 | 22.95 | 47 | 77.05 | |||
Age | Total | Case | Control | p | |||||
Median (Q1–Q3) | 34 (24–50) | 29.5 (22–39) | 39 (28–60) | <0.01 |
Case | Control | OR | 95% CI | p-Value * | |||
---|---|---|---|---|---|---|---|
COL12A1 rs970547 | |||||||
Reference | TT | 75 | 76 | 1 | 0.71 ** | ||
CC | 4 | 2 | 0.4934 | 0.0877 | 2.77 | ||
CT | 45 | 46 | 1.0088 | 0.5996 | 1.6972 | ||
COL12A1 rs240736 | |||||||
Reference | AA | 72 | 68 | 1 | 0.157 ** | ||
AG | 36 | 47 | 1.3824 | 0.8006 | 2.3868 | ||
GG | 15 | 8 | 0.5647 | 0.2251 | 1.4168 |
aOR | 95% CI | p-Value | Power | |||
---|---|---|---|---|---|---|
Sex | m | 0.61 | 0.31 | 1.21 | 0.16 | 0.93 |
rs970547 | TT | 1.03 | 0.59 | 1.82 | 0.91 | 0.7 |
CC | 1.97 | 0.32 | 12.25 | 0.47 | 0.99 | |
rs240736 | GG | 2.40 | 0.86 | 6.75 | 0.10 | 0.98 |
AG | 0.74 | 0.41 | 1.33 | 0.31 | 0.90 | |
Age | 0.96 | 0.94 | 0.97 | <0.01 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalewski, B.; Kaczmarek, K.; Jakubowska, A.; Szczuchniak, K.; Pałka, Ł.; Sobolewska, E. COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction. Genes 2021, 12, 690. https://doi.org/10.3390/genes12050690
Dalewski B, Kaczmarek K, Jakubowska A, Szczuchniak K, Pałka Ł, Sobolewska E. COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction. Genes. 2021; 12(5):690. https://doi.org/10.3390/genes12050690
Chicago/Turabian StyleDalewski, Bartosz, Katarzyna Kaczmarek, Anna Jakubowska, Kamila Szczuchniak, Łukasz Pałka, and Ewa Sobolewska. 2021. "COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction" Genes 12, no. 5: 690. https://doi.org/10.3390/genes12050690
APA StyleDalewski, B., Kaczmarek, K., Jakubowska, A., Szczuchniak, K., Pałka, Ł., & Sobolewska, E. (2021). COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction. Genes, 12(5), 690. https://doi.org/10.3390/genes12050690