Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure
Abstract
:1. Introduction
2. Materials and Methods
- With the clinical diagnosis of CKD, regardless of the severity of kidney function impairment
- Of local ancestral background
- Able to understand and sign informed consent
- With active malignant disease (patients with a history of malignant disease considered cured or in remission were included)
- Aged below 18 years
- With missing medical records
2.1. SNP Selection and Genotyping
2.2. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Case-Control Association Analysis
3.3. Genotype/Phenotype Analysis: Multiple Linear Regression Tests of Clinical Phenotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Stel, V.S.; Brück, K.; Fraser, S.; Zoccali, C.; Massy, Z.A.; Jager, K.J. International differences in chronic kidney disease prevalence: A key public health and epidemiologic research issue. Nephrol. Dial. Transplant. 2017, 32, ii129–ii135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bevc, S.; Hojs, N.; Knehtl, M.; Ekart, R.; Hojs, R. Cystatin C as a predictor of mortality in elderly patients with chronic kidney disease. Aging Male 2019, 22, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Guthrie, B.; James, M.T.; Quan, H.; Fortin, M.; Klarenbach, S.W.; Sargious, P.; Straus, S.; Lewanczuk, R.; et al. Comorbidity as a driver of adverse outcomes in people with chronic kidney disease. Kidney Int. 2015, 88, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.-C.; Wu, H.-Y.; Peng, Y.-S.; Ko, M.-J.; Wu, M.-S.; Hung, K.-Y.; Wu, K.-D.; Chu, T.-S.; Chien, K.-L. Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory Meta-Analysis. Medicine 2016, 95, e3013. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, H.-C.; Fogo, A.B. A perspective on chronic kidney disease progression. Am. J. Physiol. Physiol. 2017, 312, F375–F384. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Greene, T.; Tighiouart, H.; Gansevoort, R.T.; Coresh, J.; Simon, A.L.; Chan, T.M.; Hou, F.F.; Lewis, J.B.; Locatelli, F.; et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: A meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019, 7, 128–139. [Google Scholar] [CrossRef]
- Xu, X.; Eales, J.M.; Akbarov, A.; Guo, H.; Becker, L.; Talavera, D.; Ashraf, F.; Nawaz, J.; Pramanik, S.; Bowes, J.; et al. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat. Commun. 2018, 9, 4800. [Google Scholar] [CrossRef]
- Franceschini, N.; Le, T.; Akbarov, A.; Tomaszewski, M.; Morris, A.P. Large-scale trans-ethnic genome-wide association study reveals novel loci, causal molecular mechanisms and effector genes for kidney function. Genet. Epidemiol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Wuttke, M.; Li, Y.; Li, M.; Sieber, K.B.; Feitosa, M.F.; Gorski, M.; Tin, A.; Wang, L.; Chu, A.Y.; Hoppmann, A.; et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 2019, 51, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Böger, C.A.; Gorski, M.; Li, M.; Hoffmann, M.M.; Huang, C.; Yang, Q.; Teumer, A.; Krane, V.; O’Seaghdha, C.M.; Kutalik, Z.; et al. Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genet. 2011, 7, e1002292. [Google Scholar] [CrossRef] [Green Version]
- National Kidney Foundation K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266.
- Reference Range and Method Comparison Studies for Enzymatic and Jaffé Creatinine Assays in Plasma and Serum and Early Morning Urine—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/10745982/ (accessed on 5 December 2020).
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants: Figure 1. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- Köttgen, A.; Glazer, N.L.; Dehghan, A.; Hwang, S.-J.J.; Katz, R.; Li, M.; Yang, Q.; Gudnason, V.; Launer, L.J.; Harris, T.B.; et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 2009, 41, 712–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köttgen, A.; Pattaro, C.; Böger, C. a; Fuchsberger, C.; Olden, M.; Glazer, N.L.; Parsa, A.; Gao, X.; Yang, Q.; Smith, A. V; et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 2010, 42, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Erdfelder, E.; FAul, F.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Wuttke, M.; Köttgen, A. Insights into kidney diseases from genome-wide association studies. Nat. Rev. Nephrol. 2016, 12, 549–562. [Google Scholar] [CrossRef]
- Zsom, M.; Fülöp, T.; Zsom, L.; Baráth, A.; Maróti, Z.; ENDREFFY, E.E.; BARÁTH, Á.; Maróti, Z.; ENDREFFY, E.E. Genetic polymorphisms and the risk of progressive renal failure in elderly Hungarian patients. Hemodial. Int. 2011, 15, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Jamison, R.L.; Shih, M.-C.; Humphries, D.E.; Guarino, P.D.; Kaufman, J.S.; Goldfarb, D.S.; Warren, S.R.; Gaziano, J.M.; Lavori, P. Veterans Affairs Site Investigators Effect of the MTHFR C677T and A1298C polymorphisms on survival in patients with advanced CKD and ESRD: A prospective study. Am. J. Kidney Dis. 2009, 53, 779–789. [Google Scholar] [CrossRef]
- Pattaro, C.; Teumer, A.; Gorski, M.; Chu, A.Y.; Li, M.M.M.; Mijatovic, V.; Garnaas, M.; Tin, A.; Sorice, R.; Li, Y.Y.Y.Y.; et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 2016, 7, 10023. [Google Scholar] [CrossRef] [PubMed]
- dbGaP Study Accession Number Phs000424.v8.p2. Available online: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2 (accessed on 20 May 2021).
- Ostojic, S.M. Creatine synthesis in the skeletal muscle: The times they are a-changin’. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E390–E391. [Google Scholar] [CrossRef]
- Reichold, M.; Klootwijk, E.D.; Reinders, J.; Otto, E.A.; Milani, M.; Broeker, C.; Laing, C.; Wiesner, J.; Devi, S.; Zhou, W.; et al. Glycine Amidinotransferase (GATM), Renal Fanconi Syndrome, and Kidney Failure. J. Am. Soc. Nephrol. 2018, 29, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Carney, E.F. GATM mutations cause mitochondrial abnormalities and kidney failure. Nat. Rev. Nephrol. 2018, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, R.P.P.; Stefanello, S.T.T.; Mauriz, J.L.L.; Gonzalez-Gallego, J.; Soares, F.A.A.A.A. Creatine and the Liver: Metabolism and Possible Interactions. Mini Rev. Med. Chem. 2016, 16, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Balsom, P.D.; Söderlund, K.; Ekblom, B. Creatine in Humans with Special Reference to Creatine Supplementation. Sport. Med. 1994, 18, 268–280. [Google Scholar] [CrossRef]
- Gene: GATM—ENSG00000171766. Available online: https://bgee.org/?page=gene&gene_id=ENSG00000171766 (accessed on 11 February 2020).
- Courtoy, P.J.; Henriet, P. GATM Mutations Cause a Dominant Fibrillar Conformational Disease in Mitochondria—When Eternity Kills. J. Am. Soc. Nephrol. 2018, 29, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Gorski, M.; Tin, A.; Garnaas, M.; McMahon, G.M.; Chu, A.Y.; Tayo, B.O.; Pattaro, C.; Teumer, A.; Chasman, D.I.; Chalmers, J.; et al. Genome-wide association study of kidney function decline in individuals of European descent. Kidney Int. 2015, 87, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Okada, Y.; Sim, X.; Go, M.J.; Wu, J.-Y.; Gu, D.; Takeuchi, F.; Takahashi, A.; Maeda, S.; Tsunoda, T.; Chen, P.; et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat. Genet. 2012, 44, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Hellwege, J.N.; Velez Edwards, D.R.; Giri, A.; Qiu, C.; Park, J.; Torstenson, E.S.; Keaton, J.M.; Wilson, O.D.; Robinson-Cohen, C.; Chung, C.P.; et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 2019, 10, 3842. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Dialysis-Independent CKD | Dialysis-Dependent Kidney Failure | p | ||||
---|---|---|---|---|---|---|---|
n | mean/% | SD | n | mean/% | SD | ||
Age (in years) | 135 | 69.9 | 15.3 | 73 | 68.5 | 14.0 | 0.517 * |
Sex (male/female) % | 135 | 45 / 55 | 73 | 59/41 | 0.058 # | ||
BMI (kg/m 2) | 42 | 28.4 | 5.2 | 53 | 27.7 | 5.9 | 0.547 * |
eGFRcrea (ml/min/1.73 m2) | 135 | 30.3 | 16.7 | / | / | / | |
eGFRcys (ml/min/1.73 m2) | 135 | 30.9 | 19.7 | / | / | / | |
Albuminuria (0–4) | 135 | 0.8 | 0.9 | 73 | 1.7 | 0.7 | <0.001 * |
Systolic blood pressure (mmHg) | 135 | 152.4 | 17.4 | 73 | 154.0 | 13.5 | 0.460 * |
N. of AH, DM, CVD | 135 | 1.6 | 0.7 | 73 | 1.6 | 0.8 | 1.000 * |
Edema | 135 | 0.9 | 0.9 | 73 | 0.8 | 0.9 | 0.445 * |
Arterial hypertension (AH) % | 135 | 88 ** | / | 73 | 85 ** | / | 0.523 # |
Diabetes mellitus (DM) % | 135 | 36 ** | / | 73 | 32 ** | / | 0.520 # |
Cardiovascular disease (CVD) % | 135 | 39 ** | / | 73 | 38 ** | / | 1.000 # |
Test | SNP | Gene | EA | f(p) | f(c) | p | p(B) |
---|---|---|---|---|---|---|---|
All CKD patients vs. controls | rs1047891 | CPS1 | A | 0.33 | 0.25 | 0.012 | 0.143 |
rs2453533 | GATM | C | 0.59 | 0.67 | 0.013 | 0.154 | |
rs1145084 | GATM | G | 0.59 | 0.67 | 0.037 | 0.448 | |
rs4293393 | UMOD/PDILT | C | 0.15 | 0.23 | 0.004 | 0.042 | |
rs11864909 | UMOD/PDILT | C | 0.75 | 0.65 | 0.008 | 0.091 | |
CKD dialysis-independent vs. controls | rs1047891 | CPS1 | A | 0.35 | 0.25 | 0.007 | 0.078 |
rs2453533 | GATM | C | 0.56 | 0.67 | 0.002 | 0.020 | |
rs1145084 | GATM | G | 0.57 | 0.67 | 0.006 | 0.076 | |
rs4293393 | UMOD/PDILT | C | 0.15 | 0.23 | 0.009 | 0.108 | |
Kidney failure vs. controls | rs11864909 | UMOD/PDILT | C | 0.78 | 0.65 | 0.006 | 0.067 |
Kidney failure (f(p)) vs. CKD dialysis-independent (f(c)) | rs1145084 | GATM | G | 0.65 | 0.55 | 0.045 | 0.416 |
Variable | Linear Regression Result | |||||
---|---|---|---|---|---|---|
eGFRcys | B | SE | β | p | p(B) | |
Sex (female vs male) | −4.45 | 2.28 | −0.11 | 0.052 | ns | |
Age (in years) | −0.28 | 0.08 | −0.21 | <0.001 | 0.008 | |
Arterial hypertension | −7.26 | 3.65 | −0.12 | 0.048 | ns | |
Diabetes mellitus | 0.71 | 2.64 | 0.02 | 0.788 | ns | |
Cardiovascular disease | −2.04 | 2.50 | −0.05 | 0.414 | ns | |
Edema | −2.61 | 1.22 | −0.13 | 0.033 | ns | |
Systolic blood pressure | 0.02 | 0.07 | 0.02 | 0.730 | ns | |
rs1047891 | A vs C | −1.00 | 2.57 | −0.02 | 0.697 | ns |
rs11746443 | A vs G | −2.89 | 2.58 | −0.07 | 0.264 | ns |
rs2279463 | C vs T | −7.23 | 4.12 | −0.10 | 0.081 | ns |
rs10275044 | T vs A | −3.30 | 3.21 | −0.06 | 0.304 | ns |
rs7805747 | G vs A | −6.68 | 2.56 | −0.16 | 0.010 | ns |
rs685270 | C vs T | −6.06 | 2.45 | −0.15 | 0.014 | ns |
rs2453533 | C vs A | −0.96 | 13.0 | −0.02 | 0.941 | ns |
rs1145084 | G vs A | 1.94 | 12.97 | 0.05 | 0.881 | ns |
rs4293393 | C vs T | −1.21 | 3.38 | −0.02 | 0.720 | ns |
rs11864909 | C vs T | −3.60 | 2.66 | −0.08 | 0.178 | ns |
rs9895661 | T vs C | 11.05 | 2.79 | −0.24 | <0.001 | 0.001 |
rs8091180 | A vs G | −0.14 | 2.52 | 0.00 | 0.955 | ns |
eGFRcrea | ||||||
Sex (female vs male) | −3.01 | 1.98 | −0.09 | 0.129 | ns | |
Age (in years) | −0.23 | 0.07 | −0.21 | 0.001 | 0.016 | |
Arterial hypertension | −4.34 | 3.16 | −0.08 | 0.171 | ns | |
Diabetes mellitus | 2.73 | 2.29 | 0.07 | 0.233 | ns | |
Cardiovascular disease | −3.58 | 2.16 | −0.10 | 0.099 | ns | |
Edema | −1.93 | 1.05 | −0.11 | 0.069 | ns | |
Systolic blood pressure | 0.02 | 0.06 | 0.02 | 0.754 | ns | |
rs1047891 | A vs C | −2.47 | 2.23 | −0.07 | 0.269 | ns |
rs11746443 | A vs G | −1.16 | 2.23 | −0.03 | 0.605 | ns |
rs2279463 | C vs T | −6.07 | 3.57 | −0.10 | 0.090 | ns |
rs10275044 | T vs A | −3.01 | 2.78 | −0.07 | 0.280 | ns |
rs7805747 | G vs A | −4.01 | 2.22 | −0.11 | 0.072 | ns |
rs685270 | C vs T | −3.88 | 2.12 | −0.11 | 0.069 | ns |
rs2453533 | C vs A | −0.59 | 11.26 | −0.02 | 0.958 | ns |
rs1145084 | G vs A | 0.36 | 11.23 | 0.01 | 0.974 | ns |
rs4293393 | C vs T | −2.07 | 2.93 | −0.04 | 0.480 | ns |
rs11864909 | C vs T | −3.98 | 2.30 | −0.11 | 0.085 | ns |
rs9895661 | T vs C | −7.83 | 2.41 | −0.20 | 0.001 | 0.017 |
rs8091180 | A vs G | 2.06 | 2.19 | 0.06 | 0.347 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šalamon, Š.; Bevc, S.; Ekart, R.; Hojs, R.; Potočnik, U. Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure. Genes 2021, 12, 834. https://doi.org/10.3390/genes12060834
Šalamon Š, Bevc S, Ekart R, Hojs R, Potočnik U. Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure. Genes. 2021; 12(6):834. https://doi.org/10.3390/genes12060834
Chicago/Turabian StyleŠalamon, Špela, Sebastjan Bevc, Robert Ekart, Radovan Hojs, and Uroš Potočnik. 2021. "Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure" Genes 12, no. 6: 834. https://doi.org/10.3390/genes12060834
APA StyleŠalamon, Š., Bevc, S., Ekart, R., Hojs, R., & Potočnik, U. (2021). Polymorphism in the GATM Locus Associated with Dialysis-Independent Chronic Kidney Disease but Not Dialysis-Dependent Kidney Failure. Genes, 12(6), 834. https://doi.org/10.3390/genes12060834