Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome
Abstract
:1. Introduction
Objective
2. Materials and Methods
2.1. Patients
2.2. Genetic Studies
3. Results
3.1. Characteristics of the Group
3.2. Genetic Results
3.3. Genotype–Phenotype Correlations
3.4. Male Reversibility
3.5. Females
4. Discussion
4.1. Effectiveness of Panel-Based NGS
4.2. Defects in Genes Responsible for GnRH Neuron Migration and Development
4.3. Defects in Genes Responsible for Pituitary and Hypothalamic Development and Signaling
4.4. Genotype–Phenotype Correlations
4.5. Oligogenicity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bianco, S.D.C.; Kaiser, U.B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 2009, 5, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Schwanzel-Fukuda, M.; Pfaff, D.W. Origin of luteinizing hormone-releasing hormone neurons. Nat. Cell Biol. 1989, 338, 161–164. [Google Scholar] [CrossRef]
- Wray, S. Development of gonadotropin-releasing hormone-1 neurons. Front. Neuroendocr. 2002, 23, 292–316. [Google Scholar] [CrossRef]
- Tickotsky, N.; Moskovitz, M. Renal Agenesis in Kallmann Syndrome: A Network Approach. Ann. Hum. Genet. 2014, 78, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Quinton, R.; Duke, V.M.; Robertson, A.; Kirk, J.M.W.; Matfin, G.; De Zoysa, P.A.; Azcona, C.; MacColl, G.S.; Jacobs, H.S.; Conway, G.S.; et al. Idiopathic gonadotrophin deficiency: Genetic questions addressed through phenotypic characterization. Clin. Endocrinol. 2001, 55, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, E.; Vezzani, S.; Rochira, V.; Granata, A.R.M.; Madeo, B.; Genovese, E.; Pignatti, E.; Marino, M.; Carani, C.; Simoni, M. Prevalence of Olfactory and Other Developmental Anomalies in Patients with Central Hypogonadotropic Hypogonadism. Front. Endocrinol. 2013, 4, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-G.; Kurth, I.; Lan, F.; Meliciani, I.; Wenzel, W.; Eom, S.H.; Kang, G.B.; Rosenberger, G.; Tekin, M.; Ozata, M.; et al. Mutations in CHD7, Encoding a Chromatin-Remodeling Protein, Cause Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome. Am. J. Hum. Genet. 2008, 83, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Pinto, G.; Abadie, V.; Mesnage, R.; Blustajn, J.; Cabrol, S.; Amiel, J.; Hertz-Pannier, L.; Bertrand, A.M.; Lyonnet, S.; Rappaport, R.; et al. Charge Syndrome Includes Hypogonadotropic Hypogonadism and Abnormal Olfactory Bulb Development. J. Clin. Endocrinol. Metab. 2005, 90, 5621–5626. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-J.; Shan, Y.; Whittington, N.C.; Wray, S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front. Cell Dev. Biol. 2019, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, E.-M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.; Jadhav, S.; Lila, A.; Jagtap, V.; Bukan, A.; Pandit, R.; Ekbote, A.; Dharmalingam, M.; Kumar, P.; Kalra, P.; et al. Spectrum of phenotype and genotype of congenital isolated hypogonadotropic hypogonadism in Asian Indians. Clin. Endocrinol. 2016, 85, 100–109. [Google Scholar] [CrossRef]
- Bonomi, M.; Vezzoli, V.; Krausz, C.; Guizzardi, F.; Vezzani, S.; Simoni, M.; Bassi, I.; Duminuco, P.; di Iorgi, N.; Giavoli, C.; et al. Characteristics of a Nationwide Cohort of Patients Presenting with Isolated Hy-pogonadotropic Hypogonadism (Ihh). Eur. J. Endocrinol. 2018, 178, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sykiotis, G.P.; Plummer, L.; Hughes, V.A.; Au, M.; Durrani, S.; Nayak-Young, S.; Dwyer, A.A.; Quinton, R.; Hall, J.E.; Gusella, J.F.; et al. Oligogenic Basis of Isolated Gonadotropin-Releasing Hormone Deficiency. Proc. Natl. Acad. Sci. USA 2010, 107, 15140–15144. [Google Scholar] [CrossRef] [Green Version]
- Topaloğlu, A.K. Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. J. Clin. Res. Pediatr. Endocrinol. 2018, 9, 113–122. [Google Scholar] [CrossRef]
- Costa-Barbosa, F.A.; Balasubramanian, R.; Keefe, K.W.; Shaw, N.; Al Tassan, N.; Plummer, L.; Dwyer, A.A.; Buck, C.L.; Choi, J.-H.; Seminara, S.B.; et al. Prioritizing Genetic Testing in Patients with Kallmann Syndrome Using Clinical Phenotypes. J. Clin. Endocrinol. Metab. 2013, 98, E943–E953. [Google Scholar] [CrossRef] [PubMed]
- Maione, L.; Dwyer, A.A.; Francou, B.; Guiochon-Mantel, A.; Binart, N.; Bouligand, J.; Young, J. Genetics in Endocrinology: Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: New challenges in the era of oligogenism and next-generation sequencing. Eur. J. Endocrinol. 2018, 178, R55–R80. [Google Scholar] [CrossRef] [Green Version]
- Rojek, A.; Obara-Moszynska, M.; Malecka, E.; Slomko-Jozwiak, M.; Niedziela, M. NR0B1 (DAX1) mutations in patients affected by congenital adrenal hypoplasia with growth hormone deficiency as a new finding. J. Appl. Genet. 2013, 54, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Dzaman, K.; Zborowska-Piskadlo, K.; Pietniczka-Zaleska, M.; Kantor, I. Kallmann Syndrome in Pediatric Otorhinolar-yngology Practice—Case Report and Literature Review. Int. J. Pediatr. Otorhinolaryngol. 2017, 100, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Placzkiewicz, E.; Baldys-Waligorska, A. Kallmann’s Syndrome: Skeletal and Psychological Aspects of Late Diagnosis. Ann. Endocrinol. 2003, 64, 277–280. [Google Scholar]
- Noczynska, A.; Wasikowa, R. Kallmann’s Syndrome in Families. Endokrynol. Diabetol. Chor. Przemiany Mater. Wieku Rozw. 2004, 10, 127–131. [Google Scholar]
- Pierzchlewska, M.M.; Robaczyk, M.G.; Vogel, I. Induction of puberty with human chorionic gonadotropin (hCG) followed by reversal of hypogonadotropic hypogonadism in Kallmann syndrome. Endokrynol. Polska 2015, 68, 692–696. [Google Scholar] [CrossRef] [Green Version]
- Gach, A.; Pinkier, I.; Sałacińska, K.; Szarras-Czapnik, M.; Salachna, D.; Kucińska, A.; Rybak-Krzyszkowska, M.; Sakowicz, A. Identification of gene variants in a cohort of hypogonadotropic hypogonadism: Diagnostic utility of custom NGS panel and WES in unravelling genetic complexity of the disease. Mol. Cell. Endocrinol. 2020, 517, 110968. [Google Scholar] [CrossRef]
- Gach, A.; Pinkier, I.; Szarras-Czapnik, M.; Sakowicz, A.; Jakubowski, L. Expanding the mutational spectrum of monogenic hypogonadotropic hypogonadism: Novel mutations in ANOS1 and FGFR1 genes. Reprod. Biol. Endocrinol. 2020, 18, 8. [Google Scholar] [CrossRef]
- Mao, J.F.; Xu, H.L.; Duan, J.; Chen, R.R.; Li, L.; Li, B.; Nie, M.; Min, L.; Zhang, H.B.; Wu, X.Y. Reversal of Idiopathic Hy-pogonadotropic Hypogonadism: A Cohort Study in Chinese Patients. Asian J. Androl. 2015, 17, 497–502. [Google Scholar]
- Boehm, U.; Bouloux, P.M.; Dattani, M.T.; de Roux, N.; Dode, C.; Dunkel, L.; Dwyer, A.A.; Giacobini, P.; Hardelin, J.P.; Juul, A.; et al. Expert Consensus Document: Eu-ropean Consensus Statement on Congenital Hypogonadotropic Hypogonadism—Pathogenesis, Diagnosis and Treatment. Nat. Rev. Endocrinol. 2015, 11, 547–564. [Google Scholar] [CrossRef] [Green Version]
- Elsberg, C.A.; Levy, I.; Brewer, E.D.; Merrill, M.H.; Lacaillade, C.W.; Broeck, C.T. A new method for testing the sense of SMELL and for the establishment of olfactory values of odorous substances. Science 1936, 83, 211–212. [Google Scholar] [CrossRef]
- Pruszewicz, A. Apropos of Gustatory and Olfactory Tests. Otolaryngol. Polska 1965, 19, 29–37. [Google Scholar]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Aguilera, M.A.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am. J. Hum. Genet. 2017, 100, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J. Struct. Biol. 2012, 179, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaynor, S.D.; Bosley, M.E.; Duckworth, C.G.; Porter, K.R.; Kim, S.-H.; Kim, H.-G.; Chorich, L.P.; Sullivan, M.E.; Choi, J.-H.; Cameron, R.S.; et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Cell. Endocrinol. 2016, 437, 86–96. [Google Scholar] [CrossRef]
- Butz, H.; Nyírő, G.; Kurucz, P.A.; Likó, I.; Patócs, A. Molecular genetic diagnostics of hypogonadotropic hypogonadism: From panel design towards result interpretation in clinical practice. Qual. Life Res. 2021, 140, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Cangiano, B.; Duminuco, P.; Vezzoli, V.; Guizzardi, F.; Chiodini, I.; Corona, G.; Maggi, M.; Persani, L.; Bonomi, M. Evidence for a Common Genetic Origin of Classic and Milder Adult-Onset Forms of Isolated Hypogonadotropic Hypogonadism. J. Clin. Med. 2019, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, R.; Crowle, W. Isolated Gonadotropin-Releasing Hormone (Gnrh) Deficiency; University of Washington: Seattle, WA, USA, 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1334/ (accessed on 23 May 2021).
- Xu, C.; Cassatella, D.; van der Sloot, A.M.; Quinton, R.; Hauschild, M.; de Geyter, C.; Fluck, C.; Feller, K.; Bartholdi, D.; Nemeth, A.; et al. Evaluating Charge Syndrome in Congenital Hypogonadotropic Hypogonadism Patients Harboring Chd7 Variants. Genet. Med. 2018, 20, 872–881. [Google Scholar] [CrossRef]
- Kim, H.G.; Layman, L.C. The Role of Chd7 and the Newly Identified Wdr11 Gene in Patients with Idiopathic Hypogonadotropic Hypogonadism and Kallmann Syndrome. Mol. Cell Endocrinol. 2011, 346, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Turan, I.; Hutchins, B.I.; Hacihamdioglu, B.; Kotan, L.D.; Gurbuz, F.; Ulubay, A.; Mengen, E.; Yuksel, B.; Wray, S.; Topaloglu, A.K. CCDC141 Mutations in Idiopathic Hypogonadotropic Hypogonadism. J. Clin. Endocrinol. Metab. 2017, 102, 1816–1825. [Google Scholar] [CrossRef] [PubMed]
- Tusset, C.; Trarbach, E.B.; Silveira, L.F.; Beneduzzi, D.; Montenegro, L.; Latronico, A.C. Clinical and Molecular Aspects of Congenital Isolated Hypogonadotropic Hypogonadism. Arq. Bras. Endocrinol. Metabol. 2011, 55, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Dode, C.; Teixeira, L.; Levilliers, J.; Fouveaut, C.; Bouchard, P.; Kottler, M.L.; Lespinasse, J.; Lienhardt-Roussie, A.; Mathieu, M.; Moerman, A.; et al. Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2. PLoS Genet. 2006, 2, e175. [Google Scholar] [CrossRef] [PubMed]
- Monnier, C.; Dodé, C.; Fabre, L.; Teixeira, L.; Labesse, G.; Pin, J.-P.; Hardelin, J.-P.; Rondard, P. PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Hum. Mol. Genet. 2008, 18, 75–81. [Google Scholar] [CrossRef]
- Raivio, T.; Avbelj, M.; McCabe, M.J.; Romero, C.J.; Dwyer, A.A.; Tommiska, J.; Sykiotis, G.P.; Gregory, L.C.; Diaczok, D.; Tziaferi, V.; et al. Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia. J. Clin. Endocrinol. Metab. 2012, 97, E694–E699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaaralahti, K.; Raivio, T.; Koivu, R.; Valanne, L.; Laitinen, E.-M.; Tommiska, J. Genetic Overlap between Holoprosencephaly and Kallmann Syndrome. Mol. Syndr. 2012, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Asakura, Y.; Muroya, K.; Hanakawa, J.; Sato, T.; Aida, N.; Narumi, S.; Hasegawa, T.; Adachi, M. Combined Pituitary Hormone Deficiency with Unique Pituitary Dysplasia and Morning Glory Syndrome Related to a Heterozygous Prokr2 Mutation. Clin. Pediatr. Endocrinol. 2015, 24, 27–32. [Google Scholar] [CrossRef]
- Correa, F.A.; Trarbach, E.B.; Tusset, C.; Latronico, A.C.; Montenegro, L.R.; Carvalho, L.R.; Franca, M.M.; Otto, A.P.; Costalonga, E.F.; Brito, V.N.; et al. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr. Connect. 2015, 4, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Seo, G.H.; Kim, G.-H.; Huh, J.; Hwang, I.T.; Jang, J.-H.; Yoo, H.-W.; Choi, J.-H. Targeted Gene Panel Sequencing for Molecular Diagnosis of Kallmann Syndrome and Normosmic Idiopathic Hypogonadotropic Hypogonadism. Exp. Clin. Endocrinol. Diabetes 2018, 127, 538–544. [Google Scholar] [CrossRef]
- Vaaralahti, K.; Tommiska, J.; Tillmann, V.; Liivak, N.; Känsäkoski, J.; Laitinen, E.-M.; Raivio, T. De novo SOX10 nonsense mutation in a patient with Kallmann syndrome and hearing loss. Pediatr. Res. 2014, 76, 115–116. [Google Scholar] [CrossRef] [Green Version]
- Pingault, V.; Bodereau, V.; Baral, V.; Marcos, S.; Watanabe, Y.; Chaoui, A.; Fouveaut, C.; Leroy, C.; Vérier-Mine, O.; Francannet, C.; et al. Loss-of-Function Mutations in SOX10 Cause Kallmann Syndrome with Deafness. Am. J. Hum. Genet. 2013, 92, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, E.; Izumi, Y.; Chiba, Y.; Horikawa, R.; Matsubara, Y.; Tanaka, M.; Ogata, T.; Fukami, M.; Naiki, Y. Loss-of-Function SOX10 Mutation in a Patient with Kallmann Syndrome, Hearing Loss, and Iris Hypopigmentation. Horm. Res. Paediatr. 2015, 84, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, S.; Xie, Y.; Yang, W.; Mo, Z. De novo SOX10 Nonsense Mutation in a Patient with Kallmann Syndrome, Deafness, Iris Hypopigmentation, and Hyperthyroidism. Ann. Clin. Lab. Sci. 2018, 48, 248–252. [Google Scholar] [PubMed]
- Lrriq3. Available online: https://www.proteinatlas.org/ENSG00000162620-LRRIQ3/tissue (accessed on 1 April 2021).
- Reuter, M.S.; Tawamie, H.; Buchert, R.; Gebril, O.H.; Froukh, T.; Thiel, C.; Uebe, S.; Ekici, A.B.; Krumbiegel, M.; Zweier, C.; et al. Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families with Neurodevelopmental Disorders. JAMA Psychiatry 2017, 74, 293–299. [Google Scholar] [CrossRef]
- Howard, S.R.; Guasti, L.; Ruiz-Babot, G.; Mancini, A.; David, A.; Storr, H.L.; Metherell, L.A.; Sternberg, M.J.; Cabrera, C.P.; Warren, H.R.; et al. Igsf10 Mutations Dysregulate Gonadotropin-Releasing Hormone Neuronal Migration Resulting in Delayed Puberty. EMBO Mol. Med. 2016, 8, 626–642. [Google Scholar] [CrossRef] [PubMed]
- Karstensen, H.; Tommerup, N. Isolated and syndromic forms of congenital anosmia. Clin. Genet. 2011, 81, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.; Mennella, J.A.; Cowart, B.J.; Maute, C.; Pribitkin, E.A.; Reilly, J.S. Evaluating the Prevalence of Olfactory Dysfunction in a Pediatric Population. Ann. N. Y. Acad. Sci. 2009, 1170, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Raivio, T.; Falardeau, J.; Dwyer, A.; Quinton, R.; Hayes, F.J.; Hughes, V.A.; Cole, L.W.; Pearce, S.H.; Lee, H.; Boepple, P.; et al. Reversal of Idiopathic Hypogonadotropic Hypogonadism. N. Engl. J. Med. 2007, 357, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, E.-M.; Tommiska, J.; Sane, T.; Vaaralahti, K.; Toppari, J.; Raivio, T. Reversible Congenital Hypogonadotropic Hypogonadism in Patients with CHD7, FGFR1 or GNRHR Mutations. PLoS ONE 2012, 7, e39450. [Google Scholar] [CrossRef]
- Bouligand, J.; Ghervan, C.; Tello, J.A.; Brailly-Tabard, S.; Salenave, S.; Chanson, P.; Lombès, M.; Millar, R.P.; Guiochon-Mantel, A.; Young, J. Isolated Familial Hypogonadotropic Hypogonadism and aGNRH1Mutation. N. Engl. J. Med. 2009, 360, 2742–2748. [Google Scholar] [CrossRef]
- Cole, L.W.; Sidis, Y.; Zhang, C.; Quinton, R.; Plummer, L.; Pignatelli, D.; Hughes, V.A.; Dwyer, A.A.; Raivio, T.; Hayes, F.J.; et al. Mutations in Prokineticin 2andProkineticin receptor 2genes in Human Gonadotrophin-Releasing Hormone Deficiency: Molecular Genetics and Clinical Spectrum. J. Clin. Endocrinol. Metab. 2008, 93, 3551–3559. [Google Scholar] [CrossRef] [Green Version]
- Nachtigall, L.B.; Boepple, P.A.; Pralong, F.P.; Crowley, W.F., Jr. Adult-Onset Idiopathic Hypogonadotropic Hypogonadism—A Treatable Form of Male Infertility. N. Engl. J. Med. 1997, 336, 410–415. [Google Scholar] [CrossRef]
- Knickmeyer, R.C.; Auyeung, B.; Davenport, M.L. Assessing Prenatal and Neonatal Gonadal Steroid Exposure for Studies of Human Development: Methodological and Theoretical Challenges. Front. Endocrinol. 2015, 5, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trarbach, E.B.; Abreu, A.P.; Silveira, L.F.; Garmes, H.M.; Baptista, M.T.; Teles, M.G.; Costa, E.M.; Mohammadi, M.; Pitteloud, N.; Mendonca, B.B.; et al. Nonsense Mutations in Fgf8 Gene Causing Different Degrees of Human Gonadotropin-Releasing Deficiency. J. Clin. Endocrinol. Metab. 2010, 95, 3491–3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brock, K.E.; Mathiason, M.A.; Rooney, B.L.; Williams, M.S. Quantitative analysis of limb anomalies in CHARGE syndrome: Correlation with diagnosis and characteristic CHARGE anomalies. Am. J. Med. Genet. Part A 2009, 123, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Sanna-Cherchi, S.; Caridi, G.; Weng, P.L.; Scolari, F.; Perfumo, F.; Gharavi, A.G.; Ghiggeri, G.M. Genetic Approaches to Human Renal Agenesis/Hypoplasia and Dysplasia. Pediatr. Nephrol. 2007, 22, 1675–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The Prevalence of Digenic Mutations in Patients with Normosmic Hypogonadotropic Hypogonadism and Kallmann Syndrome. Fertil. Steril. 2011, 96, 1424–1430.e6. [Google Scholar] [CrossRef] [Green Version]
- Pitteloud, N.; Quinton, R.; Pearce, S.; Raivio, T.; Acierno, J.; Dwyer, A.; Plummer, L.; Hughes, V.; Seminara, S.; Cheng, Y.-Z.; et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Investig. 2007, 117, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Kim, H.-G.; Bhagavath, B.; Cho, S.-G.; Lee, J.H.; Ha, K.; Meliciani, I.; Wenzel, W.; Podolsky, R.H.; Chorich, L.P.; et al. Nasal embryonic LHRH factor (NELF) mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 95, 1613–1620.e7. [Google Scholar] [CrossRef] [Green Version]
- Miraoui, H.; Dwyer, A.A.; Sykiotis, G.P.; Plummer, L.; Chung, W.; Feng, B.; Beenken, A.; Clarke, J.; Pers, T.H.; Dworzynski, P.; et al. Mutations in Fgf17, Il17rd, Dusp6, Spry4, and Flrt3 Are Identified in Individuals with Congenital Hypogonadotropic Hy-pogonadism. Am. J. Hum. Genet. 2013, 92, 725–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouilly, J.; Messina, A.; Papadakis, G.; Cassatella, D.; Xu, C.; Acierno, J.S.; Tata, B.; Sykiotis, G.; Santini, S.; Sidis, Y.; et al. Dcc/Ntn1 Complex Mutations in Patients with Congenital Hypogonadotropic Hypogonadism Impair Gnrh Neuron Development. Hum. Mol. Genet. 2018, 27, 359–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotan, L.D.; Hutchins, B.I.; Ozkan, Y.; Demirel, F.; Stoner, H.; Cheng-Hathaway, P.; Esen, I.; Gurbuz, F.; Bicakci, Y.K.; Mengen, E.; et al. Mutations in FEZF1 Cause Kallmann Syndrome. Am. J. Hum. Genet. 2014, 95, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Amendola, L.M.; Jarvik, G.P.; Leo, M.C.; McLaughlin, H.M.; Akkari, Y.; Amaral, M.D.; Berg, J.S.; Biswas, S.; Bowling, K.M.; Conlin, L.K.; et al. Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium. Am. J. Hum. Genet. 2016, 98, 1067–1076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szot, J.; Cuny, H.; Blue, G.M.; Humphreys, D.T.; Ip, E.; Harrison, K.; Sholler, G.F.; Giannoulatou, E.; Leo, P.; Duncan, E.L.; et al. A Screening Approach to Identify Clinically Actionable Variants Causing Congenital Heart Disease in Exome Data. Circ. Genom. Precis. Med. 2018, 11, e001978. [Google Scholar] [CrossRef] [Green Version]
- Alosi, D.; Bisgaard, M.L.; Hemmingsen, S.N.; Krogh, L.N.; Mikkelsen, H.B.; Binderup, M.L.M. Management of Gene Variants of Unknown Significance: Analysis Method and Risk Assessment of the Vhl Mutation P.P81s (C.241c>T). Curr. Genom. 2017, 18, 93–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vears, D.F.; Niemiec, E.; Howard, H.C.; Borry, P. Analysis of VUS reporting, variant reinterpretation and recontact policies in clinical genomic sequencing consent forms. Eur. J. Hum. Genet. 2018, 26, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, J.M.; Candela, H.; Micol, J.L. Understanding synergy in genetic interactions. Trends Genet. 2009, 25, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Pulignani, S.; Vecoli, C.; Borghini, A.; Foffa, I.; Ait-Ali, L.; Andreassi, M.G. Targeted Next-Generation Sequencing in Patients with Non-syndromic Congenital Heart Disease. Pediatr. Cardiol. 2018, 39, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Cervera-Acedo, C.; Coloma, A.; Huarte-Loza, E.; Sierra-Carpio, M.; Domínguez-Garrido, E. Phenotype variability in a large Spanish family with Alport syndrome associated with novel mutations in COL4A3 gene. BMC Nephrol. 2017, 18, 325. [Google Scholar] [CrossRef] [Green Version]
- Niku, M.; Pajari, A.-M.; Sarantaus, L.; Päivärinta, E.; Storvik, M.; Heiman-Lindh, A.; Suokas, S.; Nyström, M.; Mutanen, M. Western diet enhances intestinal tumorigenesis in Min/+ mice, associating with mucosal metabolic and inflammatory stress and loss of Apc heterozygosity. J. Nutr. Biochem. 2017, 39, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Martínez, D.; Kim, S.-H.; Hu, Y.; Guimond, S.; Schofield, J.; Winyard, P.; Vannelli, G.B.; Turnbull, J.; Bouloux, P.-M. Anosmin-1 Modulates Fibroblast Growth Factor Receptor 1 Signaling in Human Gonadotropin-Releasing Hormone Olfactory Neuroblasts through a Heparan Sulfate-Dependent Mechanism. J. Neurosci. 2004, 24, 10384–10392. [Google Scholar] [CrossRef]
- Cassatella, D.; Howard, S.; Acierno, J.S.; Xu, C.; Papadakis, G.E.; Santoni, F.A.; Dwyer, A.A.; Santini, S.; Sykiotis, G.P.; Chambion, C.; et al. Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur. J. Endocrinol. 2018, 178, 377–388. [Google Scholar] [CrossRef]
Patient No. | Stage | Variant HGVS | MAF | ACMG Classification | Anosmia/Hyposmia | Cryptorchidism | Associated Defects |
---|---|---|---|---|---|---|---|
1 | GnRH neuron migration | ANOS1 p.R631* (c.1891C>T) | NR | Pathogenic | Anosmia | Bilateral | Bimanual synkinesis; left kidney agenesis |
2 | GnRH neuron migration | ANOS1 p.R631* (c.1891C>T) | NR | Pathogenic | Anosmia | Right testis | Bimanual synkinesis; right kidney agenesis |
3 | GnRH neuron development | FGFR1 p.W99* (c.297G>A) | NR | Pathogenic | Anosmia | Bilateral | Bilateral duplex pelvicalyceal system |
4 | GnRH neuron development | FGFR1 p.V135I (c.403G>A) | 0.00042 | Likely pathogenic | Hyposmia | No | NA |
5 | GnRH neuron development | FGFR1 p. R281W (c.841C>T) | NR | Pathogenic | Anosmia | Bilateral | Cleft lip and palate |
Pituitary dev. and signalling | GLI2 p.D1520N (c.4558G>A) | 0.00935 | Benign | ||||
6 | GnRH neuron development | FGFR1 p.K649R (c.1946A>G) | NR | Likely pathogenic | Hyposmia | Bilateral | NA |
7 | GnRH neuron migration | CHD7 p.V567Afs*8 (c.1699_1700insC) | NR | Pathogenic | Hyposmia | Bilateral | Double pyelum in the left kidney; myopia (8 dptr) |
GnRH neuron migration | CHD7 p.E1478= (c.4434A>G) | NR | Likely benign | ||||
8 | GnRH neuron migration | CHD7 p.K850Q (c.2548A>C) | NR | Likely pathogenic | Anosmia | No | Dental agenesis (lateral jaw’s incisors) |
Pituitary dev. and signalling | LHX4 p.G305W (c.913G>T) | 0.00000796 | Likely pathogenic | ||||
9 | GnRH neuron migration | CHD7 p.N1030H (c.3088A>C) | NR | Pathogenic | Anosmia | No | Sandal gap deformity |
GnRH neuron development | FGFR1 p.R285W (c.853C>T) | NR | Likely pathogenic | ||||
10 | GnRH neuron migration | CHD7 p.N1030H (c.3088A>C) | NR | Pathogenic | Anosmia | No | NA |
GnRH neuron development | FGFR1 p.R285W (c.853C>T) | NR | Likely pathogenic | ||||
11 | GnRH neuron migration | CHD7 p.N1030H (c.3088A>C) | NR | Pathogenic | Anosmia | No | Left kidney agenesis; splenomegaly |
GnRH neuron development | HS6ST1 p.K67* (c.199A>T) | 0.00624 | Benign | ||||
Pituitary dev. and signalling | LHX4 p.D128= (c.384C>T) | 0.00864 | Benign | ||||
12 | GnRH neuron migration | CHD7 p.E1195A (c.3584A>C) | NR | Likely pathogenic | Hyposmia | No | Syndactyly of the toes |
13 | GnRH neuron migration | CHD7 p.D2838Tfs*51 (c.8512delG) | NR | Pathogenic | Hyposmia | Right testis | Choanal atresia; clinodactyly; spina bifida (L5) |
Pituitary dev. and signalling | LHX4 p.D128= (c.384C>T) | 0.00864 | Benign | ||||
14 | GnRH neuron migration | CHD7 p.R947Q (c.2840G>A) | 0.0000763 | Uncertain significance | Anosmia | Bilateral | Micropenis; pre-auricular fistula; discoloration of the hair on the temple; brachydactyly |
15 | GnRH neuron migration | CHD7 p.M340V (c.1018A>G) | 0.00462 | Benign | Hyposmia | No | NA |
16 | GnRH neuron development | WDR11 p.M769V (c.2305A>G) | 0.000565 | Uncertain significance | Anosmia | Right testis | NA |
GnRH neuron migration | PROKR2 p.R268C (c.802C>T) | 0.00391 | Benign | ||||
17 | GnRH neuron development | FGF8 intronic (c.445-62G>T) | 0.0000957 | Uncertain significance | Anosmia | Migrating testis | NA |
18 | GnRH neuron development | FGF8 intronic (c.445-62G>T) | 0.0000957 | Uncertain significance | Anosmia | No | Intellectual disability |
19 | GnRH neuron development | FGF8 p.P26L (c.77C>T) | 0.00115 | Uncertain significance | Hyposmia | No | Bimanual synkinesis |
20 | GnRH neuron development | HS6ST1 p.R249S (c.745C>A) | 0.0074 | Uncertain significance | Anosmia | Right testis | NA |
GnRH neuron development | HS6ST1 p.D87E (c.261C>A) | 0.01’ | Uncertain significance | ||||
21 | GnRH neuron development | HS6ST1 p.R249S (c.745C>A) | 0.0074 | Uncertain significance | Anosmia | Right testis | Micropenis; syndactyly of toes |
GnRH neuron development | HS6ST1 p.D87E (c.261C>A) | 0.01’ | Uncertain significance | ||||
22 | GnRH neuron development | WDR11 p.I716V (c.2146A>G) | NR | Likely pathogenic | Anosmia | Right testis | Bimanual synkinesis |
Pituitary dev. and signalling | GNRHR p.Q106R (c.317A>G) | 0.00284 | Likely pathogenic | ||||
Pituitary dev. and signalling | GNRHR p.Ser151 = (c.453C>T) | 0.0755 | Uncertain significance | ||||
23 | GnRH neuron development | WDR11 p.M769V (c.2305A>G) | 0.000565 | Uncertain significance | Anosmia | No | NA |
Patient No. | Stage | Variant HGVS | MAF | ACMG Classification | Anosmia/Hyposmia | Cryptorchidism | Associated Defects |
---|---|---|---|---|---|---|---|
24 | Pituitary dev. and signalling | GNRHR p.C114* (c342C>A) | NR | Pathogenic | Hyposmia | No | NA |
Pituitary dev. and signalling | GNRHR p.R262Q (c.785G>A) | 0.00179 | Likely pathogenic | ||||
Pituitary dev. and signalling | PCSK1 intronic (c.544-43T>G) | NR | Uncertain significance | ||||
25 | Pituitary dev. and signalling | GNRHR p.R139H (c.416G>A) | 0.000144 | Pathogenic | Hyposmia | No | NA |
Pituitary dev. and signalling | GNRHR p.N10_Q11delinsKK (c.30_31delinsAA) | NR | Likely pathogenic | ||||
GnRH neuron migration | CHD7 p.K683_T684insAK (c.2053_2058dupGCAAAA) | 0.00623 | Uncertain significance | ||||
26 | Pituitary dev. and signalling | GNRHR p.P146S (c.436C>T) | 0.00127 | Pathogenic | Anosmia | ND | Incomplete rotation of the right kidney |
27 | Hypothalamic signalling | GNRH1 p.C21Lfs*23 (c.60_61insC) | 0.00000401 | Pathogenic | Anosmia | ND | NA |
GnRH neuron development | WDR11 p.P475= (c.1425G>A) | 0.00275 | Benign | ||||
28 | Hypothalamic signalling | GNRH1 p.E47D (c.141G>C) | 0.00153 | Uncertain significance | Anosmia | No | Micropenis |
Hypothalamic signalling | GNRH1 p.F65= (c.183C>T) | 0.00524 | Uncertain significance | ||||
29 | Hypothalamic signalling | GNRH1 p.F65= (c.183C>T) | 0.00524 | Uncertain significance | Hyposmia | ND | NA |
30 | Pituitary dev. and signalling | GLI2 p.G185C (c.553G>T) | NR | Likely pathogenic | Anosmia | No | Micropenis |
GnRH neuron migration | PROKR2 p.R85H (c.254G>A) | 0.000712 | Likely pathogenic | ||||
31 | Pituitary dev. and signalling | GLI2 p.L1488F (c.4464G>T) | 0.0000676 | Uncertain significance | Hyposmia | No | NA |
Pituitary dev. and signalling | PITX2 p.T38= (c.114G>T) | 0.000032 | Likely benign | ||||
32 | Pituitary dev. and signalling | GLI2 p.G1006= (c.3018C>T) | 0.00429 | Benign | Anosmia | ND | Strabismus; oligodontia; ptosis; VSD |
33 | Pituitary dev. and signalling | GLI2 p.G1006= (c.3018C>T) | 0.00429 | Benign | Anosmia | ND | Strabismus; oligodontia; ptosis; VSD |
34 | Pituitary dev. and signalling | SOX3 p.R155Afs*26 (c.462_462delG) | NR | Pathogenic | Hyposmia | No | NA |
35 | Pituitary dev. and signalling | POLR3B p.T682A (c.2044A>G) | NR | Uncertain significance | Anosmia | No | NA |
36 | Pituitary dev. and signalling | NR0B1 p.S148N (c.443G>A) | NR | Uncertain significance | Anosmia | No | Abdominal hernia |
GnRH neuron migration | PROKR2 p.S130= (c.390C>T) | 0.000529 | Uncertain significance | ||||
37 | Pituitary dev. and signalling | LRRIQ3 p.R227C (c.679C>T) | 0.000748 | Uncertain significance | Hyposmia | No | NA |
38 | Pituitary dev. and signalling | LHX4 p.D128= (c.384C>T) | 0.00864 | Benign | Anosmia | Bilateral | NA |
39 | Pituitary dev. and signalling | LHX4 p.D128= (c.384C>T) | 0.00864 | Benign | Anosmia | No | NA |
GnRH neuron migration | CHD7p.S103T (c.307T>A) | 0.0123 | Benign | ||||
40 | Pituitary dev. and signalling | LHX3 p.Q41= (c.123G>A) | 0.0111 | Benign | Anosmia | Bilateral | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kałużna, M.; Budny, B.; Rabijewski, M.; Kałużny, J.; Dubiel, A.; Trofimiuk-Müldner, M.; Wrotkowska, E.; Hubalewska-Dydejczyk, A.; Ruchała, M.; Ziemnicka, K. Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes 2021, 12, 868. https://doi.org/10.3390/genes12060868
Kałużna M, Budny B, Rabijewski M, Kałużny J, Dubiel A, Trofimiuk-Müldner M, Wrotkowska E, Hubalewska-Dydejczyk A, Ruchała M, Ziemnicka K. Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes. 2021; 12(6):868. https://doi.org/10.3390/genes12060868
Chicago/Turabian StyleKałużna, Małgorzata, Bartłomiej Budny, Michał Rabijewski, Jarosław Kałużny, Agnieszka Dubiel, Małgorzata Trofimiuk-Müldner, Elżbieta Wrotkowska, Alicja Hubalewska-Dydejczyk, Marek Ruchała, and Katarzyna Ziemnicka. 2021. "Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome" Genes 12, no. 6: 868. https://doi.org/10.3390/genes12060868
APA StyleKałużna, M., Budny, B., Rabijewski, M., Kałużny, J., Dubiel, A., Trofimiuk-Müldner, M., Wrotkowska, E., Hubalewska-Dydejczyk, A., Ruchała, M., & Ziemnicka, K. (2021). Defects in GnRH Neuron Migration/Development and Hypothalamic-Pituitary Signaling Impact Clinical Variability of Kallmann Syndrome. Genes, 12(6), 868. https://doi.org/10.3390/genes12060868