Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Genotypes Analysis
3.2. Haplotype Characteristics of Our Research Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Jakicic, J.M.; Davis, K.K. Obesity and physical activity. Psychiatr. Clin. N. Am. 2011, 34, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; Jażdżewska, A.; Leźnicka, K. Can physical activity modulate the pain perception during the ontogenesis? Balt. J. Health Phys. Act. 2019, 11, 90–100. [Google Scholar] [CrossRef]
- Biddle, S.J.H.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C.K. Adolescent physical activity and health: A systematic review. Sport Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahim, M.; Collins, M.; September, A. Genes and Musculoskeletal Soft-Tissue Injuries. Med. Sport Sci. 2016, 61, 68–91. [Google Scholar]
- Ficek, K.; Cieszczyk, P.; Kaczmarczyk, M.; Maciejewska-Karlowska, A.; Sawczuk, M.; Cholewinski, J.; Leonska-Duniec, A.; Stepien-Slodkowska, M.; Zarebska, A.; Stepto, N.K.; et al. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players. J. Sci. Med. Sport Sports Med. Aust. 2013, 16, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, H.; Chen, K.; Wu, B.; Liu, H. Association of polymorphisms rs1800012 in COL1A1 with sports-related tendon and ligament injuries: A meta-analysis. Oncotarget 2017, 8, 27627–27634. [Google Scholar] [CrossRef] [Green Version]
- Collins, M. Genetic risk factors for soft-tissue injuries 101: A practical summary to help clinicians understand the role of genetics and ‘personalised medicine’. Br. J. Sports Med. 2010, 44, 915–917. [Google Scholar] [CrossRef]
- Pitsiladis, Y.; Wang, G.; Wolfarth, B.; Scott, R.; Fuku, N.; Mikami, E.; He, Z.; Fiuza-Luces, C.; Eynon, N.; Lucia, A. Genomics of elite sporting performance: What little we know and necessary advances. Br. J. Sports Med. 2013, 47, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Kaynak, M.; Nijman, F.; van Meurs, J.; Reijman, M.; Meuffels, D.E. Genetic variants and anterior cruciate ligament rupture: A systematic review. Sports Med. 2017, 47, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Erduran, M.; Altinisik, J.; Meric, G.; Ates, O.; Ulusal, A.E.; Akseki, D. Is Sp1 binding site polymorphism within COL1A1 gene associated with tennis elbow? Gene 2014, 537, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Khoschnau, S.; Melhus, H.; Jacobson, A.; Rahme, H.; Bengtsson, H.; Ribom, E.; Grundberg, E.; Mallmin, H.; Michaëlsson, K. Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations. Am. J. Sports Med. 2008, 36, 2432–2436. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.C.; Vacek, P.; Johnson, R.J.; Slauterbeck, J.R.; Hashemi, J.; Shultz, S.; Beynnon, B.D. Risk factors for anterior cruciate ligament injury: A review of the literature? Part 1: Neuromuscular and anatomic risk factors. Sports Health 2012, 4, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, H.C.; Vacek, P.; Johnson, R.J.; Slauterbeck, J.R.; Hashemi, J.; Shultz, S.; Beynnon, B.D. Risk Factors for Anterior Cruciate Ligament Injury: A Review of the Literature—Part 2: Hormonal, Genetic, Cognitive Function, Previous Injury, and Extrinsic Risk Factors. Sports Health 2012, 4, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, S.F.; Reid, D.M.; Blake, G.; Herd, R.; Fogelman, I.; Ralston, S.H. Reduced bone density and osteoporosis associated with a polymorphic Sp1 bindings site in the collagen type I alpha1gene. Nat. Genet. 1996, 14, 203–205. [Google Scholar] [CrossRef]
- Brown, J.C.; Miller, C.J.; Schwellnus, M.P.; Collins, M. Range of motion measurements diverge with increasing age for COL5A1 genotypes. Scand. J. Med. Sci. Sports 2011, 21, e266–e272. [Google Scholar] [CrossRef]
- Collins, M.; Posthumus, M. Type V Collagen Genotype and Exercise-Related Phenotype Relationships: A Novel Hypothesis. Exerc. Sport Sci. Rev. 2011, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Stępień-Słodkowska, M.; Ficek, K.; Kaczmarczyk, M.; Maciejewska-Karłowska, A.; Sawczuk, M.; Leońska-Duniec, A.; Stępiński, M.; Ziętek, P.; Król, P.; Chudecka, M. The Variants within the COL5A1 Gene are Associated with Reduced Risk of Anterior Cruciate Ligament Injury in Skiers. J. Hum. Kinet. 2015, 45, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbon, A.; Raleigh, S.M.; Ribbans, W.J.; Posthumus, M.; Collins, M.; September, A.V. Functional COL1A1 variants are associated with the risk of acute musculoskeletal soft tissue injuries. J. Orthop. Res. 2020, 38, 2290–2298. [Google Scholar] [CrossRef]
- Gauderman, W.; Morrison, J.M. QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. 2006. Available online: http://hydra.usc.edu/gxe (accessed on 1 July 2021).
- Räisänen, A.M.; Kokko, S.; Pasanen, K.; Leppänen, M.; Rimpelä, A.; Villberg, J.; Parkkari, J. Prevalence of adolescent physical activity-related injuries in sports, leisure time, and school: The National Physical Activity Behaviour Study for children and Adolescents. BMC Musculoskelet. Disord. 2018, 19, 58. [Google Scholar] [CrossRef]
- Posthumus, M.; September, A.V.; Keegan, M.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant. Br. J. Sports Med. 2009, 43, 352–356. [Google Scholar] [CrossRef] [Green Version]
- Posthumus, M.; September, A.V.; O’Cuinneagain, D.; van der Merwe, W.; Schwellnus, M.P.; Collins, M. The COL5A1 gene is associated with increased risk of anterior cruciate ligament ruptures in female participants. Am. J. Sports Med. 2009, 37, 2234–2240. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Raleigh, S.M. Genetic risk factors for musculoskeletal soft tissue injuries. Med. Sport Sci. 2009, 54, 136–149. [Google Scholar] [PubMed]
- Posthumus, M.; September, A.V.; Schwellnus, M.P.; Collins, M. Investigation of the Sp1-binding site polymorphism within the COL1A1 gene in participants with Achilles tendon injuries and controls. J. Sci. Med. Sport Sports Med. Aust. 2009, 12, 184–189. [Google Scholar] [CrossRef]
- Mann, V.; Hobson, E.E.; Li, B.A. COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Investig. 2001, 107, 899–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urreizti, R.; Garcia-Giralt, N.; Riancho, J.A.; González-Macías, J.; Civit, S.; Güerri, R.; Yoskovitz, G.; Sarrion, P.; Mellivobsky, L.; Díez-Pérez, A.; et al. COL1A1 haplotypes and hip fracture. J. Bone Miner. Res. 2012, 27, 950–953. [Google Scholar] [CrossRef] [Green Version]
- Stępień-Słodkowska, M.; Ficek, K.; Eider, J.; Leońska-Duniec, A.; Maciejewska-Karłowska, A.; Sawczuk, M.; Zarębska, A.; Jastrzębski, Z.; Grenda, A.; Kotarska, K.; et al. THE +1245G/T Polymorphisms in the collagen type I alpha 1 (COL1A1) gene polish skiers with anterior cruciate ligament injury. Biol. Sport 2013, 30, 57–60. [Google Scholar] [CrossRef]
- Roulet, M.; Ruggiero, F.; Karsenty, G.; LeGuellec, D. A comprehensive study of the spatial and temporal expression of the col5a1 gene in mouse embryos: A clue for understanding collagen V function in developing connective tissues. Cell Tissue Res. 2007, 327, 323–332. [Google Scholar] [CrossRef]
- Lv, Z.-T.; Gao, S.-T.; Cheng, P.; Liang, S.; Yu, S.-Y.; Yang, Q.; Chen, A.-M. Association between polymorphism rs12722 in COL5A1 and musculoskeletal soft tissue injuries: A systematic review and meta-analysis. Oncotarget 2018, 9, 15365–15374. [Google Scholar] [CrossRef] [Green Version]
- September, A.V.; Cook, J.; Handley, C.J.; van der Merwe, L.; Schwellnus, M.P. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Br. J. Sports Med. 2009, 43, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Mokone, G.G.; Schwellnus, M.P.; Noakes, T.D.; Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sports. 2006, 16, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, Y.; Laguette, M.J.; Prince, S.; Collins, M. Polymorphisms within the COL5A1 3′-UTR that alters mRNA structure and the MIR608 gene are associated with Achilles tendinopathy. Ann. Hum. Genet. 2013, 77, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Michalova, E.; Vojtesek, B.; Hrstka, R. Impaired pre-mRNA processing and altered architecture of 3′ untranslated regions contribute to the development of human disorders. Int. J. Mol. Sci. 2013, 14, 15681–15694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SNP | Genotype Frequency | Allele Frequency | p (HWE *) |
---|---|---|---|
COL1A1 rs1800012 | GG 75 (65.8%) | G 172 (75.4%) | <0.001 |
GT 22 (19.3%) | T 56 (24.6%) | ||
TT 17 (14.9%) | |||
COL5A1 rs12722 | TT 63 (55.3%) | C 74 (32.5%) | <0.001 |
TC 28 (24.6%) | T 154 (67.5%) | ||
CC 23 (20.2%) | |||
COL5A1 rs13946 | TT 54 (47.4%) | T 154 (67.5%) | 0.397 |
TC 46 (40.3%) | C 74 (32.5%) | ||
CC 14 (12.3%) |
Model | Injury (Yes) (n = 53) | Injury (No) (n = 61) | OR (95% CI) | p |
---|---|---|---|---|
Dominant | ||||
GG | 32 (42.2%) | 43 (55.8%) | 0.64 (0.29–1.39) | 0.258/0.286 * |
GT-TT | 21 (54.9%) | 18 (45.1%) | 1 | |
Recessive | ||||
GT-GG | 45 (48.8%) | 52 (51.2%) | 0.97 (0.34–2.80) | 0.959/0.919 * |
TT | 8 (42.9%) | 9 (42.9%) | 1 | |
Overdominant | ||||
TT-GG | 40 (44.0%) | 52 (56.0%) | 1.88 (0.74–4.97) | 0.058/0.040 * |
GT | 13 (63.3%) | 9 (36.7%) | 1 |
Model | Injury (Yes) (n = 53) | Injury (No) (n = 61) | OR (95% CI) | p |
---|---|---|---|---|
Dominant | ||||
TT | 32 (48.0%) | 31 (52.1%) | 1.47 (0.70–3.13) | 0.307/0.354 * |
TC-CC | 21 (37.3%) | 30 (62.7%) | 1 | |
Recessive | ||||
TT-TC | 44 (44.4%) | 47 (55.6%) | 1.46 (0.58–3.82) | 0.430/0.573 * |
CC | 9 (37.5%) | 14 (62.5%) | 1 | |
Overdominant | ||||
CC-TT | 41 (45.4%) | 45 (54.6%) | 0.82 (0.34–1.94) | 0.657/0.571 |
TC | 12 (37.1%) | 16 (62.9%) | 1 |
Model | Injury (Yes) (n = 53) | Injury (No) (n = 61) | OR (95% CI) | p |
---|---|---|---|---|
Dominant | ||||
TT | 26 (50.0%) | 28 (50.0%) | 0.14 (0.54–2.38) | 0.737/0.938 * |
TC-CC | 27 (44.1%) | 33 (56.0%) | 1 | |
Recessive | ||||
TT-TC | 46 (47.1%) | 54 (52.9%) | 0.85 (0.27–2.66) | 0.779/0.859 * |
CC | 7 (45.0%) | 7 (55.0%) | 1 | |
Overdominant | ||||
CC-TT | 33 (48.9%) | 35 (51.1%) | 0.81 (0.38–1.73) | 0.596/0.842 * |
TC | 20 (43.8) | 26 (56.3%) | 1 |
Haplotype | DOM | REC | ADD | ||||
---|---|---|---|---|---|---|---|
β (SE) | p † | β (SE) | p | β (SE) | p † | ||
COL5A1 NM_000093.4:c.[rs13946-rs12722] | H1 [C-C] | −0.38 (0.43) | 0.368/ 0.431 | 0.16 (0.57) | 0.778/ 0.847 | −0.13 (0.29) | 0.648/ 0.723 |
H2 [C-T] | 0.30 (0.55) | 0.578/ 0.343 | --- | --- | 0.39 (0.55) | 0.468/ 0.268 | |
H3 [T-C] | −0.47 (0.57) | 0.410/ 0.645 | −0.34 (0.48) | 0.479/ 0.774 |
SNP1 | SNP2 | Model OR (95% CI), p | ||||||
---|---|---|---|---|---|---|---|---|
DOM | REC | HOM-HET | HOM1-HET | HOM2-HET | HET-HOM1 | HET-HOM2 | ||
COL1A1 rs1800012 | COL5A1 rs13946 | 2.09 (0.70–6.76) 0.188 † | -- 1 | 1.01 (0.47–2.17) 0.984 † | AA-TC 1.49 (0.37–6.44) 0.574 † | CC-TC 0.61 (0.24–1.48) 0.276 † | -- 2 | CA-TT 1.72 (0.56–5.59) 0.341 † |
COL1A1 rs1800012 | COL5A1 rs12722 | 2.05 (0.62–7.47) 0.243 † | 1.17 (0.13--10.58) 0.884 † | 0.79 (0.36–1.75) 0.569 † | AA-TC 1.87 (0.30–14.37) 0.430 † | CC-TC 0.40 (0.13–1.14) 0.086 † | -- 3 | CA-TT 1.79 (0.67–5.05) 0.248 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leźnicka, K.; Żyżniewska-Banaszak, E.; Gębska, M.; Machoy-Mokrzyńska, A.; Krajewska-Pędzik, A.; Maciejewska-Skrendo, A.; Leońska-Duniec, A. Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian. Genes 2021, 12, 1056. https://doi.org/10.3390/genes12071056
Leźnicka K, Żyżniewska-Banaszak E, Gębska M, Machoy-Mokrzyńska A, Krajewska-Pędzik A, Maciejewska-Skrendo A, Leońska-Duniec A. Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian. Genes. 2021; 12(7):1056. https://doi.org/10.3390/genes12071056
Chicago/Turabian StyleLeźnicka, Katarzyna, Ewelina Żyżniewska-Banaszak, Magdalena Gębska, Anna Machoy-Mokrzyńska, Anna Krajewska-Pędzik, Agnieszka Maciejewska-Skrendo, and Agata Leońska-Duniec. 2021. "Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian" Genes 12, no. 7: 1056. https://doi.org/10.3390/genes12071056
APA StyleLeźnicka, K., Żyżniewska-Banaszak, E., Gębska, M., Machoy-Mokrzyńska, A., Krajewska-Pędzik, A., Maciejewska-Skrendo, A., & Leońska-Duniec, A. (2021). Interactions between Gene Variants within the COL1A1 and COL5A1 Genes and Musculoskeletal Injuries in Physically Active Caucasian. Genes, 12(7), 1056. https://doi.org/10.3390/genes12071056