DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting
Abstract
:1. Introduction
2. DNA Methylation Programming and Reprogramming in the Female Germline and Early Embryo
2.1. Primordial Germ Cells and Oocytes
2.2. Preimplantation Embryo
2.3. Post-Implantation Embryo
3. Methylation Patterning of Imprinted Genes
4. Global Loss of Imprinting Results in Hydatidiform Molar Pregnancies
5. Molar Pregnancies Indicate a Role for the Subcortical Maternal Complex in Ensuring Imprinting
6. Pathogenic Variants Identified within Human SCMC Genes
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Smith, Z.D.; Meissner, A. DNA Methylation: Roles in Mammalian Development. Nat. Rev. Genet. 2013, 14, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-M.; Lu, R.; Wang, P.; Yu, Y.; Chen, D.; Gao, L.; Liu, S.; Ji, D.; Rothbart, S.B.; Wang, Y.; et al. Structural Basis for DNMT3A-Mediated de Novo DNA Methylation. Nature 2018, 554, 387–391. [Google Scholar] [CrossRef]
- Petrussa, L.; Van de Velde, H.; De Rycke, M. Dynamic Regulation of DNA Methyltransferases in Human Oocytes and Preimplantation Embryos after Assisted Reproductive Technologies. Mol. Hum. Reprod. 2014, 20, 861–874. [Google Scholar] [CrossRef]
- Bostick, M.; Kim, J.K.; Estève, P.-O.; Clark, A.; Pradhan, S.; Jacobsen, S.E. UHRF1 Plays a Role in Maintaining DNA Methylation in Mammalian Cells. Science 2007, 317, 1760–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirane, K.; Toh, H.; Kobayashi, H.; Miura, F.; Chiba, H.; Ito, T.; Kono, T.; Sasaki, H. Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases. PLoS Genet. 2013, 9, e1003439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerschmidt, D.M.; Knowles, B.B.; Solter, D. DNA Methylation Dynamics during Epigenetic Reprogramming in the Germline and Preimplantation Embryos. Genes Dev. 2014, 28, 812–828. [Google Scholar] [CrossRef] [Green Version]
- Hajkova, P.; Erhardt, S.; Lane, N.; Haaf, T.; El-Maarri, O.; Reik, W.; Walter, J.; Surani, M.A. Epigenetic Reprogramming in Mouse Primordial Germ Cells. Mech. Dev. 2002, 117, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Henckel, A.; Chebli, K.; Kota, S.K.; Arnaud, P.; Feil, R. Transcription and histone methylation changes correlate with imprint acquisition in male germ cells. EMBO J. 2012, 31, 606–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Zhu, P.; Wu, X.; Li, X.; Wen, L.; Tang, F. Single-Cell Methylome Landscapes of Mouse Embryonic Stem Cells and Early Embryos Analyzed Using Reduced Representation Bisulfite Sequencing. Genome Res. 2013, 23, 2126–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, K.R.; Veselovska, L.; Kelsey, G. Establishment and Functions of DNA Methylation in the Germline. Epigenomics 2016, 8, 1399–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smallwood, S.A.; Tomizawa, S.-I.; Krueger, F.; Ruf, N.; Carli, N.; Segonds-Pichon, A.; Sato, S.; Hata, K.; Andrews, S.R.; Kelsey, G. Dynamic CpG Island Methylation Landscape in Oocytes and Preimplantation Embryos. Nat. Genet. 2011, 43, 811–814. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Sakurai, T.; Imai, M.; Takahashi, N.; Fukuda, A.; Yayoi, O.; Sato, S.; Nakabayashi, K.; Hata, K.; Sotomaru, Y.; et al. Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks. PLoS Genet. 2012, 8, e1002440. [Google Scholar] [CrossRef] [Green Version]
- Okae, H.; Chiba, H.; Hiura, H.; Hamada, H.; Sato, A.; Utsunomiya, T.; Kikuchi, H.; Yoshida, H.; Tanaka, A.; Suyama, M.; et al. Genome-Wide Analysis of DNA Methylation Dynamics during Early Human Development. PLoS Genet. 2014, 10, e1004868. [Google Scholar] [CrossRef] [Green Version]
- Veselovska, L.; Smallwood, S.A.; Saadeh, H.; Stewart, K.R.; Krueger, F.; Maupetit-Méhouas, S.; Arnaud, P.; Tomizawa, S.-I.; Andrews, S.; Kelsey, G. Deep Sequencing and de Novo Assembly of the Mouse Oocyte Transcriptome Define the Contribution of Transcription to the DNA Methylation Landscape. Genome Biol. 2015, 16, 209. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Hendrich, B.; Reik, W.; Dean, W. Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo. Dev. Biol. 2002, 241, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, T.-P.; Guo, F.; Yang, H.; Wu, H.-P.; Xu, G.-F.; Liu, W.; Xie, Z.-G.; Shi, L.; He, X.; Jin, S.; et al. The Role of Tet3 DNA Dioxygenase in Epigenetic Reprogramming by Oocytes. Nature 2011, 477, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, S.A.; Kelsey, G. De Novo DNA Methylation: A Germ Cell Perspective. Trends Genet. 2012, 28, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Amouroux, R.; Nashun, B.; Shirane, K.; Nakagawa, S.; Hill, P.W.; D’Souza, Z.; Nakayama, M.; Matsuda, M.; Turp, A.; Ndjetehe, E.; et al. De Novo DNA Methylation Drives 5hmC Accumulation in Mouse Zygotes. Nat. Cell Biol. 2016, 18, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Guo, H.; Ren, Y.; Hou, Y.; Dong, J.; Li, R.; Lian, Y.; Fan, X.; Hu, B.; Gao, Y.; et al. Single-Cell DNA Methylome Sequencing of Human Preimplantation Embryos. Nat. Genet. 2018, 50, 12–19. [Google Scholar] [CrossRef]
- Barlow, D.P.; Bartolomei, M.S. Genomic Imprinting in Mammals. Cold Spring Harb. Perspect. Biol. 2014, 6, a018382. [Google Scholar] [CrossRef] [Green Version]
- Monk, D.; Mackay, D.J.G.; Eggermann, T.; Maher, E.R.; Riccio, A. Genomic Imprinting Disorders: Lessons on How Genome, Epigenome and Environment Interact. Nat. Rev. Genet. 2019, 20, 235–248. [Google Scholar] [CrossRef]
- Soellner, L.; Begemann, M.; Mackay, D.J.G.; Grønskov, K.; Tümer, Z.; Maher, E.R.; Temple, I.K.; Monk, D.; Riccio, A.; Linglart, A.; et al. Recent Advances in Imprinting Disorders. Clin. Genet. 2017, 91, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Veyver, I.B.; Al-Hussaini, T.K. Biparental Hydatidiform Moles: A Maternal Effect Mutation Affecting Imprinting in the Offspring. Hum. Reprod. Update 2006, 12, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Demond, H.; Anvar, Z.; Jahromi, B.N.; Sparago, A.; Verma, A.; Davari, M.; Calzari, L.; Russo, S.; Jahromi, M.A.; Monk, D.; et al. A KHDC3L Mutation Resulting in Recurrent Hydatidiform Mole Causes Genome-Wide DNA Methylation Loss in Oocytes and Persistent Imprinting Defects Post-Fertilisation. Genome Med. 2019, 11, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, S.; Djuric, U.; Mazhar, B.; Seoud, M.; Khan, R.; Kuick, R.; Bagga, R.; Kircheisen, R.; Ao, A.; Ratti, B.; et al. Mutations in NALP7 Cause Recurrent Hydatidiform Moles and Reproductive Wastage in Humans. Nat. Genet. 2006, 38, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.A.; Logan, C.V.; Hayward, B.E.; Shires, M.; Landolsi, H.; Diggle, C.; Carr, I.; Rittore, C.; Touitou, I.; Philibert, L.; et al. Mutations Causing Familial Biparental Hydatidiform Mole Implicate C6orf221 as a Possible Regulator of Genomic Imprinting in the Human Oocyte. Am. J. Hum. Genet. 2011, 89, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Docherty, L.E.; Rezwan, F.I.; Poole, R.L.; Turner, C.L.S.; Kivuva, E.; Maher, E.R.; Smithson, S.F.; Hamilton-Shield, J.P.; Patalan, M.; Gizewska, M.; et al. Mutations in NLRP5 Are Associated with Reproductive Wastage and Multilocus Imprinting Disorders in Humans. Nat. Commun. 2015, 6, 8086. [Google Scholar] [CrossRef] [Green Version]
- Begemann, M.; Rezwan, F.I.; Beygo, J.; Docherty, L.E.; Kolarova, J.; Schroeder, C.; Buiting, K.; Chokkalingam, K.; Degenhardt, F.; Wakeling, E.L.; et al. Maternal Variants in NLRP and Other Maternal Effect Proteins Are Associated with Multilocus Imprinting Disturbance in Offspring. J. Med. Genet. 2018, 55, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.B.; Gold, L.; Pfeifer, K.E.; Dorward, H.; Lee, E.; Bondy, C.A.; Dean, J.; Nelson, L.M. Mater, a Maternal Effect Gene Required for Early Embryonic Development in Mice. Nat. Genet. 2000, 26, 267–268. [Google Scholar] [CrossRef]
- Saitou, M.; Miyauchi, H. Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 2016, 18, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Irie, N.; Weinberger, L.; Tang, W.W.C.; Kobayashi, T.; Viukov, S.; Manor, Y.S.; Dietmann, S.; Hanna, J.H.; Surani, M.A. SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell 2015, 160, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.W.C.; Dietmann, S.; Irie, N.; Leitch, H.G.; Floros, V.I.; Bradshaw, C.R.; Hackett, J.A.; Chinnery, P.F.; Surani, M.A. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell 2015, 161, 1453–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, F.; Yan, L.; Guo, H.; Li, L.; Hu, B.; Zhao, Y.; Yong, J.; Hu, Y.; Wang, X.; Wei, Y.; et al. The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell 2015, 161, 1437–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, R.; Gu, C.; You, D.; Huang, Z.; Qian, J.; Yang, Q.; Cheng, X.; Zhang, L.; Wang, H.; Wang, P.; et al. Decoding Dynamic Epigenetic Landscapes in Human Oocytes Using Single-Cell Multi-Omics Sequencing. Cell Stem Cell 2021. [Google Scholar] [CrossRef] [PubMed]
- Bourc’his, D.; Xu, G.L.; Lin, C.S.; Bollman, B.; Bestor, T.H. Dnmt3L and the Establishment of Maternal Genomic Imprints. Science 2001, 294, 2536–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneda, M.; Hirasawa, R.; Chiba, H.; Okano, M.; Li, E.; Sasaki, H. Genetic Evidence for Dnmt3a-Dependent Imprinting during Oocyte Growth Obtained by Conditional Knockout with Zp3-Cre and Complete Exclusion of Dnmt3b by Chimera Formation. Genes Cells 2010, 15, 169–179. [Google Scholar] [CrossRef]
- Demond, H.; Kelsey, G. The Enigma of DNA Methylation in the Mammalian Oocyte. F1000Res 2020, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, P.; Yan, L.; Li, R.; Hu, B.; Lian, Y.; Yan, J.; Ren, X.; Lin, S.; Li, J.; et al. The DNA Methylation Landscape of Human Early Embryos. Nature 2014, 511, 606–610. [Google Scholar] [CrossRef]
- Brind’Amour, J.; Kobayashi, H.; Richard Albert, J.; Shirane, K.; Sakashita, A.; Kamio, A.; Bogutz, A.; Koike, T.; Karimi, M.M.; Lefebvre, L.; et al. LTR Retrotransposons Transcribed in Oocytes Drive Species-Specific and Heritable Changes in DNA Methylation. Nat. Commun. 2018, 9, 3331. [Google Scholar] [CrossRef]
- Gu, C.; Liu, S.; Wu, Q.; Zhang, L.; Guo, F. Integrative Single-Cell Analysis of Transcriptome, DNA Methylome and Chromatin Accessibility in Mouse Oocytes. Cell Res. 2019, 29, 110–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gougeon, A. Dynamics of Follicular Growth in the Human: A Model from Preliminary Results. Hum. Reprod. 1986, 1, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hanna, C.W.; Demond, H.; Kelsey, G. Epigenetic Regulation in Development: Is the Mouse a Good Model for the Human? Hum. Reprod. Update 2018, 24, 556–576. [Google Scholar] [CrossRef] [PubMed]
- Seisenberger, S.; Peat, J.R.; Hore, T.A.; Santos, F.; Dean, W.; Reik, W. Reprogramming DNA Methylation in the Mammalian Life Cycle: Building and Breaking Epigenetic Barriers. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20110330. [Google Scholar] [CrossRef] [Green Version]
- Galan, A.; Diaz-Gimeno, P.; Poo, M.E.; Valbuena, D.; Sanchez, E.; Ruiz, V.; Dopazo, J.; Montaner, D.; Conesa, A.; Simon, C. Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development. PLoS ONE 2013, 8, e62135. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Yang, M.; Guo, H.; Yang, L.; Wu, J.; Li, R.; Liu, P.; Lian, Y.; Zheng, X.; Yan, J.; et al. Single-Cell RNA-Seq Profiling of Human Preimplantation Embryos and Embryonic Stem Cells. Nat. Struct. Mol. Biol. 2013, 20, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Dobson, A.T.; Raja, R.; Abeyta, M.J.; Taylor, T.; Shen, S.; Haqq, C.; Pera, R.A.R. The Unique Transcriptome through Day 3 of Human Preimplantation Development. Hum. Mol. Genet. 2004, 13, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Hamada, H.; Okae, H.; Toh, H.; Chiba, H.; Hiura, H.; Shirane, K.; Sato, T.; Suyama, M.; Yaegashi, N.; Sasaki, H.; et al. Allele-Specific Methylome and Transcriptome Analysis Reveals Widespread Imprinting in the Human Placenta. Am. J. Hum. Genet. 2016, 99, 1045–1058. [Google Scholar] [CrossRef] [Green Version]
- Smith, Z.D.; Chan, M.M.; Humm, K.C.; Karnik, R.; Mekhoubad, S.; Regev, A.; Eggan, K.; Meissner, A. DNA Methylation Dynamics of the Human Preimplantation Embryo. Nature 2014, 511, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Gerdes, P.; Richardson, S.R.; Mager, D.L.; Faulkner, G.J. Transposable Elements in the Mammalian Embryo: Pioneers Surviving through Stealth and Service. Genome Biol. 2016, 17, 100. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Zhang, Z.; Miao, K.; Yu, Y.; Sui, L.; Tian, J.; An, L. Dynamic Integrated Analysis of DNA Methylation and Gene Expression Profiles in in Vivo and in Vitro Fertilized Mouse Post-Implantation Extraembryonic and Placental Tissues. Mol. Hum. Reprod. 2016, 22, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Chen, T. DNA Methylation Reprogramming during Mammalian Development. Genes 2019, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Dahlet, T.; Argüeso Lleida, A.; Al Adhami, H.; Dumas, M.; Bender, A.; Ngondo, R.P.; Tanguy, M.; Vallet, J.; Auclair, G.; Bardet, A.F.; et al. Genome-Wide Analysis in the Mouse Embryo Reveals the Importance of DNA Methylation for Transcription Integrity. Nat. Commun. 2020, 11, 3153. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, N.; Weberling, A.; Strathdee, D.; Anderson, K.I.; Timpson, P.; Zernicka-Goetz, M. Morphogenesis of Extra-Embryonic Tissues Directs the Remodelling of the Mouse Embryo at Implantation. Nat. Commun. 2019, 10, 3557. [Google Scholar] [CrossRef] [PubMed]
- Hanna, C.W.; Peñaherrera, M.S.; Saadeh, H.; Andrews, S.; McFadden, D.E.; Kelsey, G.; Robinson, W.P. Pervasive Polymorphic Imprinted Methylation in the Human Placenta. Genome Res. 2016, 26, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Camprubí, C.; Iglesias-Platas, I.; Martin-Trujillo, A.; Salvador-Alarcon, C.; Rodriguez, M.A.; Barredo, D.R.; Court, F.; Monk, D. Stability of Genomic Imprinting and Gestational-Age Dynamic Methylation in Complicated Pregnancies Conceived Following Assisted Reproductive Technologies. Biol. Reprod. 2013, 89, 50. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, D.I.; Blair, J.D.; Lott, P.; Yu, H.O.K.; Hong, D.; Crary, F.; Ashwood, P.; Walker, C.; Korf, I.; Robinson, W.P.; et al. The Human Placenta Methylome. Proc. Natl. Acad. Sci. USA 2013, 110, 6037–6042. [Google Scholar] [CrossRef] [Green Version]
- Peters, J. The Role of Genomic Imprinting in Biology and Disease: An Expanding View. Nat. Rev. Genet. 2014, 15, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, M.S.; Ferguson-Smith, A.C. Mammalian Genomic Imprinting. Cold Spring Harb. Perspect. Biol. 2011, 3, a00259. [Google Scholar] [CrossRef] [Green Version]
- Inoue, A.; Jiang, L.; Lu, F.; Suzuki, T.; Zhang, Y. Maternal H3K27me3 Controls DNA Methylation-Independent Imprinting. Nature 2017, 547, 419–424. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y. Maternal H3K27me3-Dependent Autosomal and X Chromosome Imprinting. Nat. Rev. Genet. 2020, 21, 555–571. [Google Scholar] [CrossRef]
- Hanna, C.W. Placental Imprinting: Emerging Mechanisms and Functions. PLoS Genet. 2020, 16, e1008709. [Google Scholar] [CrossRef]
- Abramowitz, L.K.; Bartolomei, M.S. Genomic Imprinting: Recognition and Marking of Imprinted Loci. Curr. Opin. Genet. Dev. 2012, 22, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ito, M.; Zhou, F.; Youngson, N.; Zuo, X.; Leder, P.; Ferguson-Smith, A.C. A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal Imprints. Dev. Cell 2008, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Quenneville, S.; Verde, G.; Corsinotti, A.; Kapopoulou, A.; Jakobsson, J.; Offner, S.; Baglivo, I.; Pedone, P.V.; Grimaldi, G.; Riccio, A.; et al. In Embryonic Stem Cells, ZFP57/KAP1 Recognize a Methylated Hexanucleotide to Affect Chromatin and DNA Methylation of Imprinting Control Regions. Mol. Cell 2011, 44, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo-Sánchez, A.; Hernandez Mora, J.R.; Simon, C.; Burton, A.; Tenorio, J.; Lapunzina, P.; Clark, S.; Esteller, M.; Kelsey, G.; López-Siguero, J.P.; et al. The Role of ZFP57 and Additional KRAB-Zinc Finger Proteins in the Maintenance of Human Imprinted Methylation and Multi-Locus Imprinting Disturbances. Nucleic Acids Res. 2020, 48, 11394–11407. [Google Scholar] [CrossRef]
- Mackay, D.J.G.; Callaway, J.L.A.; Marks, S.M.; White, H.E.; Acerini, C.L.; Boonen, S.E.; Dayanikli, P.; Firth, H.V.; Goodship, J.A.; Haemers, A.P.; et al. Hypomethylation of Multiple Imprinted Loci in Individuals with Transient Neonatal Diabetes Is Associated with Mutations in ZFP57. Nat. Genet. 2008, 40, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Coluccio, A.; Thorball, C.W.; Planet, E.; Shi, H.; Offner, S.; Turelli, P.; Imbeault, M.; Ferguson-Smith, A.C.; Trono, D. ZNF445 Is a Primary Regulator of Genomic Imprinting. Genes Dev. 2019, 33, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagami, M.; Hara-Isono, K.; Matsubara, K.; Nakabayashi, K.; Narumi, S.; Fukami, M.; Ohkubo, Y.; Saitsu, H.; Takada, S.; Ogata, T. ZNF445: A homozygous truncating variant in a patient with Temple syndrome and multilocus imprinting disturbance. Clin. Epigenetics 2021, 13, 119. [Google Scholar] [CrossRef]
- Court, F.; Tayama, C.; Romanelli, V.; Martin-Trujillo, A.; Iglesias-Platas, I.; Okamura, K.; Sugahara, N.; Simón, C.; Moore, H.; Harness, J.V.; et al. Genome-Wide Parent-of-Origin DNA Methylation Analysis Reveals the Intricacies of Human Imprinting and Suggests a Germline Methylation-Independent Mechanism of Establishment. Genome Res. 2014, 24, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Hanna, C.W.; Kelsey, G. The Specification of Imprints in Mammals. Heredity 2014, 113, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Delgado, M.; Court, F.; Vidal, E.; Medrano, J.; Monteagudo-Sánchez, A.; Martin-Trujillo, A.; Tayama, C.; Iglesias-Platas, I.; Kondova, I.; Bontrop, R.; et al. Human Oocyte-Derived Methylation Differences Persist in the Placenta Revealing Widespread Transient Imprinting. PLoS Genet. 2016, 12, e1006427. [Google Scholar] [CrossRef] [PubMed]
- Yuen, R.K.; Jiang, R.; Peñaherrera, M.S.; McFadden, D.E.; Robinson, W.P. Genome-Wide Mapping of Imprinted Differentially Methylated Regions by DNA Methylation Profiling of Human Placentas from Triploidies. Epigenetics Chromatin 2011, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Barbaux, S.; Gascoin-Lachambre, G.; Buffat, C.; Monnier, P.; Mondon, F.; Tonanny, M.-B.; Pinard, A.; Auer, J.; Bessières, B.; Barlier, A.; et al. A Genome-Wide Approach Reveals Novel Imprinted Genes Expressed in the Human Placenta. Epigenetics 2012, 7, 1079–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemberger, M.; Hanna, C.W.; Dean, W. Mechanisms of Early Placental Development in Mouse and Humans. Nat. Rev. Genet. 2020, 21, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Elbracht, M.; Mackay, D.; Begemann, M.; Kagan, K.O.; Eggermann, T. Disturbed Genomic Imprinting and Its Relevance for Human Reproduction: Causes and Clinical Consequences. Hum. Reprod. Update 2020, 26, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Moein-Vaziri, N.; Fallahi, J.; Namavar-Jahromi, B.; Fardaei, M.; Momtahan, M.; Anvar, Z. Clinical and Genetic-Epignetic Aspects of Recurrent Hydatidiform Mole: A Review of Literature. Taiwan. J. Obstet. Gynecol. 2018, 57, 1–6. [Google Scholar] [CrossRef]
- Surani, M.A.; Barton, S.C.; Norris, M.L. Development of Reconstituted Mouse Eggs Suggests Imprinting of the Genome during Gametogenesis. Nature 1984, 308, 548–550. [Google Scholar] [CrossRef]
- McGrath, J.; Solter, D. Completion of Mouse Embryogenesis Requires Both the Maternal and Paternal Genomes. Cell 1984, 37, 179–183. [Google Scholar] [CrossRef]
- Li, Z.-K.; Wang, L.-Y.; Wang, L.-B.; Feng, G.-H.; Yuan, X.-W.; Liu, C.; Xu, K.; Li, Y.-H.; Wan, H.-F.; Zhang, Y.; et al. Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell 2018, 23, 665–676.e4. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Nguyen, N.M.P.; Rezaei, M.; Huang, B.; Tao, Y.; Zhang, X.; Cheng, Q.; Yang, H.; Asangla, A.; Majewski, J.; et al. Biallelic PADI6 Variants Linking Infertility, Miscarriages, and Hydatidiform Moles. Eur. J. Hum. Genet. 2018, 26, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Judson, H.; Hayward, B.E.; Sheridan, E.; Bonthron, D.T. A Global Disorder of Imprinting in the Human Female Germ Line. Nature 2002, 416, 539–542. [Google Scholar] [CrossRef] [Green Version]
- El-Maarri, O.; Seoud, M.; Coullin, P.; Herbiniaux, U.; Oldenburg, J.; Rouleau, G.; Slim, R. Maternal Alleles Acquiring Paternal Methylation Patterns in Biparental Complete Hydatidiform Moles. Hum. Mol. Genet. 2003, 12, 1405–1413. [Google Scholar] [CrossRef] [Green Version]
- Kou, Y.C.; Shao, L.; Peng, H.H.; Rosetta, R.; del Gaudio, D.; Wagner, A.F.; Al-Hussaini, T.K.; Van den Veyver, I.B. A Recurrent Intragenic Genomic Duplication, Other Novel Mutations in NLRP7 and Imprinting Defects in Recurrent Biparental Hydatidiform Moles. Mol. Hum. Reprod. 2008, 14, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Delgado, M.; Martin-Trujillo, A.; Tayama, C.; Vidal, E.; Esteller, M.; Iglesias-Platas, I.; Deo, N.; Barney, O.; Maclean, K.; Hata, K.; et al. Absence of Maternal Methylation in Biparental Hydatidiform Moles from Women with NLRP7 Maternal-Effect Mutations Reveals Widespread Placenta-Specific Imprinting. PLoS Genet. 2015, 11, e1005644. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Yan, L.; Zhang, X.; Lu, X.; Wang, T.; Yan, J.; Liu, X.; Qiao, J.; Li, L. Identification of a Human Subcortical Maternal Complex. Mol. Hum. Reprod. 2015, 21, 320–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Baibakov, B.; Dean, J. A Subcortical Maternal Complex Essential for Preimplantation Mouse Embryogenesis. Dev. Cell 2008, 15, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Gao, Z.; Qin, D.; Li, L. A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends Mol. Med. 2017, 23, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Bebbere, D.; Masala, L.; Albertini, D.F.; Ledda, S. The Subcortical Maternal Complex: Multiple Functions for One Biological Structure? J. Assist. Reprod. Genet. 2016, 33, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- Monk, D.; Sanchez-Delgado, M.; Fisher, R. NLRPs, the Subcortical Maternal Complex and Genomic Imprinting. Reproduction 2017, 154, R161–R170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akoury, E.; Zhang, L.; Ao, A.; Slim, R. NLRP7 and KHDC3L, the Two Maternal-Effect Proteins Responsible for Recurrent Hydatidiform Moles, Co-Localize to the Oocyte Cytoskeleton. Hum. Reprod. 2015, 30, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Cheng, Q.; Murdoch, S.; Xu, C.; Jin, F.; Chebaro, W.; Zhang, X.; Gao, H.; Zhu, Y.; Slim, R.; et al. The Genetics of Recurrent Hydatidiform Moles in China: Correlations between NLRP7 Mutations, Molar Genotypes and Reproductive Outcomes. Mol. Hum. Reprod. 2011, 17, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, E.; Lim, D.; Pasha, S.; Tee, L.J.; Rahman, F.; Yates, J.R.W.; Woods, C.G.; Reik, W.; Maher, E.R. Germline Mutation in NLRP2 (NALP2) in a Familial Imprinting Disorder (Beckwith-Wiedemann Syndrome). PLoS Genet. 2009, 5, e1000423. [Google Scholar] [CrossRef] [Green Version]
- Messerschmidt, D.M. Should I Stay or Should I Go: Protection and Maintenance of DNA Methylation at Imprinted Genes. Epigenetics 2012, 7, 969–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahadevan, S.; Sathappan, V.; Utama, B.; Lorenzo, I.; Kaskar, K.; Van den Veyver, I.B. Maternally Expressed NLRP2 Links the Subcortical Maternal Complex (SCMC) to Fertility, Embryogenesis and Epigenetic Reprogramming. Sci. Rep. 2017, 7, 44667. [Google Scholar] [CrossRef]
- Tian, X.; Pascal, G.; Monget, P. Evolution and Functional Divergence of NLRP Genes in Mammalian Reproductive Systems. BMC Evol. Biol. 2009, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Zheng, P.; Dean, J. Role of Filia, a Maternal Effect Gene, in Maintaining Euploidy during Cleavage-Stage Mouse Embryogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 7473–7478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.-J.; Yi, Z.; Gao, Z.; Qin, D.; Zhai, Y.; Chen, X.; Ou-Yang, Y.; Wang, Z.-B.; Zheng, P.; Zhu, M.-S.; et al. The Subcortical Maternal Complex Controls Symmetric Division of Mouse Zygotes by Regulating F-Actin Dynamics. Nat. Commun. 2014, 5, 4887. [Google Scholar] [CrossRef]
- Tashiro, F.; Kanai-Azuma, M.; Miyazaki, S.; Kato, M.; Tanaka, T.; Toyoda, S.; Yamato, E.; Kawakami, H.; Miyazaki, T.; Miyazaki, J.-I. Maternal-Effect Gene Ces5/Ooep/Moep19/Floped Is Essential for Oocyte Cytoplasmic Lattice Formation and Embryonic Development at the Maternal-Zygotic Stage Transition. Genes Cells 2010, 15, 813–828. [Google Scholar] [CrossRef]
- Kaneda, M.; Okano, M.; Hata, K.; Sado, T.; Tsujimoto, N.; Li, E.; Sasaki, H. Essential Role for de Novo DNA Methyltransferase Dnmt3a in Paternal and Maternal Imprinting. Nature 2004, 429, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Alazami, A.M.; Awad, S.M.; Coskun, S.; Al-Hassan, S.; Hijazi, H.; Abdulwahab, F.M.; Poizat, C.; Alkuraya, F.S. TLE6 Mutation Causes the Earliest Known Human Embryonic Lethality. Genome Biol. 2015, 16, 240. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Shi, Y.; Fu, J.; Yu, M.; Feng, R.; Sang, Q.; Liang, B.; Chen, B.; Qu, R.; Li, B.; et al. Mutations in PADI6 Cause Female Infertility Characterized by Early Embryonic Arrest. Am. J. Hum. Genet. 2016, 99, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Maddirevula, S.; Coskun, S.; Alhassan, S.; Elnour, A.; Alsaif, H.S.; Ibrahim, N.; Abdulwahab, F.; Arold, S.T.; Alkuraya, F.S. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Am. J. Hum. Genet. 2017, 101, 603–608. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, D.; Mykytenko, D.; Kuang, Y.; Lv, Q.; Li, B.; Chen, B.; Mao, X.; Xu, Y.; Zukin, V.; et al. Novel Mutations in Genes Encoding Subcortical Maternal Complex Proteins May Cause Human Embryonic Developmental Arrest. Reprod. Biomed. Online 2018, 36, 698–704. [Google Scholar] [CrossRef]
- Mu, J.; Wang, W.; Chen, B.; Wu, L.; Li, B.; Mao, X.; Zhang, Z.; Fu, J.; Kuang, Y.; Sun, X.; et al. Mutations in NLRP2 and NLRP5 Cause Female Infertility Characterised by Early Embryonic Arrest. J. Med. Genet. 2019, 56, 471–480. [Google Scholar] [CrossRef]
- Deveault, C.; Qian, J.H.; Chebaro, W.; Ao, A.; Gilbert, L.; Mehio, A.; Khan, R.; Tan, S.L.; Wischmeijer, A.; Coullin, P.; et al. NLRP7 Mutations in Women with Diploid Androgenetic and Triploid Moles: A Proposed Mechanism for Mole Formation. Hum. Mol. Genet. 2009, 18, 888–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, B.E.; De Vos, M.; Talati, N.; Abdollahi, M.R.; Taylor, G.R.; Meyer, E.; Williams, D.; Maher, E.R.; Setna, F.; Nazir, K.; et al. Genetic and Epigenetic Analysis of Recurrent Hydatidiform Mole. Hum. Mutat. 2009, 30, E629–E639. [Google Scholar] [CrossRef]
- Xu, Y.; Qian, Y.; Liu, Y.; Wang, Q.; Wang, R.; Zhou, Y.; Zhang, C.; Pang, Z.; Ye, H.; Xue, S.; et al. A Novel Homozygous Variant in NLRP5 Is Associate with Human Early Embryonic Arrest in a Consanguineous Chinese Family. Clin. Genet. 2020, 98, 69–73. [Google Scholar] [CrossRef]
- Begemann, M.; Spengler, S.; Kanber, D.; Haake, A.; Baudis, M.; Leisten, I.; Binder, G.; Markus, S.; Rupprecht, T.; Segerer, H.; et al. Silver-Russell Patients Showing a Broad Range of ICR1 and ICR2 Hypomethylation in Different Tissues. Clin. Genet. 2011, 80, 83–88. [Google Scholar] [CrossRef]
- Bens, S.; Kolarova, J.; Beygo, J.; Buiting, K.; Caliebe, A.; Eggermann, T.; Gillessen-Kaesbach, G.; Prawitt, D.; Thiele-Schmitz, S.; Begemann, M.; et al. Phenotypic Spectrum and Extent of DNA Methylation Defects Associated with Multilocus Imprinting Disturbances. Epigenomics 2016, 8, 801–816. [Google Scholar] [CrossRef]
- Cubellis, M.V.; Pignata, L.; Verma, A.; Sparago, A.; Del Prete, R.; Monticelli, M.; Calzari, L.; Antona, V.; Melis, D.; Tenconi, R.; et al. Loss-of-Function Maternal-Effect Mutations of PADI6 Are Associated with Familial and Sporadic Beckwith-Wiedemann Syndrome with Multi-Locus Imprinting Disturbance. Clin. Epigenetics 2020, 12, 139. [Google Scholar] [CrossRef]
Gene | Family | hg19 Position | GenBank | cDNA Mutation | Protein Mutation | Mutation Effect | gnomAD_Exomeall MAF | gnomAD_Genomeall MAF | SIFT | Polyphen | Inheritance | Domain/Exon | Pregnancy Outcomes | Country | Ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NALP7 | MoLb1 | Chr19: 55452298 | NM_206828 | IVS3+1G>A | 2 splicing isoforms: -inclusion of the first 4 bp of intron 3 between exons 3 and 4, addition of two aa followed by a stop codon -exclusion of exon 3 | Splicing mutation (Splice donor) | 0.00E + 00 | 0.00E + 00 | NA | NA | Autosomal recessive (Homozygous) | Intron 3 | Recurrent hydatidiform moles | Lebanon | [25] |
MoPa61 | Chr19: 55445856 | IVS7+1G>A | inclusion of the entire intron 7 | Splicing mutation | 5.17E-05 | NA | NA | NA | Autosomal recessive (Homozygous) | Intron 7 | Complete hydatidiform mole, spontaneous abortion (7–20 weeks) | Pakistan | |||
MoGe2 | Chr19: 55449464 | 2077C>T | p.Arg693Trp | Missense mutation | 2.74E-04 | 6.69E-04 | NA | NA | Autosomal recessive (Homozygous) | Exon 5 | Complete hydatidiform mole | Germany | |||
MoIn68 | Chr19: 55449463 | 2078G>C | p.Arg693Pro | Missense mutation | 4.77E-05 | NA | tolerated (0.07) | benign (0.056) | Autosomal recessive (Homozygous) | Exon 5 | Complete hydatidiform mole | India | |||
MoIn69-2 | Chr19: 55441939 | c.2738A>G | p.Asn913Ser | Missense mutation | 1.35E-04 | 7.33E-04 | deleterious (0) | probably_damaging (0.991) | Autosomal recessive (Compound heterozygous) | Exon 5 | Complete hydatidiform mole and invasive mole | India | |||
Chr19: 55449463 | c.2078G>C | p.Arg693Pro | Missense mutation | 4.77E-05 | NA | tolerated (0.07) | benign (0.056) | Exon 9 | |||||||
NLRP7 | Family 6 | Chr19: 55447768 | NM_001127255.1 | c.2161C>T | p.Arg721Trp | Missense mutations | 5.97E-05 | NA | NA | NA | Compound Heterozygous | Exon 7 | BWS–MLID | Germany | [28] |
Chr19: 55445006 | c. 2573T>C | p. Ile858Thr | 7.16E-05 | 6.37E-05 | deleterious (0) | benign (0.351) | Exon 8 | ||||||||
Family 7 | Chr19: 55451438 | c.749T>G | p.Phe250Cys | Missense mutations | 4.57E-04 | 4.14E-04 | deleterious (0) | possibly_ damaging (0.88) | Compound Heterozygous (Mother) | NACHT domain | BWS and TNDM | ||||
Chr19: 55451083 | c. 1104T>G | p.Ile368Met | 4.84E-04 | 5.49E-04 | NA | NA | Heterozygous in Proband | Exon 4 | |||||||
Family 8 | Chr19: 55447773 | NM_206828.2 | c.2156C>T | p.Ala719Val | Missense mutation | 1.05E-03 | 1.05E-03 | deleterious (0.01) | probably_damaging (0.963) | Heterozygous (Mother and Proband) | Exon 6 | SRS | UK | [28] | |
China | [91] | ||||||||||||||
Italy | [105] | ||||||||||||||
Patient 1 and 2 | Chr19: 55449463 | NM_001127255.1 | c. 2078G>C | p.Arg693Pro | Missense mutation | 4.77E-05 | NA | tolerated (0.07) | benign (0.056) | Autosomal recessive | Exon 5 | Complete hydatidiform moles | UK | [84] | |
Patient 3 | Chr19: 55449184_55454887 del | c.-39-1769_2129+ 228del | Deletion of exons 2-5 | NA | NA | NA | NA | Autosomal recessive | 5′UTR | ||||||
Patient 4 | Chr19: 55449523 | c.2018C>G | p.Ser673Ter | Nonsense mutation | 3.98E-06 | NA | NA | NA | Compound Heterozygous | Exon 5 | |||||
Chr19: 55447768 | c.2161C>T | p.Arg721Trp | Missense mutation | 5.97E-05 | NA | NA | NA | Exon 6 | |||||||
Family E | Chr19: 55451235_55451248 | NM_206828.3 | c.939_952 dup 14 | p.Tyr318Cys fsTer7 | Frameshift mutation | 2.39E-05 | 1.27E-04 | NA | NA | Compound Heterozygous | Exon 4 | Familial biparental hydatidiform mole | UK | [106] | |
Chr19: 55449511 | c.2030delT | p.Leu677Pro fsTer6 | Mutations | NA | NA | NA | NA | Exon 5 | |||||||
Family N | Chr19: 55449523 | c.2018C>G | p.Ser673Ter | Nonsense mutation | 3.98E-06 | NA | NA | NA | Autosomal recessive | Exon 5 | Pakistan | ||||
Family J | chr19: 55452305 | c.346A>T | p.Lys116Ter | Nonsense mutation | NA | NA | NA | NA | Autosomal recessive | Exon 3 | Pakistan | ||||
Family K | Chr19: 55449463 | c.2078G>C | p.Arg693Pro | Missense mutation | 4.77E-05 | NA | tolerated (0.07) | benign (0.056) | Autosomal recessive | Exon 5 | Pakistan | ||||
Family L | Chr19: 55451049 | c.1138G>C | p.Gly380Arg | Missense mutation | 6.66E-04 | NA | NA | NA | Heterozygous | Exon 4 | Pakistan | ||||
Singleton 1 | chr19: 55445994 | c.2334G>A | p.Trp778Ter | Nonsense mutation | NA | NA | tolerated (0.16) | probably_damaging (0.95) | Autosomal recessive | Exon 7 | Molar pregnancy | Pakistan | |||
Singleton 2 | Chr19: 55450731 | c.1456dupG | p.Glu486Gly fsTer42 | Frameshift mutation | NA | NA | NA | NA | Autosomal recessive | Exon 4 | Punjabi | ||||
Singleton 4 | Chr19: 55450994 | c.1193T>G | p.Leu398Arg | Missense mutation | 3.48E-05 | NA | tolerated (0.16) | probably_damaging (0.95) | Autosomal recessive | Exon 4 | Pakistan | ||||
Singleton 5 | Chr19: 55449463 | c.2078G>C | p.Arg693Pro | Missense mutation | 4.77E-05 | NA | tolerated (0.07) | benign (0.056) | Autosomal recessive | Exon 5 | Pakistan | ||||
Singleton 6 | Chr19: 55452802 | c.277+1G>C | Splicing mutation | NA | NA | NA | NA | Autosomal recessive | Intron 2 | Pakistan | |||||
Singleton 7 | Chr19: 55450994 | c.1193T>G | p.Leu398Arg | Missense mutation | 3.48E-05 | NA | tolerated (0.16) | probably_damaging (0.95) | Autosomal recessive | Exon 4 | Pakistan | ||||
MoCh76 | Chr19: 55452356 | NM_206828.2 | c.295G>T | p.Glu99Ter | Nonsense mutation | NA | NA | NA | NA | Compound Heterozygous | Exon 3 | BiCHM | China | [91] | |
Chr19: 55449571 | c. 1970A>T | p. Asp657Val | Missense mutation | NA | NA | NA | NA | Exon 5 | |||||||
Ch29 | Chr19: 55447764 | c.2165A>G | p.Asp722Gly | Missense mutation | 3.98E-06 | NA | deleterious (0.05) | possibly_ damaging (0.574) | Autosomal recessive | Exon 6 | BiCHM | ||||
Ch77 | Chr19: 55450893 | c.1294C>T | p.Arg432Ter | Nonsense mutations | 3.61E-05 | 3.19E-05 | NA | NA | Compound Heterozygous | Exon 4 | CHM | ||||
Chr19: 55445108 | c.2471+1G>A | p.Leu825Ter | NA | NA | NA | NA | Exon 7 | ||||||||
Ch101 | Chr19: 55449440 | c. 2101C>T | p.Arg701Cys | Missense mutation | 1.99E-05 | NA | tolerated (1) | benign (0.018) | Compound Heterozygous | Exon 5 | BiCHM | ||||
Chr19: 55449463 | c.2078G>A | p.Arg693Gln | 7.95E-06 | 3.19E-05 | tolerated (0.07) | benign (0.056) | |||||||||
MoCh195 | Chr19: 32436314_55448111 del1218 | c.2130-312_2300+ 1737del1218 | NA | NA | NA | NA | Exon 6 | CHM | |||||||
MoCh200 | Chr19: 55450487_55450562 del76 | c.1625_1700 del76 | p.Met542Thr fsTer2 | Frameshift mutation | NA | NA | NA | NA | Compound Heterozygous | Exon 4 | HM | ||||
Chr19: 55445108 | c. 2471+1G>A | p.Leu825Ter | Nonsense mutation | NA | NA | NA | NA | Exon 7 | |||||||
MoCh293 | Chr19: 55450893 | c.1294C>T | p.Arg432Ter | Nonsense mutation | 3.61E-05 | 3.19E-05 | NA | NA | Compound Heterozygous | Exon 4 | HM | ||||
Chr19: 55447773 | c.2156C>T | p.Ala719Val | Missense mutation | 1.05E-03 | 1.05E-03 | deleterious (0.01) | probably_damaging (0.963) | Exon 6 | |||||||
MoCh73 | Chr19: 55451050 | c.1137G>C | p.Lys379Asn | Missense mutation | 5.01E-03 | 6.08E-03 | NA | NA | Heterozygous | Exon 4 | CHM | ||||
MoCh71 | Chr19: 55452829 | c.251G>A | p.Cys84Tyr | Missense mutation | 4.53E-04 | 3.20E-04 | tolerated (0.05) | benign (0.079) | Heterozygous | Exon 2 | AnCHM | ||||
MoCh193 | Chr19: 55451050 | c.1137G>C | p.Lys379Asn | Missense mutation | 5.01E-03 | 6.08E-03 | NA | NA | Heterozygous | Exon 4 | HM | ||||
MoCh190 | Chr19: 55445860 | c.2468T>A | p.Leu823Ter | Nonsense mutation | NA | NA | NA | NA | Heterozygous | Exon 7 | AnCHM | ||||
MoCh71 | Chr19: 55452829 | NM_001127255.1 | c.251G>A | p.Cys84Tyr | Missense Mutation | 4.53E-04 | 3.20E-04 | tolerated (0.05) | benign (0.079) | Heterozygous | Exon 2 | CHM, PHM (with no family history of moles) | China | [105] | |
MoIt96 | Chr19: 55451720 | c.467G>A | p.Arg156Gln | Missense mutation | 7.25E-03 | 8.09E-03 | tolerated (0.23) | benign (0.125) | Heterozygous | Exon 4 | HM (with no family history of moles) | Italia | |||
MoCh73 | Chr19: 55451050 | c.1137G>C | p.Lys379Asn | Missense mutation | 5.01E-03 | 6.08E-03 | NA | NA | Exon 4 | China | |||||
MoCa57 | Chr19: 55450991 | c.1196G>A | p.Cys399Tyr | Missense mutations | 4.72E-04 | 2.87E-04 | deleterious (0) | probably_damaging (1) | Compound Heterozygous | Exon 4 | CHM/IM (with no family history of moles) | Morocco and Algeria | |||
Chr19: 55450727 | c.1460G>A | p.Gly487Glu | 5.31E-02 | 1.29E-01 | tolerated (0.12) | benign (0.094) | Exon 4 | ||||||||
MoCa88 | Chr19: 55450655 | c.1532A>G | p.Lys511Arg | Missense mutation | 1.33E-02 | 2.91E-02 | deleterious (0.01) | possibly_ damaging (0.701) | Heterozygous | Exon 4 | Recurrent spontaneous abortions, 2 twins Hashimoto disease (with no family history of moles) | Morocco and UK | |||
Ch101 | Chr19: 55449440 | c.2101C>T | p.Arg701Cys | Missense mutations | 1.99E-05 | NA | tolerated (1) | benign (0.018) | Compound Heterozygous | Exon 5 | CHM (with no family history of moles) | China | |||
Chr19: 55449463 | c.2078G>A | p.Arg693Gln | 7.95E-06 | 3.19E-05 | tolerated (0.07) | benign (0.056) | |||||||||
MoCa94 | Chr19: 55447773 | c.2156C>T | p.Ala719Val | Missense mutation | 1.05E-03 | 1.05E-03 | deleterious (0.01) | probably_damaging (0.963) | Heterozygous | Exon 6 | PHM (with no family history of moles) | Italy | |||
Ch29 | Chr19: 55447764 | c.2165A>G | p.Asp722Gly | Missense mutation | 3.98E-06 | NA | deleterious (0.05) | possibly_ damaging (0.574) | Autosomal recessive (Homozygous) | Exon 6 | PHM, BiCHM, CHM (with no family history of moles) | China | |||
MoUs99 | Chr19: 55447681 | c.2248C>G | p.Leu750Val | Missense mutation | 5.29E-04 | 9.56E-05 | NA | NA | Exon 5 | PHM, CHM, HM (Familial recurrent HMs) | Mexico | ||||
Ch77 | Chr19: 55450893 | c.1294C>T | p.Arg432Ter | Nonsense mutations | 3.61E-05 | 3.19E-05 | NA | NA | Compound Heterozygous | Exon 4 | CHM | China | |||
Chr19: 55445108 | c.2471+1 G>A | p.Leu825Ter | NA | NA | NA | NA | Intron 7 | ||||||||
MoFr101 | Chr19: 55439063 | c.2891T>C | p.Leu964Pro | Missense mutation | NA | NA | deleterious (0) | probably_damaging (1) | Autosomal recessive (Homozygous) | Exon 10 | PHM | France | |||
NLRP5 | Family 1 | Chr19: 56544020 | NM_153447.4 | c.2320T>C | p.Cys774Arg | Missense mutation | 4.02E-06 | NA | deleterious (0) | probably_damaging (0.997) | Compound Heterozygous (mother and 2 probands) | LRR domain | Proband 1 with SRS-MLID (heterozygous c.2320T > C) | UK | [27] |
Chr19: 56539263 | c.1664G>T | p.Gly555Val | Missense mutation | NA | NA | deleterious (0) | probably_damaging (0.944) | NACHT domain | Proband 2 with BWS-MLID (heterozygous c.1664G > T) | ||||||
Family 2 | Chr19: 56544053 | c.2353C>T | p.Gln785Ter | Nonsense mutation | 8.43E-05 | NA | NA | NA | Compound Heterozygous in the mother and proband 1. c.2840T > C not inherited by either affected offspring | LRR domain | Proband 1 with BWS–MLID. Proband 2 with a clinically non-specific autism and obesity–MLID | UK | |||
Chr19: 56552341 | c.2840T>C | p.Leu947Pro | Missense mutation | 2.61E-04 | 2.23E-04 | deleterious (0) | probably_damaging (0.996) | ||||||||
Family 3 | Chr19: 56515174 | c.155T>C | p.Met52Thr | Missense mutation | 8.02E-06 | NA | tolerated (0.07) | benign (0.007) | Compound Heterozygous | DAPIN domain (N-terminal effector) | Proband with BWS–MLID | UK | |||
Chr19: 56515245 | c.226G>C | p.Glu76Gln | 8.02E-06 | NA | deleterious (0) | probably_damaging (0.999) | |||||||||
Family 4 | Chr19: 56538755 | c.1156_1158 dupCCT | p.386dupPro | Missense mutation | 4.03E-06 | NA | NA | NA | Heterozygous in the mother but not inherited in either twin | NACHT domain | Proband (one of discordant monozygotic pair) was SRS–MLID | Germany | |||
Family 5 | Chr19: 56539298 | c.1699A>G | p.Met567Val | Missense mutation | 4.42E-05 | NA | tolerated (0.11) | benign (0.017) | NACHT domain | MLID, presenting with atypical | UK | ||||
clinical features of BWS and Prader–Willi syndrome | |||||||||||||||
Family 6 | Chr19: 56515311 | c.292C>T | p.Gln98Ter | Nonsense mutation | NA | NA | NA | NA | Compound Heterozygous | Pyrin | Recurrent early embryonic arrest | China | [104] | ||
Chr19: 56539680 | c.2081C>T | p.Thr694Ile | Missense mutation | NA | NA | deleterious (0) | probably_damaging (0.973) | LRR | |||||||
Family 7 | Chr19: 56538465 | c.866G>A | p.Gly289Glu | Missense mutation | NA | NA | deleterious (0) | probably_damaging (1) | Compound Heterozygous | NACHT | |||||
Chr19: 56569626 | c.3320C>T | p.Thr1107Ile | Missense mutation | NA | 3.19E-05 | deleterious (0) | probably_damaging (0.993) | LRR | |||||||
Family 1 | Chr19: 56538660 | c.1061C>T | p.Pro354Leu | Missense mutation | 1.21E-05 | 3.19E-05 | deleterious (0.03) | probably_damaging (0.999) | Autosomal recessive | NACHT | Recurrent early embryonic arrest | China | [107] | ||
NLRP2 | Family 1 | Chr19: 55494543 | NM_017852.4 | c.1479_1480 delAG | p.Arg493Ser fsTer32 | Frameshift mutation | 7.56E-05 | NA | NA | NA | Autosomal recessive (Homozygous Mother), Heterozygous in both probands | LRR domain | MLID | Germany | [28] |
Family | Autosomal recessive consanguineous family | Proband with BWS–MLID | Pakistan | [92] | |||||||||||
Family 2 | Chr19: 55497553 | c.2237delA | p.Asn746Thr fsTer4 | Frameshift mutation | 3.98E-06 | NA | NA | NA | Heterozygous mother and proband | Exon 8 | Proband with SRS | Germany | Family previously reported in [108] and [109] | ||
Family 3 | Chr19: 55505788 | c.2860_2861 delTG | p.Cys954Gln fsTer18 | Frameshift mutation | NA | NA | NA | NA | Heterozygous mother | Exon 11/LRR domain | Proband 47, XXY, Symmetrical growth restriction and developmental delay | Germany | [28] | ||
Family 4 | Chr19: 55485901 | c.314C>T | p.Pro105Leu | Missense mutation | 2.79E-05 | NA | tolerated (0.15) | possibly_ damaging (0.604) | Heterozygous mother | Exon 3 | TNDM | [28] | |||
Family 5 | Chr19: 55494951 | c.1885T>C | p.Ser629Pro | Missense mutations | 1.01E-03 | 1.12E-03 | deleterious (0) | probably_damaging (0.959) | Compound Heterozygous (Mother and Proband) | Exon 6 | SRS | UK | [28] | ||
Chr19: 55501424 | c. 2401G>A | p. Ala801Thr | 9.17E-03 | 1.27E-02 | tolerated (0.51) | benign (0.097) | Exon 9 | ||||||||
Family 1 | Chr19: 55495027 | NM_017852.5 | c.1961C>A | p.Ser654Ter | Nonsense mutation | NA | NA | NA | NA | Autosomal recessive | Exon 6 | MLID | China | [104] | |
Family 2 | Chr19: 55493839 | c.773T>C | p.Phe258Ser | Missense mutation | 3.98E-06 | NA | deleterious (0) | probably_damaging (0.993) | Compound Heterozygous | NACHT | |||||
Chr19: 55497571 | c.2254C>T | p.Arg752Ter | Nonsense mutation | 3.98E-06 | NA | NA | NA | Exon 9 | |||||||
Family 3 | Chr19: 55493591 | c.525G>C | p.Trp175Cys | Missense mutation | NA | NA | tolerated (0.06) | probably_damaging (0.979) | Compound Heterozygous | Exon 6 | |||||
Chr19: 55501876 | c.2544A>T | p.Glu848Asp | Missense mutation | NA | NA | deleterious (0.01) | probably_damaging (0.994) | LRR | |||||||
Family 4 | Chr19: 55493728 | c.662C>T | p.Thr221Met | Missense mutation | 8.85E-02 | 9.05E-02 | deleterious (0.04) | probably_damaging (0.989) | Compound Heterozygous | NACHT | |||||
Chr19: 55494913 | c.1847A>T | p.Glu616Val | Missense mutation | 7.96E-06 | NA | deleterious (0.04) | benign (0.405) | Exon8 | |||||||
Family 5 | Chr19: 55493728 | c.662C>T | p.Thr221Met | Missense mutation | 8.85E-02 | 9.05E-02 | deleterious (0.04) | probably_damaging (0.989) | Compound Heterozygous | NACHT | |||||
Chr19: 55494534 | c.1469C>T | p.Arg490Cys | Missense mutation | 1.28E-04 | 3.20E-05 | deleterious (0.01) | benign (0.03) | Exon7 | |||||||
KHDC3L | Family L | Chr6: 74072455 | NM_001017361.3 | c.3G>T | p.Met1Ile next available downstream ATG codon lies at residue 14 | Loss of start codon | 3.98E-06 | NA | deleterious (0) | probably_damaging (0.916) | Autosomal recessive (consanguineous family) | Exon1 | Familial Biparental Hydatidiform Mole | Pakistan | [26] |
Family T | Chr6: 74072970 | c.322_325 delGACT | p.Asp108Ile fsTer30 | Frameshift mutation | 2.39E-05 | NA | NA | NA | Exon 2 | Complete Hydatidiform Mole | Tunisia | ||||
Family W | Chr6: 74072453 | c.1A>G | p.Met1Val | Missense mutation | NA | NA | deleterious (0) | probably_damaging (0.916) | Compound Heterozygous | Exon 1 | Complete Hydatidiform Mole | Asia | |||
Chr6: 74072969 | c.322_325 delGACT | p.Asp108Ile fsTer30 | Frameshift mutation | 2.39E-05 | NA | NA | NA | Exon 2 | |||||||
Patient D | Chr6: 74072453 | c.1A>G | p.Met1Val | Start codon loss | NA | NA | deleterious (0) | probably_damaging (0.916) | Autosomal recessive | BiCHM | Iran | [24] | |||
TLE6 | Family 1 | Chr19: 2993572 | NM_001143986.2 | c.1529C>A | p.Ser510Tyr | Missense mutation | NA | NA | deleterious (0) | probably_damaging (0.912) | Homozygous in 2 probands | WD40 domain repeats (Cterminal) | Early embryonic Arrest (1,2 and 4 cell stage) | Saudi Arabia | [100] |
Family 2 | Homozygous in consanguineous family | ||||||||||||||
PADI6 | Family 1 | Chr1: 17720537 | NM_207421.4 | c.1141C>T | p.Gln381Ter | Nonsense mutation | NA | NA | NA | NA | Homozygous in consanguineous family | PAD domain | Early Embryonic Arrest (arrested at the 2- to 4-cell stage) | China | [101] |
Family 2 | Chr1: 17727858 | c.2009_2010 del | p.Glu670Gly fsTer48 | Frameshift mutation | NA | NA | NA | NA | Compound Heterozygous | PAD domain | Early Embryonic Arrest (arrested at the 1- to 2-cell stage) | ||||
Chr1: 17708541 | c.633T>A | p.His211Gln | Missense mutation | 3.21E-05 | NA | deleterious (0.02) | probably_damaging (0.936) | PAD middle domain | |||||||
Family 3 | Chr1: 17722159 | c.1618G>A | p.Gly540Arg | Missense mutation | 4.08E-06 | NA | tolerated (0.05) | benign (0.159) | Compound Heterozygous | PAD domain | Early Embryonic Arrest (arrested between the 2- and 5-cell stages) | ||||
Chr1: 17718616 | c.970C>T | p.Gln324Ter | Nonsense mutation | NA | NA | NA | NA | ||||||||
Family | Chr1: 17725285 | c.1793A>G | p.Asn598Ser | Missense mutation | NA | NA | tolerated (0.05) | probably_damaging (0.911) | Compound Heterozygous | PAD domain | Recurrent hydatidiform moles (RHM) | China | [80] | ||
Chr1: 17727894 | c.2045 G>A | p. Arg682Gln | Missense mutation | 8.03E-06 | NA | deleterious (0) | probably_damaging (0.992) | ||||||||
Family 1 | Chr1: 17718714 | c.1067G>A | p.Trp356Ter | Nonsense mutation | NA | NA | NA | NA | Probands mother is Compound Heterozygous | PAD domain (Exon 10) | Beckwith-Wiedemann syndrome with multi-locus imprinting disturbance | Italy | [110] | ||
Chr1: 17727743 | c.1894C>G | p.Pro632Ala | Missense mutation | 4.01E-06 | NA | deleterious (0) | probably_damaging (1) | PAD domain (Exon 17) | |||||||
Family 2 | Chr1: 17721538 | c.1429A>G | p.Met477Val | Missense mutation | 4.01E-06 | NA | tolerated (0.48) | possibly_ damaging (0.452) | Proband’s mother is Compound Heterozygous | PAD domain (Exon 13) | |||||
Chr1: 17727929 | c.2080C>T | p.Pro694Ser | 8.05E-06 | NA | deleterious (0) | probably_damaging (1) | PAD domain (Exon 17) | ||||||||
Family 3 | Chr1: 17727855 | c.2006delC | p.Thr669Lys fsTer85 | Frameshift deletion | NA | NA | NA | NA | Heterozygous | PAD domain (Exon 17) | |||||
PADI6 (hg38) | Family 9 | Chr1: 17388820 | NM_207421.3 | c.902G>A | p.Arg301Gln | Missense mutations | NA | NA | deleterious (0) | probably_damaging (1) | Compound Heterozygous (Mother) Proband not tested | Exon 8 | SRS | [28] | |
Chr1: 17394415 | c.1298C>T | p.Pro433Leu | NA | 2.63E-05 | deleterious (0) | probably_damaging (1) | Exon 11 | ||||||||
Family 10 | Chr1: 17394024 | c.1124T>C | p.Leu375Ser | Missense mutations | NA | NA | deleterious (0.01) | probably_damaging (0.915) | Compound Heterozygous (Mother) | Exon 10 | BWS–MLID | ||||
Chr1: 17397091 | c.1639G>A | p.Asp547Asn | NA | 5.06E-04 | tolerated (1) | benign (0.005) | Heterozygous in Proband | Exon 14 | |||||||
Family 11 | Chr1: 17392197 | c.1046A>G | p.Asp349Gly | Missense mutation | NA | NA | tolerated (0.37) | probably_damaging (0.953) | Heterozygous (Mother) | Exon 9 | SRS | Germany | |||
Family 12 | Chr1: 17379985 | c.433A>G | p.Lys145Glu | Missense mutation | NA | 6.57E-06 | deleterious (0.02) | possibly_damaging (0.612) | Heterozygous (Mother) | Exon 4 | SRS | Germany | |||
OOEP (hg38) | Family 13 | Chr6: 73369684 | NM_001080507.2 | c.109C>T | p.Arg37Trp | Missense mutation | NA | 3.29E-05 | deleterious (0.04) | benign (0.135) | Autosomal recessive (Homozygous Mother), Heterozygous proband | Exon 1 | TNDM | ||
UHRF1 (hg38) | Family 14 | Chr19: 4930782 | NM_013282.4 | c.514G>A | p.Val172Met | Missense mutation | NA | NA | deleterious (0) | probably_damaging (0.952) | Heterozygous (Mother and Proband) | Exon 3 | SRS | ||
ZAR1 (hg38) | Family 15 | Chr4: 48492438 | NM_175619.2 | c.130G>T | p.Glu44Cys | Missense mutation | NA | NA | deleterious (0.01) | possibly_damaging (0.748) | Heterozygous (Mother and Proband) | Exon 1 | mild macroglossia, and high birth weight, but no other features of BWS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anvar, Z.; Chakchouk, I.; Demond, H.; Sharif, M.; Kelsey, G.; Van den Veyver, I.B. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes 2021, 12, 1214. https://doi.org/10.3390/genes12081214
Anvar Z, Chakchouk I, Demond H, Sharif M, Kelsey G, Van den Veyver IB. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes. 2021; 12(8):1214. https://doi.org/10.3390/genes12081214
Chicago/Turabian StyleAnvar, Zahra, Imen Chakchouk, Hannah Demond, Momal Sharif, Gavin Kelsey, and Ignatia B. Van den Veyver. 2021. "DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting" Genes 12, no. 8: 1214. https://doi.org/10.3390/genes12081214
APA StyleAnvar, Z., Chakchouk, I., Demond, H., Sharif, M., Kelsey, G., & Van den Veyver, I. B. (2021). DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes, 12(8), 1214. https://doi.org/10.3390/genes12081214