Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders
Abstract
:1. Introduction
2. Syndromes
2.1. Anterior Segment Dysgenesis Syndromes
2.1.1. Axenfeld–Rieger Syndrome
2.1.2. Peters Anomaly
2.1.3. CPAMD8-Associated Anterior Segment Dysgenesis
2.2. Metabolic Disorders
2.3. Aniridia
2.4. Collagen Vascular Disorders
2.4.1. Stickler Syndrome
2.4.2. Osteogenesis Imperfecta
2.4.3. COL4A1
2.4.4. TEK/ANGPT1
2.5. Immunogenetic Disorders Associated with Glaucoma
2.6. Nanophthalmos
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weinreb, R.N.; Leung, C.K.; Crowston, J.G.; Medeiros, F.A.; Friedman, D.S.; Wiggs, J.L.; Martin, K.R. Primary open-angle glaucoma. Nat. Rev. Dis. Primers 2016, 2, 16067. [Google Scholar] [CrossRef]
- World Health Organization. Blindness and Vision Impairment. Available online: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment (accessed on 25 July 2021).
- Allison, K.; Patel, D.; Alabi, O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the Future. Cureus 2020, 12, e11686. [Google Scholar] [CrossRef]
- Da Soh, Z.; Yu, M.; Betzler, B.K.; Majithia, S.; Thakur, S.; Tham, Y.C.; Wong, T.Y.; Aung, T.; Friedman, D.S.; Cheng, C.Y. The Global Extent of Undetected Glaucoma in Adults: A Systematic Review and Meta-analysis. Ophthalmology 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Macdonald, A.E. Causes of Blindness in Canada: An Analysis of 24,605 Cases Registered with the Canadian National Institute for the Blind. Can. Med. Assoc. J. 1965, 92, 264–279. [Google Scholar] [PubMed]
- Midha, N.; Sidhu, T.; Chaturvedi, N.; Sinha, R.; Shende, D.R.; Dada, T.; Gupta, V.; Sihota, R. Systemic Associations of Childhood Glaucoma: A Review. J. Pediatric Ophthalmol. Strabismus 2018, 55, 397–402. [Google Scholar] [CrossRef]
- Papadopoulos, M.; Cable, N.; Rahi, J.; Khaw, P.T.; BIG Eye Study Investigators. The British Infantile and Childhood Glaucoma (BIG) Eye Study. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4100–4106. [Google Scholar] [CrossRef]
- Aponte, E.P.; Diehl, N.; Mohney, B.G. Incidence and clinical characteristics of childhood glaucoma: A population-based study. Arch. Ophthalmol. 2010, 128, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Badawi, A.H.; Al-Muhaylib, A.A.; Al Owaifeer, A.M.; Al-Essa, R.S.; Al-Shahwan, S.A. Primary congenital glaucoma: An updated review. Saudi J. Ophthalmol. 2019, 33, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Rieger, H. Verlagerung und Schlitzform der Pupille mit Hypoplasie des Irisvorderblattes. Z. Augenheilkd 1934, 84, 98–99. [Google Scholar]
- Axenfeld, T. Embryotoxon cornae posterius. Ber. Deutsch. Ophthalmol. Ges. 1920, 42, 301–302. [Google Scholar]
- Nishimura, D.Y.; Swiderski, R.E.; Alward, W.L.; Searby, C.C.; Patil, S.R.; Bennet, S.R.; Kanis, A.B.; Gastier, J.M.; Stone, E.M.; Sheffield, V.C. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat. Genet. 1998, 19, 140–147. [Google Scholar] [CrossRef]
- Mears, A.J.; Jordan, T.; Mirzayans, F.; Dubois, S.; Kume, T.; Parlee, M.; Ritch, R.; Koop, B.; Kuo, W.L.; Collins, C.; et al. Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 1998, 63, 1316–1328. [Google Scholar] [CrossRef] [Green Version]
- Semina, E.V.; Reiter, R.; Leysens, N.J.; Alward, W.L.; Small, K.W.; Datson, N.A.; Siegel-Bartelt, J.; Bierke-Nelson, D.; Bitoun, P.; Zabel, B.U.; et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet. 1996, 14, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.M.; Tyler, R.C.; Volkmann Kloss, B.A.; Schilter, K.F.; Levin, A.V.; Lowry, R.B.; Zwijnenburg, P.J.; Stroh, E.; Broeckel, U.; Murray, J.C.; et al. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur. J. Hum. Genet. 2012, 20, 1224–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, C.J.; Espinoza, H.M.; McWilliams, B.; Chappell, K.; Morton, L.; Hjalt, T.A.; Semina, E.V.; Amendt, B.A. Differential regulation of gene expression by PITX2 isoforms. J. Biol. Chem. 2002, 277, 25001–25010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaufmann, E.; Knochel, W. Five years on the wings of fork head. Mech. Dev. 1996, 57, 3–20. [Google Scholar] [CrossRef]
- Lehmann, O.J.; Sowden, J.C.; Carlsson, P.; Jordan, T.; Bhattacharya, S.S. Fox’s in development and disease. Trends Genet. 2003, 19, 339–344. [Google Scholar] [CrossRef]
- Seifi, M.; Walter, M.A. Accurate prediction of functional, structural, and stability changes in PITX2 mutations using in silico bioinformatics algorithms. PLoS ONE 2018, 13, e0195971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinzel, A.; Brecevic, L.; Dutly, F.; Baumer, A.; Binkert, F.; Largo, R.H. Multiple congenital anomalies including the Rieger eye malformation in a boy with interstitial deletion of (4) (q25-->q27) secondary to a balanced insertion in his normal father: Evidence for haplotype insufficiency causing the Rieger malformation. J. Med. Genet. 1997, 34, 1012–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flomen, R.H.; Gorman, P.A.; Vatcheva, R.; Groet, J.; Barisic, I.; Ligutic, I.; Sheer, D.; Nizetic, D. Rieger syndrome locus: A new reciprocal translocation t(4;12)(q25;q15) and a deletion del(4)(q25q27) both break between markers D4S2945 and D4S193. J. Med. Genet. 1997, 34, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Footz, T.; Idrees, F.; Acharya, M.; Kozlowski, K.; Walter, M.A. Analysis of mutations of the PITX2 transcription factor found in patients with Axenfeld-Rieger syndrome. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2599–2606. [Google Scholar] [CrossRef]
- Kozlowski, K.; Walter, M.A. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum. Mol. Genet. 2000, 9, 2131–2139. [Google Scholar] [CrossRef]
- Berry, F.B.; Lines, M.A.; Oas, J.M.; Footz, T.; Underhill, D.A.; Gage, P.J.; Walter, M.A. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis. Hum. Mol. Genet. 2006, 15, 905–919. [Google Scholar] [CrossRef] [Green Version]
- Reis, L.M.; Semina, E.V. Genetics of anterior segment dysgenesis disorders. Curr. Opin. Ophthalmol. 2011, 22, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Shields, M.B. Axenfeld-Rieger syndrome: A theory of mechanism and distinctions from the iridocorneal endothelial syndrome. Trans. Am. Ophthalmol. Soc. 1983, 81, 736–784. [Google Scholar] [PubMed]
- Strungaru, M.H.; Dinu, I.; Walter, M.A. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Investig. Ophthalmol. Vis. Sci. 2007, 48, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Souzeau, E.; Siggs, O.M.; Zhou, T.; Galanopoulos, A.; Hodson, T.; Taranath, D.; Mills, R.A.; Landers, J.; Pater, J.; Smith, J.E.; et al. Glaucoma spectrum and age-related prevalence of individuals with FOXC1 and PITX2 variants. Eur. J. Hum. Genet. 2017, 25, 1290. [Google Scholar] [CrossRef] [Green Version]
- Berg, F. Erbliches Jugendliches Glaukom. Acta Ophthalmol. 1932, 10, 568–587. [Google Scholar] [CrossRef]
- Alward, W.L.; Semina, E.V.; Kalenak, J.W.; Heon, E.; Sheth, B.P.; Stone, E.M.; Murray, J.C. Autosomal dominant iris hypoplasia is caused by a mutation in the Rieger syndrome (RIEG/PITX2) gene. Am. J. Ophthalmol. 1998, 125, 98–100. [Google Scholar] [CrossRef]
- Shields, M.B.; Buckley, E.; Klintworth, G.K.; Thresher, R. Axenfeld-Rieger syndrome. A spectrum of developmental disorders. Surv. Ophthalmol. 1985, 29, 387–409. [Google Scholar] [CrossRef]
- Jorgenson, R.J.; Levin, L.S.; Cross, H.E.; Yoder, F.; Kelly, T.E. The Rieger syndrome. Am. J. Med. Genet. 1978, 2, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Gould, D.B.; John, S.W. Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum. Mol. Genet. 2002, 11, 1185–1193. [Google Scholar] [CrossRef] [Green Version]
- Kleinmann, R.E.; Kazarian, E.L.; Raptopoulos, V.; Braverman, L.E. Primary empty sella and Rieger’s anomaly of the anterior chamber of the eye: A familial syndrome. N. Engl. J. Med. 1981, 304, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, M.C.; Whiteside-Michel, J.; Merin, L.M. Rieger anomaly and congenital glaucoma in the SHORT syndrome. Arch. Ophthalmol. 1996, 114, 1146–1147. [Google Scholar] [CrossRef]
- Brooks, J.K.; Coccaro, P.J., Jr.; Zarbin, M.A. The Rieger anomaly concomitant with multiple dental, craniofacial, and somatic midline anomalies and short stature. Oral Surg. Oral Med. Oral Pathol. 1989, 68, 717–724. [Google Scholar] [CrossRef]
- Tsai, J.C.; Grajewski, A.L. Cardiac valvular disease and Axenfeld-Rieger syndrome. Am. J. Ophthalmol. 1994, 118, 255–256. [Google Scholar] [CrossRef]
- Cunningham, E.T., Jr.; Eliott, D.; Miller, N.R.; Maumenee, I.H.; Green, W.R. Familial Axenfeld-Rieger anomaly, atrial septal defect, and sensorineural hearing loss: A possible new genetic syndrome. Arch. Ophthalmol. 1998, 116, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busch, G.; Weiskopf, J.; Busch, K.T. Dysgenesis mesodermalis et ectodermalis Rieger or Rieger’s disease. Klin. Mon. Augenheilkd. Augenarztl. Fortbild. 1960, 136, 512–523. [Google Scholar]
- Gauthier, A.C.; Wiggs, J.L. Childhood glaucoma genes and phenotypes: Focus on FOXC1 mutations causing anterior segment dysgenesis and hearing loss. Exp. Eye Res. 2020, 190, 107893. [Google Scholar] [CrossRef] [PubMed]
- Seifi, M.; Walter, M.A. Axenfeld-Rieger syndrome. Clin. Genet. 2018, 93, 1123–1130. [Google Scholar] [CrossRef]
- D’Haene, B.; Meire, F.; Claerhout, I.; Kroes, H.Y.; Plomp, A.; Arens, Y.H.; de Ravel, T.; Casteels, I.; De Jaegere, S.; Hooghe, S.; et al. Expanding the spectrum of FOXC1 and PITX2 mutations and copy number changes in patients with anterior segment malformations. Invest. Ophthalmol. Vis. Sci. 2011, 52, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Chrystal, P.W.; Walter, M.A. Aniridia and Axenfeld-Rieger Syndrome: Clinical presentations, molecular genetics and current/emerging therapies. Exp. Eye Res. 2019, 189, 107815. [Google Scholar] [CrossRef] [PubMed]
- Ma, A.S.; Grigg, J.R.; Jamieson, R.V. Phenotype-genotype correlations and emerging pathways in ocular anterior segment dysgenesis. Hum. Genet. 2019, 138, 899–915. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.; Hanson, I.; Zaletayev, D.; Hodgson, S.; Prosser, J.; Seawright, A.; Hastie, N.; van Heyningen, V. The human PAX6 gene is mutated in two patients with aniridia. Nat. Genet. 1992, 1, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Ton, C.C.; Hirvonen, H.; Miwa, H.; Weil, M.M.; Monaghan, P.; Jordan, T.; van Heyningen, V.; Hastie, N.D.; Meijers-Heijboer, H.; Drechsler, M.; et al. Positional cloning and characterization of a paired box- and homeobox-containing gene from the aniridia region. Cell 1991, 67, 1059–1074. [Google Scholar] [CrossRef] [Green Version]
- Stoilov, I.; Akarsu, A.N.; Sarfarazi, M. Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 1997, 6, 641–647. [Google Scholar] [CrossRef]
- Lesnik Oberstein, S.A.; Kriek, M.; White, S.J.; Kalf, M.E.; Szuhai, K.; den Dunnen, J.T.; Breuning, M.H.; Hennekam, R.C. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am. J. Hum. Genet. 2006, 79, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, I.M.; Fletcher, J.M.; Jordan, T.; Brown, A.; Taylor, D.; Adams, R.J.; Punnett, H.H.; van Heyningen, V. Mutations at the PAX6 locus are found in heterogeneous anterior segment malformations including Peters’ anomaly. Nat. Genet. 1994, 6, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.O., 3rd; Rodrigues, M.M.; Laibson, P.R. Anterior chamber cleavage syndrome. A stepladder classification. Surv. Ophthalmol. 1975, 20, 3–27. [Google Scholar] [CrossRef]
- Matsubara, A.; Ozeki, H.; Matsunaga, N.; Nozaki, M.; Ashikari, M.; Shirai, S.; Ogura, Y. Histopathological examination of two cases of anterior staphyloma associated with Peters’ anomaly and persistent hyperplastic primary vitreous. Br. J. Ophthalmol. 2001, 85, 1421–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, W.M. Congenital Corneal Leukomas. Am. J. Ophthalmol. 1974, 77, 80–86. [Google Scholar] [CrossRef]
- van Schooneveld, M.J.; Delleman, J.W.; Beemer, F.A.; Bleeker-Wagemakers, E.M. Peters’-plus: A new syndrome. Ophthalmic Paediatr. Genet. 1984, 4, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Kresca, L.J.; Goldberg, M.F. Peters’ anomaly: Dominant inheritance in one pedigree and dextrocardia in another. J. Pediatr. Ophthalmol. Strabismus 1978, 15, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, J.; Buchino, J.J.; Menefee, M.; Ballard, E.; Husain, I. Multiple congenital ocular anomalies with bilateral agenesis of the urinary tract. Ann. Ophthalmol. 1979, 11, 1021–1029. [Google Scholar]
- Frydman, M.; Weinstock, A.L.; Cohen, H.A.; Savir, H.; Varsano, I. Autosomal recessive Peters anomaly, typical facial appearance, failure to thrive, hydrocephalus, and other anomalies: Further delineation of the Krause-Kivlin syndrome. Am. J. Med. Genet. 1991, 40, 34–40. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, J.C.; Reis, D.F.; Llerena Junior, J.; Barbosa Neto, J.; Pontes, R.L.; Middleton, S.; Telles, L.F. Short stature, brachydactyly, and Peters’ anomaly (Peters’-plus syndrome): Confirmation of autosomal recessive inheritance. J. Med. Genet. 1991, 28, 277–279. [Google Scholar] [CrossRef]
- Dolezal, K.A.; Besirli, C.G.; Mian, S.I.; Sugar, A.; Moroi, S.E.; Bohnsack, B.L. Glaucoma and Cornea Surgery Outcomes in Peters Anomaly. Am. J. Ophthalmol. 2019, 208, 367–375. [Google Scholar] [CrossRef]
- Sheheitli, H.; Groth, S.L.; Chang, T.C.P.; Hodapp, E.A.; Grajewski, A.L. A Novel Surgical Approach in the Management of Peters Anomaly With Glaucoma. J. Pediatr. Ophthalmol. Strabismus 2020, 57, e25–e29. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.S.; Hentschel, L.; Davidson, A.E.; Gerrelli, D.; Davie, R.; Rizzo, R.; Pontikos, N.; Plagnol, V.; Moore, A.T.; Sowden, J.C.; et al. Mutations in CPAMD8 Cause a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis. Am. J. Hum. Genet. 2016, 99, 1338–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, S.F.; Gorgels, T.G.; Ten Brink, J.B.; Jansonius, N.M.; Bergen, A.A. Gene expression-based comparison of the human secretory neuroepithelia of the brain choroid plexus and the ocular ciliary body: Potential implications for glaucoma. Fluids Barriers CNS 2014, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Huang, K.; Nakatsu, M.N.; Xue, Z.; Deng, S.X.; Fan, G. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. Hum. Mol. Genet. 2013, 22, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sun, W.; Xiao, X.; Fang, L.; Li, S.; Liu, X.; Zhang, Q. Biallelic variants in CPAMD8 are associated with primary open-angle glaucoma and primary angle-closure glaucoma. Br. J. Ophthalmol. 2021. [Google Scholar] [CrossRef]
- Siggs, O.M.; Souzeau, E.; Taranath, D.A.; Dubowsky, A.; Chappell, A.; Zhou, T.; Javadiyan, S.; Nicholl, J.; Kearns, L.S.; Staffieri, S.E.; et al. Biallelic CPAMD8 Variants Are a Frequent Cause of Childhood and Juvenile Open-Angle Glaucoma. Ophthalmology 2020, 127, 758–766. [Google Scholar] [CrossRef]
- Bonet-Fernandez, J.M.; Aroca-Aguilar, J.D.; Corton, M.; Ramirez, A.I.; Alexandre-Moreno, S.; Garcia-Anton, M.T.; Salazar, J.J.; Ferre-Fernandez, J.J.; Atienzar-Aroca, R.; Villaverde, C.; et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix. Hum. Genet. 2020, 139, 1209–1231. [Google Scholar] [CrossRef]
- Zanetti, A.; D’Avanzo, F.; Rigon, L.; Rampazzo, A.; Concolino, D.; Barone, R.; Volpi, N.; Santoro, L.; Lualdi, S.; Bertola, F.; et al. Molecular diagnosis of patients affected by mucopolysaccharidosis: A multicenter study. Eur. J. Pediatr. 2019, 178, 739–753. [Google Scholar] [CrossRef]
- Stapleton, M.; Hoshina, H.; Sawamoto, K.; Kubaski, F.; Mason, R.W.; Mackenzie, W.G.; Theroux, M.; Kobayashi, H.; Yamaguchi, S.; Suzuki, Y.; et al. Critical review of current MPS guidelines and management. Mol. Genet. Metab. 2019, 126, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Sawamoto, K.; Alvarez Gonzalez, J.V.; Piechnik, M.; Otero, F.J.; Couce, M.L.; Suzuki, Y.; Tomatsu, S. Mucopolysaccharidosis IVA: Diagnosis, Treatment, and Management. Int. J. Mol. Sci. 2020, 21, 1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parini, R.; Biondi, A. The new frame for Mucopolysaccharidoses. Ital. J. Pediatr. 2018, 44, 117. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Peracha, H.; Ballhausen, D.; Wiesbauer, A.; Rohrbach, M.; Gautschi, M.; Mason, R.W.; Giugliani, R.; Suzuki, Y.; Orii, K.E.; et al. Epidemiology of mucopolysaccharidoses. Mol. Genet. Metab. 2017, 121, 227–240. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, J.H.; Lin, H.Z.; Lee, Y.C. Anterior Chamber Angles in Different Types of Mucopolysaccharidoses. Am. J. Ophthalmol. 2020, 212, 175–184. [Google Scholar] [CrossRef]
- Kobayashi, H. Recent trends in mucopolysaccharidosis research. J. Hum. Genet. 2019, 64, 127–137. [Google Scholar] [CrossRef]
- McBride, K.L.; Flanigan, K.M. Update in the Mucopolysaccharidoses. Semin. Pediatr. Neurol. 2021, 37, 100874. [Google Scholar] [CrossRef]
- Tomatsu, S.; Pitz, S.; Hampel, U. Ophthalmological Findings in Mucopolysaccharidoses. J. Clin. Med. 2019, 8, 1467. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, S.; Ponzin, D.; Ashworth, J.L.; Fahnehjelm, K.T.; Summers, C.G.; Harmatz, P.R.; Scarpa, M. Diagnosis and management of ophthalmological features in patients with mucopolysaccharidosis. Br. J. Ophthalmol. 2011, 95, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Fenzl, C.R.; Teramoto, K.; Moshirfar, M. Ocular manifestations and management recommendations of lysosomal storage disorders I: Mucopolysaccharidoses. Clin. Ophthalmol. 2015, 9, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Del Longo, A.; Piozzi, E.; Schweizer, F. Ocular features in mucopolysaccharidosis: Diagnosis and treatment. Ital. J. Pediatr. 2018, 44, 125. [Google Scholar] [CrossRef]
- Bruscolini, A.; Amorelli, G.M.; Rama, P.; Lambiase, A.; La Cava, M.; Abbouda, A. Involvement of the Anterior Segment of the Eye in Patients with Mucopolysaccharidoses: A Review of Reported Cases and Updates on the Latest Diagnostic Instrumentation. Semin. Ophthalmol. 2017, 32, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, J.L.; Biswas, S.; Wraith, E.; Lloyd, I.C. Mucopolysaccharidoses and the eye. Surv. Ophthalmol. 2006, 51, 1–17. [Google Scholar] [CrossRef]
- Ashworth, J.L.; Biswas, S.; Wraith, E.; Lloyd, I.C. The ocular features of the mucopolysaccharidoses. Eye (London) 2006, 20, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Summers, C.G.; Ashworth, J.L. Ocular manifestations as key features for diagnosing mucopolysaccharidoses. Rheumatology (Oxford) 2011, 50 (Suppl. 5), v34–v40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eden, U.; Iggman, D.; Riise, R.; Tornqvist, K. Epidemiology of aniridia in Sweden and Norway. Acta Ophthalmol. 2008, 86, 727–729. [Google Scholar] [CrossRef]
- Eden, U.; Beijar, C.; Riise, R.; Tornqvist, K. Aniridia among children and teenagers in Sweden and Norway. Acta Ophthalmol. 2008, 86, 730–734. [Google Scholar] [CrossRef]
- Nelson, L.B.; Spaeth, G.L.; Nowinski, T.S.; Margo, C.E.; Jackson, L. Aniridia. A review. Surv. Ophthalmol. 1984, 28, 621–642. [Google Scholar] [CrossRef]
- Wawrocka, A.; Krawczynski, M.R. The genetics of aniridia-simple things become complicated. J. Appl. Genet. 2018, 59, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Colby, K.A. A review of the clinical and genetic aspects of aniridia. Semin. Ophthalmol. 2013, 28, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Walton, D.S.; Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 1992, 2, 232–239. [Google Scholar] [CrossRef]
- Hall, H.N.; Williamson, K.A.; FitzPatrick, D.R. The genetic architecture of aniridia and Gillespie syndrome. Hum. Genet. 2019, 138, 881–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.D.; Zhang, J.S.; Xiong, Y.; Li, J.; Li, X.X.; Liu, X.; Zhao, J.; Tsai, F.F.; Vishal, J.; You, Q.S.; et al. Congenital aniridia with cataract: Case series. BMC Ophthalmol. 2017, 17, 115. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.M.; Prasov, L.; Al-Hasani, H.; Marrs, C.E.R.; Tolia, S.; Wiinikka-Buesser, L.; Richards, J.E.; Bohnsack, B.L. Phenotypic Variation in a Four-Generation Family with Aniridia Carrying a Novel PAX6 Mutation. J. Ophthalmol. 2018, 2018, 5978293. [Google Scholar] [CrossRef] [Green Version]
- Parsa, K.K.; Javaheri, M.; Song, J.C.; Borchert, M. Congenital Aniridia: A Descriptive Case Report of Six Family Members Showing Multiple Phenotypes of the Same Disease with Genetic Analysis of the PAX-6 Gene. Invest. Ophthalmol. Vis. Sci. 2003, 44, 1267. [Google Scholar]
- Samant, M.; Chauhan, B.K.; Lathrop, K.L.; Nischal, K.K. Congenital aniridia: Etiology, manifestations and management. Expert Rev. Ophthalmol. 2016, 11, 135–144. [Google Scholar] [CrossRef] [PubMed]
- McEntagart, M.; Williamson, K.A.; Rainger, J.K.; Wheeler, A.; Seawright, A.; De Baere, E.; Verdin, H.; Bergendahl, L.T.; Quigley, A.; Rainger, J.; et al. A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect. Am. J. Hum. Genet. 2016, 98, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Gerber, S.; Alzayady, K.J.; Burglen, L.; Bremond-Gignac, D.; Marchesin, V.; Roche, O.; Rio, M.; Funalot, B.; Calmon, R.; Durr, A.; et al. Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome. Am. J. Hum. Genet. 2016, 98, 971–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdanpanah, G.; Bohm, K.J.; Hassan, O.M.; Karas, F.I.; Elhusseiny, A.M.; Nonpassopon, M.; Niparugs, M.; Tu, E.Y.; Sugar, J.; Rosenblatt, M.I.; et al. Management of Congenital Aniridia-Associated Keratopathy: Long-Term Outcomes from a Tertiary Referral Center. Am. J. Ophthalmol. 2020, 210, 8–18. [Google Scholar] [CrossRef]
- Lee, H.; Khan, R.; O’Keefe, M. Aniridia: Current pathology and management. Acta Ophthalmol. 2008, 86, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Neuhann, I.M.; Neuhann, T.F. Cataract surgery and aniridia. Curr. Opin. Ophthalmol. 2010, 21, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Hingorani, M.; Hanson, I.; van Heyningen, V. Aniridia. Eur. J. Hum. Genet. 2012, 20, 1011–1017. [Google Scholar] [CrossRef]
- Stickler, G.B.; Belau, P.G.; Farrell, F.J.; Jones, J.D.; Pugh, D.G.; Steinberg, A.G.; Ward, L.E. Hereditary Progressive Arthro-Ophthalmopathy. Mayo Clin. Proc. 1965, 40, 433–455. [Google Scholar]
- Francomano, C.A.; Liberfarb, R.M.; Hirose, T.; Maumenee, I.H.; Streeten, E.A.; Meyers, D.A.; Pyeritz, R.E. The Stickler syndrome: Evidence for close linkage to the structural gene for type II collagen. Genomics 1987, 1, 293–296. [Google Scholar] [CrossRef]
- Snead, M.P.; Yates, J.R. Clinical and Molecular genetics of Stickler syndrome. J. Med. Genet. 1999, 36, 353–359. [Google Scholar]
- Luo, Y.Y.; Szlarski, P.M.; Kehlet, S.N.; Karsdal, M.A. Chapter 11—Type XI collagen. In Biochemistry of Collagens, Laminins and Elastin, 3th ed.; Karsdal, M.A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 99–106. [Google Scholar]
- Martin, S.; Richards, A.J.; Yates, J.R.; Scott, J.D.; Pope, M.; Snead, M.P. Stickler syndrome: Further mutations in COL11A1 and evidence for additional locus heterogeneity. Eur. J. Hum. Genet. 1999, 7, 807–814. [Google Scholar] [CrossRef]
- Acke, F.R.; Malfait, F.; Vanakker, O.M.; Steyaert, W.; De Leeneer, K.; Mortier, G.; Dhooge, I.; De Paepe, A.; De Leenheer, E.M.; Coucke, P.J. Novel pathogenic COL11A1/COL11A2 variants in Stickler syndrome detected by targeted NGS and exome sequencing. Mol. Genet. Metab. 2014, 113, 230–235. [Google Scholar] [CrossRef]
- Rose, P.S.; Ahn, N.U.; Levy, H.P.; Magid, D.; Davis, J.; Liberfarb, R.M.; Sponseller, P.D.; Francomano, C.A. The hip in Stickler syndrome. J. Pediatr. Orthop. 2001, 21, 657–663. [Google Scholar] [CrossRef]
- Snead, M.P.; McNinch, A.M.; Poulson, A.V.; Bearcroft, P.; Silverman, B.; Gomersall, P.; Parfect, V.; Richards, A.J. Stickler syndrome, ocular-only variants and a key diagnostic role for the ophthalmologist. Eye (London) 2011, 25, 1389–1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Camp, G.; Snoeckx, R.L.; Hilgert, N.; van den Ende, J.; Fukuoka, H.; Wagatsuma, M.; Suzuki, H.; Smets, R.M.; Vanhoenacker, F.; Declau, F.; et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am. J. Hum. Genet. 2006, 79, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikopoulos, K.; Schrauwen, I.; Simon, M.; Collin, R.W.; Veckeneer, M.; Keymolen, K.; Van Camp, G.; Cremers, F.P.; van den Born, L.I. Autosomal recessive Stickler syndrome in two families is caused by mutations in the COL9A1 gene. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4774–4779. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.; Booth, C.; Fillman, C.; Shapiro, M.; Blair, M.P.; Hyland, J.C.; Ala-Kokko, L. A loss of function mutation in the COL9A2 gene causes autosomal recessive Stickler syndrome. Am. J. Med. Genet. A 2011, 155, 1668–1672. [Google Scholar] [CrossRef] [PubMed]
- Stickler, G.B.; Hughes, W.; Houchin, P. Clinical features of hereditary progressive arthro-ophthalmopathy (Stickler syndrome): A survey. Genet. Med. 2001, 3, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Poulson, A.V.; Hooymans, J.M.; Richards, A.J.; Bearcroft, P.; Murthy, R.; Baguley, D.M.; Scott, J.D.; Snead, M.P. Clinical features of type 2 Stickler syndrome. J. Med. Genet. 2004, 41, e107. [Google Scholar] [CrossRef] [Green Version]
- Seery, C.M.; Pruett, R.C.; Liberfarb, R.M.; Cohen, B.Z. Distinctive cataract in the Stickler syndrome. Am. J. Ophthalmol. 1990, 110, 143–148. [Google Scholar] [CrossRef]
- Scott, J.D. Duke-Elder lecture. Prevention and perspective in retinal detachment. Eye (London) 1989, 3 Pt 5, 491–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, A.; Poulson, A.V.; Goodburn, S.F.; Richards, A.J.; Scott, J.D.; Snead, M.P. Retinal detachment and prophylaxis in type 1 Stickler syndrome. Ophthalmology 2008, 115, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Spallone, A. Stickler’s syndrome: A study of 12 families. Br. J. Ophthalmol. 1987, 71, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zechi-Ceide, R.M.; Jesus Oliveira, N.A.; Guion-Almeida, M.L.; Antunes, L.F.; Richieri-Costa, A.; Passos-Bueno, M.R. Clinical evaluation and COL2A1 gene analysis in 21 Brazilian families with Stickler syndrome: Identification of novel mutations, further genotype/phenotype correlation, and its implications for the diagnosis. Eur. J. Med. Genet. 2008, 51, 183–196. [Google Scholar] [CrossRef]
- Temple, I.K. Stickler’s syndrome. J. Med. Genet. 1989, 26, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Reddy, D.N.; Yonekawa, Y.; Thomas, B.J.; Nudleman, E.D.; Williams, G.A. Long-term surgical outcomes of retinal detachment in patients with Stickler syndrome. Clin. Ophthalmol. 2016, 10, 1531–1534. [Google Scholar] [CrossRef]
- Abeysiri, P.; Bunce, C.; da Cruz, L. Outcomes of surgery for retinal detachment in patients with Stickler syndrome: A comparison of two sequential 20-year cohorts. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 245, 1633–1638. [Google Scholar] [CrossRef]
- Shenoy, B.; Mandal, A.K. Stickler syndrome associated with congenital glaucoma. Lancet 2013, 381, 422. [Google Scholar] [CrossRef]
- Ziakas, N.G.; Ramsay, A.S.; Lynch, S.A.; Clarke, M.P. Stickler’s syndrome associated with congenital glaucoma. Ophthalmic Genet. 1998, 19, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Wubben, T.J.; Branham, K.H.; Besirli, C.G.; Bohnsack, B.L. Retinal detachment and infantile-onset glaucoma in Stickler syndrome associated with known and novel COL2A1 mutations. Ophthalmic Genet. 2018, 39, 615–618. [Google Scholar] [CrossRef]
- Treurniet, S.; Burger, P.; Ghyczy, E.A.E.; Verbraak, F.D.; Curro-Tafili, K.R.; Micha, D.; Bravenboer, N.; Ralston, S.H.; de Vries, R.; Moll, A.C.; et al. Ocular characteristics and complications in patients with osteogenesis imperfecta: A systematic review. Acta Ophthalmol. 2021. [Google Scholar] [CrossRef]
- van Dijk, F.S.; Cobben, J.M.; Maugeri, A.; Nikkels, P.G.; van Rijn, R.R.; Pals, G. Osteogenesis imperfecta: Clinical and genetic heterogeneity. Ned. Tijdschr. Geneeskd. 2012, 156, A4585. [Google Scholar] [PubMed]
- Carre, F.; Achard, S.; Rouillon, I.; Parodi, M.; Loundon, N. Hearing impairment and osteogenesis imperfecta: Literature review. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2019, 136, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Lund, A.M.; Jensen, B.L.; Nielsen, L.A.; Skovby, F. Dental manifestations of osteogenesis imperfecta and abnormalities of collagen I metabolism. J. Craniofac. Genet. Dev. Biol. 1998, 18, 30–37. [Google Scholar] [PubMed]
- Sillence, D.O.; Rimoin, D.L.; Danks, D.M. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig. Artic. Ser. 1979, 15, 113–129. [Google Scholar]
- Van Dijk, F.S.; Sillence, D.O. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 2014, 164, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Hald, J.D.; Folkestad, L.; Swan, C.Z.; Wanscher, J.; Schmidt, M.; Gjorup, H.; Haubek, D.; Leonhard, C.H.; Larsen, D.A.; Hjortdal, J.O.; et al. Osteogenesis imperfecta and the teeth, eyes, and ears-a study of non-skeletal phenotypes in adults. Osteoporos. Int. 2018, 29, 2781–2789. [Google Scholar] [CrossRef]
- Evereklioglu, C.; Madenci, E.; Bayazit, Y.A.; Yilmaz, K.; Balat, A.; Bekir, N.A. Central corneal thickness is lower in osteogenesis imperfecta and negatively correlates with the presence of blue sclera. Ophthalmic Physiol. Opt. 2002, 22, 511–515. [Google Scholar] [CrossRef]
- Dimasi, D.P.; Chen, J.Y.; Hewitt, A.W.; Klebe, S.; Davey, R.; Stirling, J.; Thompson, E.; Forbes, R.; Tan, T.Y.; Savarirayan, R.; et al. Novel quantitative trait loci for central corneal thickness identified by candidate gene analysis of osteogenesis imperfecta genes. Hum. Genet. 2010, 127, 33–44. [Google Scholar] [CrossRef]
- Wenstrup, R.J.; Willing, M.C.; Starman, B.J.; Byers, P.H. Distinct biochemical phenotypes predict clinical severity in nonlethal variants of osteogenesis imperfecta. Am. J. Hum. Genet. 1990, 46, 975–982. [Google Scholar]
- Beighton, P. Familial dentinogenesis imperfecta, blue sclerae, and wormian bones without fractures: Another type of osteogenesis imperfecta? J. Med. Genet. 1981, 18, 124–128. [Google Scholar] [CrossRef]
- Sillence, D.; Butler, B.; Latham, M.; Barlow, K. Natural history of blue sclerae in osteogenesis imperfecta. Am. J. Med. Genet. 1993, 45, 183–186. [Google Scholar] [CrossRef]
- Kaiser-Kupfer, M.I.; Podgor, M.J.; McCain, L.; Kupfer, C.; Shapiro, J.R. Correlation of ocular rigidity and blue sclerae in osteogenesis imperfecta. Trans. Ophthalmol. Soc. UK 1985, 104 Pt 2, 191–195. [Google Scholar]
- Kaiser-Kupfer, M.I.; McCain, L.; Shapiro, J.R.; Podgor, M.J.; Kupfer, C.; Rowe, D. Low ocular rigidity in patients with osteogenesis imperfecta. Invest. Ophthalmol. Vis. Sci. 1981, 20, 807–809. [Google Scholar] [PubMed]
- Eliott, D.; Rezai, K.A.; Dass, A.B.; Lewis, J. Management of retinal detachment in osteogenesis imperfecta. Arch. Ophthalmol. 2003, 121, 1062–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleissig, E.; Barak, A. Surgical Management of Retinal Detachment in Osteogenesis Imperfecta: Case Report and Review of the Literature. Retin. Cases Brief Rep. 2019, 13, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Jonisch, J.; Deramo, V.A. Sutureless 25-gauge vitrectomy for retinal detachment repair in a patient with osteogenesis imperfecta. Retin. Cases Brief Rep. 2011, 5, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Church, J.R.; Winder, S.M. Surgical repair of a retinal detachment in a patient with osteogenesis imperfecta. Retina 2006, 26, 242–243. [Google Scholar] [CrossRef]
- Madigan, W.P.; Wertz, D.; Cockerham, G.C.; Thach, A.B. Retinal detachment in osteogenesis imperfecta. J. Pediatr. Ophthalmol. Strabismus 1994, 31, 268–269. [Google Scholar] [CrossRef]
- Mauri, L.; Uebe, S.; Sticht, H.; Vossmerbaeumer, U.; Weisschuh, N.; Manfredini, E.; Maselli, E.; Patrosso, M.; Weinreb, R.N.; Penco, S.; et al. Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma. Orphanet. J. Rare Dis. 2016, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Bohnsack, B.L. Infantile-onset glaucoma and anterior megalophthalmos in osteogenesis imperfecta. J. AAPOS 2016, 20, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, M.E.; Halley, D.J.; Smit, L.S.; Lequin, M.H.; Cobben, J.M.; de Coo, R.; van Harssel, J.; Sallevelt, S.; Woldringh, G.; van der Knaap, M.S.; et al. The expanding phenotype of COL4A1 and COL4A2 mutations: Clinical data on 13 newly identified families and a review of the literature. Genet. Med. 2015, 17, 843–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, M.; Kiss, M.; Ou, Y.; Gould, D.B. Genetic dissection of anterior segment dysgenesis caused by a Col4a1 mutation in mouse. Dis. Model. Mech. 2017, 10, 475–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souma, T.; Tompson, S.W.; Thomson, B.R.; Siggs, O.M.; Kizhatil, K.; Yamaguchi, S.; Feng, L.; Limviphuvadh, V.; Whisenhunt, K.N.; Maurer-Stroh, S.; et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J. Clin. Investig. 2016, 126, 2575–2587. [Google Scholar] [CrossRef] [PubMed]
- Thomson, B.R.; Souma, T.; Tompson, S.W.; Onay, T.; Kizhatil, K.; Siggs, O.M.; Feng, L.; Whisenhunt, K.N.; Yanovitch, T.L.; Kalaydjieva, L.; et al. Angiopoietin-1 is required for Schlemm’s canal development in mice and humans. J. Clin. Investig. 2017, 127, 4421–4436. [Google Scholar] [CrossRef]
- Limaye, N.; Wouters, V.; Uebelhoer, M.; Tuominen, M.; Wirkkala, R.; Mulliken, J.B.; Eklund, L.; Boon, L.M.; Vikkula, M. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat. Genet. 2009, 41, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, J.; Goutieres, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 1984, 15, 49–54. [Google Scholar] [CrossRef]
- Crow, Y.J.; Leitch, A.; Hayward, B.E.; Garner, A.; Parmar, R.; Griffith, E.; Ali, M.; Semple, C.; Aicardi, J.; Babul-Hirji, R.; et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 2006, 38, 910–916. [Google Scholar] [CrossRef]
- Rice, G.I.; Del Toro Duany, Y.; Jenkinson, E.M.; Forte, G.M.; Anderson, B.H.; Ariaudo, G.; Bader-Meunier, B.; Baildam, E.M.; Battini, R.; Beresford, M.W.; et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 2014, 46, 503–509. [Google Scholar] [CrossRef]
- Rice, G.I.; Park, S.; Gavazzi, F.; Adang, L.A.; Ayuk, L.A.; Van Eyck, L.; Seabra, L.; Barrea, C.; Battini, R.; Belot, A.; et al. Genetic and phenotypic spectrum associated with IFIH1 gain-of-function. Hum. Mutat 2020, 41, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Crow, Y.J.; Chase, D.S.; Lowenstein Schmidt, J.; Szynkiewicz, M.; Forte, G.M.; Gornall, H.L.; Oojageer, A.; Anderson, B.; Pizzino, A.; Helman, G.; et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 2015, 167, 296–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, E.B.; Merten, D.F. An unusual syndrome of widened medullary cavities of the metacarpals and phalanges, aortic calcification and abnormal dentition. Pediatr. Radiol. 1973, 1, 2–7. [Google Scholar] [CrossRef]
- Jang, M.A.; Kim, E.K.; Now, H.; Nguyen, N.T.; Kim, W.J.; Yoo, J.Y.; Lee, J.; Jeong, Y.M.; Kim, C.H.; Kim, O.H.; et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am. J. Hum. Genet. 2015, 96, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Feigenbaum, A.; Muller, C.; Yale, C.; Kleinheinz, J.; Jezewski, P.; Kehl, H.G.; MacDougall, M.; Rutsch, F.; Hennekam, R.C. Singleton-Merten syndrome: An autosomal dominant disorder with variable expression. Am. J. Med. Genet. A 2013, 161, 360–370. [Google Scholar] [CrossRef]
- Rutsch, F.; MacDougall, M.; Lu, C.; Buers, I.; Mamaeva, O.; Nitschke, Y.; Rice, G.I.; Erlandsen, H.; Kehl, H.G.; Thiele, H.; et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am. J. Hum. Genet. 2015, 96, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasov, L.; Bohnsack, B.L.; El Husny, A.S.; Tsoi, L.C.; Guan, B.; Kahlenberg, J.M.; Almeida, E.; Wang, H.; Cowen, E.W.; De Jesus, A.A.; et al. DDX58(RIG-I)-related disease is associated with tissue-specific interferon pathway activation. J. Med. Genet. 2021. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Crow, Y.J.; Gahl, W.A.; Gardner, P.J.; Goldbach-Mansky, R.; Hur, S.; de Jesus, A.A.; Nehrebecky, M.; Park, J.W.; Briggs, T.A. DDX58 and Classic Singleton-Merten Syndrome. J. Clin. Immunol. 2019, 39, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Vanderver, A.; Adang, L.; Gavazzi, F.; McDonald, K.; Helman, G.; Frank, D.B.; Jaffe, N.; Yum, S.W.; Collins, A.; Keller, S.R.; et al. Janus Kinase Inhibition in the Aicardi-Goutieres Syndrome. N. Engl. J. Med. 2020, 383, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Abu Tayeh, A.; Funabiki, M.; Shimizu, S.; Satoh, S.; Sumin, L.; Iwakura, Y.; Kato, H.; Fujita, T. Psoriasis-like skin disorder in transgenic mice expressing a RIG-I Singleton-Merten syndrome variant. Int. Immunol. 2021, 33, 211–224. [Google Scholar] [CrossRef]
- Carricondo, P.C.; Andrade, T.; Prasov, L.; Ayres, B.M.; Moroi, S.E. Nanophthalmos: A Review of the Clinical Spectrum and Genetics. J. Ophthalmol. 2018, 2018, 2735465. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Snieder, H.; Gilbert, C.E.; Spector, T.D. Genes and environment in refractive error: The twin eye study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1232–1236. [Google Scholar]
- Klein, A.P.; Suktitipat, B.; Duggal, P.; Lee, K.E.; Klein, R.; Bailey-Wilson, J.E.; Klein, B.E. Heritability analysis of spherical equivalent, axial length, corneal curvature, and anterior chamber depth in the Beaver Dam Eye Study. Arch. Ophthalmol. 2009, 127, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Gal, A.; Rau, I.; El Matri, L.; Kreienkamp, H.J.; Fehr, S.; Baklouti, K.; Chouchane, I.; Li, Y.; Rehbein, M.; Fuchs, J.; et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. Am. J. Hum. Genet. 2011, 88, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Nair, K.S.; Hmani-Aifa, M.; Ali, Z.; Kearney, A.L.; Ben Salem, S.; Macalinao, D.G.; Cosma, I.M.; Bouassida, W.; Hakim, B.; Benzina, Z.; et al. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat. Genet. 2011, 43, 579–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundin, O.H.; Leppert, G.S.; Silva, E.D.; Yang, J.M.; Dharmaraj, S.; Maumenee, I.H.; Santos, L.C.; Parsa, C.F.; Traboulsi, E.I.; Broman, K.W.; et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc. Natl. Acad. Sci. USA 2005, 102, 9553–9558. [Google Scholar] [CrossRef] [Green Version]
- Garnai, S.J.; Brinkmeier, M.L.; Emery, B.; Aleman, T.S.; Pyle, L.C.; Veleva-Rotse, B.; Sisk, R.A.; Rozsa, F.W.; Ozel, A.B.; Li, J.Z.; et al. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. PLoS Genet. 2019, 15, e1008130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Sun, W.; Ouyang, J.; Li, S.; Jia, X.; Tan, Z.; Hejtmancik, J.F.; Zhang, Q. Novel truncation mutations in MYRF cause autosomal dominant high hyperopia mapped to 11p12-q13.3. Hum. Genet. 2019, 138, 1077–1090. [Google Scholar] [CrossRef] [Green Version]
- Isojima, T.; Doi, K.; Mitsui, J.; Oda, Y.; Tokuhiro, E.; Yasoda, A.; Yorifuji, T.; Horikawa, R.; Yoshimura, J.; Ishiura, H.; et al. A recurrent de novo FAM111A mutation causes Kenny-Caffey syndrome type 2. J. Bone Miner. Res. 2014, 29, 992–998. [Google Scholar] [CrossRef]
- Othman, M.I.; Sullivan, S.A.; Skuta, G.L.; Cockrell, D.A.; Stringham, H.M.; Downs, C.A.; Fornes, A.; Mick, A.; Boehnke, M.; Vollrath, D.; et al. Autosomal dominant nanophthalmos (NNO1) with high hyperopia and angle-closure glaucoma maps to chromosome 11. Am. J. Hum. Genet. 1998, 63, 1411–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinz, H.; Pyle, L.C.; Li, D.; Izumi, K.; Skraban, C.; Tarpinian, J.; Braddock, S.R.; Telegrafi, A.; Monaghan, K.G.; Zackai, E.; et al. De novo variants in Myelin regulatory factor (MYRF) as candidates of a new syndrome of cardiac and urogenital anomalies. Am. J. Med. Genet. A 2018, 176, 969–972. [Google Scholar] [CrossRef]
- Qi, H.; Yu, L.; Zhou, X.; Wynn, J.; Zhao, H.; Guo, Y.; Zhu, N.; Kitaygorodsky, A.; Hernan, R.; Aspelund, G.; et al. De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet. 2018, 14, e1007822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, F.M.; Linarelli, L. Dwarfism and cortical thickening of tubular bones. Transient hypocalcemia in a mother and son. Am. J. Dis Child. 1966, 111, 201–207. [Google Scholar] [CrossRef]
- Unger, S.; Gorna, M.W.; Le Bechec, A.; Do Vale-Pereira, S.; Bedeschi, M.F.; Geiberger, S.; Grigelioniene, G.; Horemuzova, E.; Lalatta, F.; Lausch, E.; et al. FAM111A mutations result in hypoparathyroidism and impaired skeletal development. Am. J. Hum. Genet. 2013, 92, 990–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoallem, B.; Arno, G.; De Zaeytijd, J.; Verdin, H.; Balikova, I.; Casteels, I.; de Ravel, T.; Hull, S.; Suzani, M.; Destree, A.; et al. The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56. Sci. Rep. 2020, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Prasov, L.; Guan, B.; Ullah, E.; Archer, S.M.; Ayres, B.M.; Besirli, C.G.; Wiinikka-Buesser, L.; Comer, G.M.; Del Monte, M.A.; Elner, S.G.; et al. Novel TMEM98, MFRP, PRSS56 variants in a large United States high hyperopia and nanophthalmos cohort. Sci. Rep. 2020, 10, 19986. [Google Scholar] [CrossRef] [PubMed]
- Siggs, O.M.; Awadalla, M.S.; Souzeau, E.; Staffieri, S.E.; Kearns, L.S.; Laurie, K.; Kuot, A.; Qassim, A.; Edwards, T.L.; Coote, M.A.; et al. The genetic and clinical landscape of nanophthalmos and posterior microphthalmos in an Australian cohort. Clin. Genet. 2020, 97, 764–769. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.S.; Vasavada, A.R.; Allen, Q.B.; Snyder, M.E.; Devgan, U.; Braga-Mele, R.; ASCRS Cataract Clinical Committee. Cataract surgery in the small eye. J. Cataract. Refract. Surg. 2015, 41, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Crespi, J.; Buil, J.A.; Bassaganyas, F.; Vela-Segarra, J.I.; Diaz-Cascajosa, J.; Ayala-Ramirez, R.; Zenteno, J.C. A novel mutation confirms MFRP as the gene causing the syndrome of nanophthalmos-renititis pigmentosa-foveoschisis-optic disk drusen. Am. J. Ophthalmol. 2008, 146, 323–328. [Google Scholar] [CrossRef]
- Ayala-Ramirez, R.; Graue-Wiechers, F.; Robredo, V.; Amato-Almanza, M.; Horta-Diez, I.; Zenteno, J.C. A new autosomal recessive syndrome consisting of posterior microphthalmos, retinitis pigmentosa, foveoschisis, and optic disc drusen is caused by a MFRP gene mutation. Mol. Vis. 2006, 12, 1483–1489. [Google Scholar] [PubMed]
- Yardley, J.; Leroy, B.P.; Hart-Holden, N.; Lafaut, B.A.; Loeys, B.; Messiaen, L.M.; Perveen, R.; Reddy, M.A.; Bhattacharya, S.S.; Traboulsi, E.; et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Investig. Ophthalmol. Vis. Sci. 2004, 45, 3683–3689. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, M.; Verhoeven, V.J.M.; Buitendijk, G.H.S.; Polling, J.R.; Meester-Smoor, M.A.; Hofman, A.; Consortium, R.D.; Kamermans, M.; Ingeborgh van den Born, L.; Klaver, C.C.W. Development of Refractive Errors-What Can We Learn from Inherited Retinal Dystrophies? Am. J. Ophthalmol. 2017, 182, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Aleman, T.S.; Uyhazi, K.E.; Serrano, L.W.; Vasireddy, V.; Bowman, S.J.; Ammar, M.J.; Pearson, D.J.; Maguire, A.M.; Bennett, J. RDH12 Mutations Cause a Severe Retinal Degeneration With Relatively Spared Rod Function. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5225–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell-Eggitt, I.M.; Clayton, P.T.; Coffey, R.; Kriss, A.; Taylor, D.S.; Taylor, J.F. Alstrom syndrome. Report of 22 cases and literature review. Ophthalmology 1998, 105, 1274–1280. [Google Scholar] [CrossRef]
- Wu, W.; Dawson, D.G.; Sugar, A.; Elner, S.G.; Meyer, K.A.; McKey, J.B.; Moroi, S.E. Cataract surgery in patients with nanophthalmos: Results and complications. J. Cataract. Refract. Surg. 2004, 30, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Rajendrababu, S.; Shroff, S.; Uduman, M.S.; Babu, N. Clinical spectrum and treatment outcomes of patients with nanophthalmos. Eye (London) 2021, 35, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Velez, G.; Tsang, S.H.; Tsai, Y.T.; Hsu, C.W.; Gore, A.; Abdelhakim, A.H.; Mahajan, M.; Silverman, R.H.; Sparrow, J.R.; Bassuk, A.G.; et al. Gene Therapy Restores Mfrp and Corrects Axial Eye Length. Sci. Rep. 2017, 7, 16151. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Known Genes (Inheritance Pattern) | Ocular Features | Systemic Features |
---|---|---|---|
Anterior segment dysgenesis (including Axenfeld–Rieger syndrome) | PITX2 (AD) FOXC1 (AD) CPAMD8 (AR) | Posterior embyotoxon, corectopia, iris hypoplasia, polycoria, dysplastic angle structures, glaucoma CPAMD8 with also iridodonesis, ectopia lentis, ectropion uvea | Axenfeld–Rieger syndrome: dental hypoplasia, flat mid-face, umbilical abnormalities, pituitary abnormalities, cardiac defects, sensorineural hearing loss, myotonic dystrophy |
Peters Anomaly | PITX2 (AD) FOXC1 (AD) PAX6 (AD) CYP1B1 (AD/AR) B3GALTL (AR) | Central corneal opacities, iris synechiae, absence of corneal endothelium, absence of descemet membrane, glaucoma | Peters Plus syndrome: short stature, abnormal ears, brachyomorphism |
Aniridia | PAX6 (AD/AR) ITPR1 (AD/AR) FOXC1 (AD) PITX2 (AD) | Iris hypoplasia (total or partial), limbal stem cell deficiency, keratopathy, cataracts, foveal hypoplasia, optic nerve hypoplasia, nystagmus, glaucoma | WAGR syndrome: Wilms tumor, genitourinary abnormalities, mental retardation Gillespie syndrome: Cerebellar ataxia, intellectual disability |
Stickler Syndrome | COL2A1 (AD) COL11A1 (AD) COL9A1 (AR) COL9A2 (AR) | Myopia, cataracts, retinal detachments, elongated ciliary processes, glaucoma | Midface hypoplasia, cleft palate, glossoptosis, sensorineural hearing loss, short stature, arthropathy |
Osteogenesis Imperfecta | COL1A1 (AD) COL1A2 (AD) IFITM5 (AD) | Corneal thinning, scleral thinning (blue sclera), low ocular rigidity short axial length, retinal detachment, glaucoma | Bone fragility, low bone mineral density skeletal deformities, dentinogenesis imperfecta, hyperlaxity of ligaments, cardiovascular disease, hearing loss |
COL4A1-associated connective tissue disorder | COL4A1 (AD) | Anterior segment dysgenesis similar to Axenfeld–Rieger syndrome | Cerebrovascular abnormalities, leukoencephalopathy, cardiac abnormalities, renal abnormalities, muscular abnormalities |
TEK/ANGPT1—glaucoma | TEK (AD) ANGPT1 (AD) | Primary congenital glaucoma | None |
Aicardi–Goutieres Syndrome | TREX1 (AR) RNASEH2A (AR) RNASEH2B (AR) RNASEH2C (AR) SAMHD1 (AR) ADAR (AR) IFIH1 (AD) | Congenital glaucoma, optic atrophy, cortical blindness | Encephalopathy, microcephaly leukodystrophy, cerebral atrophy, intracranial calcifications, hepatosplenomegaly, thrombocytopenia, lupus-like syndrome |
Singleton–Merten Syndrome | DDX58 (AD) IFIH1 (AD) | Congenital or juvenile open-angle glaucoma Ocular surface disease | Psoriasiform rash, vascular calcifications skeletal dysplasia, tendon rupture, arthritis, dental anomalies |
Nanophthalmos | MFRP (AR) PRSS56 (AR) BEST1 (AR) TMEM98 (AD) CRB1 (AR) MYRF (AD) FAM111A (AR) | Axial hyperopia, esotropia, foveal hypoplasia, optic disc drusen, retinoschisis/foveoschisis, retinitis pigmentosa, chorioretinal folds, central retinal vein occlusions, angle closure glaucoma | Cardiac-urogenital syndrome (CUGS): Diaphragmatic hernia, cardiopulmonary vascular anomalies (i.e., Scimitar syndrome), pulmonary hypoplasia, urogenital anomalies Kenny-Caffey syndrome: skeletal dysplasia, short stature, hypocalcemia, microorchidism |
Type | Subtype | Eponym | Defective Enzyme | Accumulated GAG | Gene Locus | Inheritance | Corneal Clouding | Glaucoma | Optic Neuropathy |
---|---|---|---|---|---|---|---|---|---|
I | IH | Hurler | α-L-Iduronidase | HS, DS | 4p16.3 | AR | + → +++ 6 months–1.1 years | +/++ 1 year | +/++ 17 years |
I H/S | Hurler-Scheie | α-L-Iduronidase | HS, DS | 4p16.3 | AR | +/++ 4.4 years | ++ 1 year | ++ 17 years | |
IS | Scheie | α-L-Iduronidase | HS, DS | 4p16.3 | AR | + → +++ 24 months–10.5 years | +/++ 1 year | +/++ 17 years | |
II | Hunter | Iduronate-2-sulfatase | HS, DS | Xq28 | XL recessive | Clear/+ | + 7.5 years | None → ++ 33 years | |
III | A | Sanfilippo A | Heparan-N-sulfatase | HS | 17q25.3 | AR | + | + | + |
B | Sanfilippo B | α-N-acetylglucosaminidase | HS | 17q21 | AR | + | + | + | |
C | Sanfilippo C | α-glucosaminidase-acetyltranferase | HS | 8p11.1 | AR | + | + | + | |
D | Sanfilippo D | N-acetylglucosamine-6-sulfatase | HS | 12q14 | AR | + 8 years | + | + | |
IV | A | Morquino A | N-acetylgalactosamine-6-sulfatase | KS | 16q24 | AR | + 11 years | + 7.8 years | None → + |
B | Morquino B | β-galactosidase | KS | 16q24 | AR | + 11 years | + 7.8 years | None → + | |
VI | Maroteaux-Lamy | N-acetylgalactosamine-4-sulfatase | DS | 5q12 | AR | +++ 7 years | ++ 3 years | None → ++ 26 years | |
VII | Sly | β-D-glucuronidase | HS, DS, KS | 7q22 | AR | +/++ 15 years | ++ | None → ++ | |
IX | Natowicz | Hyaluronidase | CS | 3p21.2–3 | AR | unknown | unknown | unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balikov, D.A.; Jacobson, A.; Prasov, L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes 2021, 12, 1403. https://doi.org/10.3390/genes12091403
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes. 2021; 12(9):1403. https://doi.org/10.3390/genes12091403
Chicago/Turabian StyleBalikov, Daniel A., Adam Jacobson, and Lev Prasov. 2021. "Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders" Genes 12, no. 9: 1403. https://doi.org/10.3390/genes12091403
APA StyleBalikov, D. A., Jacobson, A., & Prasov, L. (2021). Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes, 12(9), 1403. https://doi.org/10.3390/genes12091403