Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes
Abstract
:1. Weight of Evidence for Lineage Marker Profiles
1.1. The Effect of Relatedness and Mutation Rate on the LR
1.2. The Role of Databases in Evidence Evaluation
1.3. The Probability of Matching Profiles
2. Review of Evaluation Methods
2.1. Adjusted Database Counts
2.1.1. Adjustment Based on the Database Frequency Spectrum
2.1.2. Augmenting the Database
2.1.3. Upper Confidence Limit (UCL)
2.2. The Discrete Laplace Method
2.3. Coancestry Adjustment for Population Substructure
2.4. Estimating the Number of Matches in the Population
2.5. Methods Not Widely Used
2.5.1. Population Genetic Modelling Using the Coalescent
2.5.2. Frequency Surveying
2.5.3. Graphical Statistical Models
3. Recommendations from Forensic Authorities
3.1. Scientific Working Group on DNA Analysis Methods (USA, Canada)
3.1.1. Y Profiles
3.1.2. mtDNA
3.2. International Society for Forensic Genetics (ISFG)
3.2.1. Y Profiles
3.2.2. mtDNA
4. Some Further Issues
4.1. Combination with Autosomal Evidence
4.2. Locus Order for Duplicated Y Loci
4.3. Consistency
4.4. Partial Profiles
4.5. Mixtures
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balding, D.J.; Steele, C.D. Weight-of-Evidence for Forensic DNA Profiles, 2nd ed.; Wiley: Chichester, UK, 2015. [Google Scholar]
- Johnston, I.; Burgstaller, J.; Havlicek, V.; Kolbe, T.; Rülicke, T.; Brem, G.; Poulton, J.; Jones, N. Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism. Elife 2015, 4, e07464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieux, A.; Eriksson, A.; Li, M.; Sobkowiak, B.; Weinert, L.A.; Warmuth, V.; Ruiz-Linares, A.; Manica, A.; Balloux, F. Improved Calibration of the Human Mitochondrial Clock Using Ancient Genomes. Mol. Biol. Evol. 2014, 31, 2780–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Översti, S.; Onkamo, P.; Stoljarova, M.; Budowle, B.; Sajantila, A.; Palo, J.U. Identification and analysis of mtDNA genomes attributed to Finns reveal long-stagnant demographic trends obscured in the total diversity. Sci. Rep. 2017, 7, 6193. [Google Scholar] [CrossRef] [Green Version]
- Jochens, A.; Caliebe, A.; Rösler, U.; Krawczak, M. Empirical Evaluation Reveals Best Fit of a Logistic Mutation Model for Human Y-chromosomal Microsatellites. Genetics 2011, 189, 1403–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, C.H. Understanding Y haplotype matching probability. Forensic Sci. Int. Genet. 2014, 8, 233–243. [Google Scholar] [CrossRef]
- Andersen, M.M.; Balding, D.J. How convincing is a matching Y-chromosome profile? PLoS Genet. 2017, 13, e1007028. [Google Scholar] [CrossRef] [Green Version]
- Caliebe, A.; Krawczak, M. Match probabilities for Y-chromosomal profiles: A paradigm shift. Forensic Sci. Int. Genet. 2018, 37, 200–203. [Google Scholar] [CrossRef]
- Steele, C.D.; Balding, D.J. Choice of population database for forensic DNA profile analysis. Sci. Justice 2014, 54, 487–493. [Google Scholar] [CrossRef] [Green Version]
- Forensic Science Regulator. Guidance for Y-STR Analysis Delivered into the Criminal Justice System in England and Wales: Forensic Science Regulator Guidance Y-STR Profiling (FSR-G-227). 2021. Available online: https://www.gov.uk/government/publications/y-str-profiling (accessed on 1 August 2021).
- Roewer, L.; Andersen, M.M.; Ballantyne, J.; Butler, J.M.; Caliebe, A.; Corach, D.; D’Amato, M.E.; Gusmão, L.; Hou, Y.; de Knijff, P.; et al. DNA commission of the International Society of Forensic Genetics (ISFG): Recommendations on the interpretation of Y-STR results in forensic analysis. Forensic Sci. Int. Genet. 2020, 48, 102308. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.; Röck, A.; Huber, G.; Krämer, T.; Schneider, P.M.; Parson, W. Application of a west Eurasian-specific filter for quasi-median network analysis: Sharpening the blade for mtDNA error detection. Forensic Sci. Int. Genet. 2011, 5, 133–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willuweit, S.; Roewer, L. The New Y Chromosome Haplotype Reference Database. Forensic Sci. Int. Genet. 2015, 15, 43–48. [Google Scholar] [CrossRef]
- Parson, W.; Dür, A. EMPOP—A forensic mtDNA database. Forensic Sci. Int. Genet. 2007, 1, 88–92. [Google Scholar] [CrossRef]
- Parson, W.; Gusmão, L.; Hares, D.; Irwin, J.; Mayr, W.; Morling, N.; Pokorak, E.; Prinz, M.; Salas, A.; Schneider, P.; et al. DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci. Int. Genet. 2014, 13, 134–142. [Google Scholar] [CrossRef]
- Larmuseau, M.; Vanderheyden, N.; Van Geystelen, A.; van Oven, M.; de Knijff, P.; Decorte, R. Recent Radiation within Y-chromosomal Haplogroup R-M269 Resulted in High Y-STR Haplotype Resemblance. Ann. Hum. Genet. 2014, 78, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Solé-Morata, N.; Bertranpetit, J.; Comas, D.; Calafell, F. Recent Radiation of R-M269 and High Y-STR Haplotype Resemblance Confirmed. Ann. Hum. Genet. 2014, 78, 253–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balanovsky, O. Toward a consensus on SNP and STR mutation rates on the human Y-chromosome. Hum. Genet. 2017, 136, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Tvedebrink, T.; Morling, N. Identical twins in forensic genetics—Epidemiology and risk based estimation of weight of evidence. Sci. Justice 2015, 55, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.M. malan: MAle Lineage ANalysis. J. Open Source Softw. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.M.; Balding, D.J. How many individuals share a mitochondrial genome? PLoS Genet. 2018, 14, e1007774. [Google Scholar] [CrossRef] [Green Version]
- Brenner, C.H. Fundamental problem of forensic mathematics—The evidential value of a rare haplotype. Forensic Sci. Int. Genet. 2010, 4, 281–291. [Google Scholar] [CrossRef]
- Robbins, H.E. Estimating the Total Probability of the Unobserved Outcomes of an Experiment. Ann. Math. Stat. 1968, 39, 256–257. [Google Scholar] [CrossRef]
- Cereda, G. Impact of model choice on LR assessment in case of rare haplotype match (frequentist approach). Scand. J. Stat. 2017, 44, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Cereda, G. Bayesian approach to LR assessment in case of rare type match. Stat. Neerl. 2017, 71, 141–164. [Google Scholar] [CrossRef]
- Balding, D.J. Weight-of-Evidence for Forensic DNA Profiles, 1st ed.; Wiley: Chichester, UK, 2005. [Google Scholar]
- Holland, M.; Parsons, T. Mitochondrial DNA Sequence Analysis—Validation and Use for Forensic Casework. Forensic Sci. Rev. 1999, 11, 21–50. [Google Scholar] [PubMed]
- Budowle, B.; Ge, J.; Chakraborty, R. Basic Principles for Estimating the Rarity of Y-STR Haplotypes Derived from Forensic Evidence. In 18th International Symposium on Human Identification; Promega: Madison, WI, USA, 2007; Available online: https://www.promega.com/products/pm/genetic-identity/ishi-conference-proceedings/18th-ishi-oral-presentations-mvc/ (accessed on 1 August 2021).
- Clopper, C.; Pearson, E. The use of confidence or fiducial intervals illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Andersen, M.M.; Eriksen, P.S.; Morling, N. The discrete Laplace exponential family and estimation of Y-STR haplotype frequencies. J. Theor. Biol. 2013, 329, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.M. Discrete Laplace mixture model with applications in forensic genetics. J. Open Source Softw. 2018, 3. [Google Scholar] [CrossRef]
- Andersen, M.M.; Eriksen, P.S.; Morling, N. Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method. Forensic Sci. Int. Genet. 2014, 11, 182–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, M.M.; Eriksen, P.S.; Mogensen, H.S.; Morling, N. Identifying the most likely contributors to a Y-STR mixture using the discrete Laplace method. Forensic Sci. Int. Genet. 2015, 15, 76–83. [Google Scholar] [CrossRef]
- Balding, D.J.; Nichols, R.A. DNA profile match probability calculation: How to allow for population stratification, relatedness, database selection and single bands. Forensic Sci. Int. 1994, 64, 125–140. [Google Scholar] [CrossRef]
- Buckleton, J.; Krawczak, M.; Weir, B. The interpretation of lineage markers in forensic DNA testing. Forensic Sci. Int. Genet. 2011, 5, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Steele, C.D.; Syndercombe Court, D.; Balding, D.J. Worldwide Estimates Relative to Five Continental-Scale Populations. Ann. Hum. Genet. 2014, 78, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Buckleton, J.; Curran, J.; Goudet, J.; Taylor, D.; Thiery, A.; Weir, B. Population-specific FST values for forensic STR markers: A worldwide survey. Forensic Sci. Int. Genet. 2016, 23, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.M.; Balding, D.J. Y-profile evidence: Close paternal relatives and mixtures. Forensic Sci. Int. Genet. 2019, 38, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffrage, U.; Lindsey, S.; Hertwig, R.; Gigerenzer, G. Communicating Statistical Information. Science 2000, 290, 2261–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, I.J.; Weale, M.E.; Balding, D.J. Inferences from DNA Data: Population Histories, Evolutionary Processes and Forensic Match Probabilities. J. R. Stat. Soc. Ser. A 2003, 166, 155–201. [Google Scholar] [CrossRef]
- Andersen, M.M.; Caliebe, A.; Jochens, A.; Willuweit, S.; Krawczak, M. Estimating trace-suspect match probabilities for singleton Y-STR haplotypes using coalescent theory. Forensic Sci. Int. Genet. 2013, 7, 264–271. [Google Scholar] [CrossRef]
- Roewer, L.; Kayser, M.; de Knijff, P.; Anslinger, K.; Betz, A.; Caglia, A.; Corach, D.; Füredi, S.; Henke, L.; Hidding, M.; et al. A new method for the evaluation of matches in non-recombining genomes: Application to Y-chromosomal short tandem repeat (STR) haplotypes in European males. Forensic Sci. Int. 2000, 114, 31–43. [Google Scholar] [CrossRef]
- Krawczak, M. Forensic evaluation of Y-STR haplotype matches: A comment. Forensic Sci. Int. 2001, 118, 114–115. [Google Scholar] [CrossRef]
- Willuweit, S.; Caliebe, A.; Andersen, M.; Roewer, L. Y-STR frequency surveying method: A critical reappraisal. Forensic Sci. Int. Genet. 2011, 5, 84–90. [Google Scholar] [CrossRef]
- Andersen, M.M.; Curran, J.; de Zoete, J.; Taylor, D.; Buckleton, J. Modelling the dependence structure of Y-STR haplotypes using graphical models. Forensic Sci. Int. Genet. 2018, 37, 29–36. [Google Scholar] [CrossRef]
- Andersen, M.M.; Caliebe, A.; Kirkeby, K.; Knudsen, M.; Vihrs, N.; Curran, J.M. Estimation of Y haplotype frequencies with lower order dependencies. Forensic Sci. Int. Genet. 2020, 46, 102214. [Google Scholar] [CrossRef]
- Rodriguez, J.; Laude, R.; De Ungriaa, M. An integrated system for forensic DNA testing of sexual assault cases in the Philippines. Forensic Sci. Int. Synerg. 2021, 3, 100133. [Google Scholar] [CrossRef] [PubMed]
- Willuweit, S.; Anslinger, K.; Bäßler, G.; Eckert, M.; Fimmers, R.; Hohoff, C.; Kraft, M.; Leuker, C.; Molsberger, G.; Pich, U.; et al. Joint recommendations of the project group “Statistical analysis of DNA” and the German Stain Commission on the statistical analysis of Y-chromosomal DNA typing results. Rechtsmedizin 2018, 28, 138–142. [Google Scholar] [CrossRef]
- Roewer, L. Y-chromosome short tandem repeats in forensics—Sexing, profiling, and matching male DNA. WIREs Forensic Sci. 2019, 1, e1336. [Google Scholar] [CrossRef] [Green Version]
- Rębała, K.; Branicki, W.; Pawłowski, R.; Spólnicka, M.; Kupiec, T.; Parys-Proszek, A.; Woźniak, M.; Grzybowski, T.; Boroń, M.; Wróbel, M.; et al. Recommendations of the Polish Speaking Working Group of the International Society for Forensic Genetics on forensic Y chromosome typing. Arch. Forensic Med. Criminol. 2020, 70, 1–18. [Google Scholar] [CrossRef]
- SWGDAM. SWGDAM Interpretation Guidelines for Y-Chromosome STR Testing. 2014. Available online: https://www.swgdam.org/publications (accessed on 1 August 2021).
- SWGDAM. SWGDAM MtDNA Interpretation Guidelines. 2019. Available online: https://www.swgdam.org/publications (accessed on 1 August 2021).
- Cowell, R.G. Consistent estimation of Y STR haplotype probabilities. Forensic Sci. Int. Genet. 2020, 49, 102365. [Google Scholar] [CrossRef]
- Andersen, M.M. mitolina: MITOchondrial LINeage Analysis. J. Open Source Softw. 2019, 4, 1266. [Google Scholar] [CrossRef]
- Taylor, D.; Curran, J.M.; Buckleton, J. Likelihood ratio development for mixed Y-STR profiles. Forensic Sci. Int. Genet. 2018, 35, 82–96. [Google Scholar] [CrossRef]
- Using Artificial Intelligence for Mapping the Danish Genealogy and Strengthening Research. Available online: https://novonordiskfonden.dk/en/news/kunstig-intelligens-skal-kortlaegge-danskernes-stam-trae-og-styrke-forskning/ (accessed on 17 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, M.M.; Balding, D.J. Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes 2021, 12, 1209. https://doi.org/10.3390/genes12081209
Andersen MM, Balding DJ. Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes. 2021; 12(8):1209. https://doi.org/10.3390/genes12081209
Chicago/Turabian StyleAndersen, Mikkel M., and David J. Balding. 2021. "Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes" Genes 12, no. 8: 1209. https://doi.org/10.3390/genes12081209
APA StyleAndersen, M. M., & Balding, D. J. (2021). Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes, 12(8), 1209. https://doi.org/10.3390/genes12081209