Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, J.L. Malformations in infants of diabetic mothers. Teratology 1982, 25, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.M.; Tygstrup, I.; Pedersen, J. Congenital malformations in newborn infants of diabetic women: Correlation with maternal diabetic vascular complications. Lancet 1964, 1, 1124–1126. [Google Scholar] [CrossRef]
- Ornoy, A.; Reece, E.A.; Pavlinkova, G.; Kappen, C.; Miller, R.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res. Part. C Embryo Today Rev. 2015, 105, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Kucera, J. Rate and type of congenital anomalies among offspring of diabetic women. J. Reprod Med. 1971, 7, 73–82. [Google Scholar] [PubMed]
- Vlachova, Z.; Bytoft, B.; Knorr, S.; Clausen, T.D.; Jensen, R.B.; Mathiesen, E.R.; Hojlund, K.; Ovesen, P.; Beck-Nielsen, H.; Gravholt, C.H.; et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: The EPICOM study. Diabetologia 2015, 58, 14541463. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Kohlhoff, R.; Rohde, W.; Dorner, G. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 451–456. [Google Scholar] [CrossRef]
- Bozkurt, L.; Gobl, C.S.; Rami-Merhar, B.; Winhofer, Y.; Baumgartner-Parzer, S.; Schober, E.; Kautzky-Willer, A. The Cross-Link between Adipokines, Insulin Resistance and Obesity in Offspring of Diabetic Pregnancies. Horm. Res. Paediatr. 2016, 86, 300–308. [Google Scholar] [CrossRef]
- Dorner, G.; Plagemann, A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm. Metab. Res. 1994, 26, 213–221. [Google Scholar] [CrossRef]
- Catalano, P.M.; Hauguel-De Mouzon, S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am. J. Obstet. Gynecol. 2011, 204, 479–487. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental Origins of Chronic Disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Kappen, C.; Kruger, C.; MacGowan, J.; Salbaum, J.M. Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy. Reprod. Toxicol. 2011, 31, 41–49. [Google Scholar] [CrossRef]
- Kappen, C.; Kruger, C.; MacGowan, J.; Salbaum, J.M. Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy. PLoS ONE 2012, 7, e38445. [Google Scholar] [CrossRef] [PubMed]
- Salbaum, J.M.; Kruger, C.; Zhang, X.; Delahaye, N.A.; Pavlinkova, G.; Burk, D.H.; Kappen, C. Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy. Diabetologia 2011, 54, 1909–1920. [Google Scholar] [CrossRef]
- Inagaki, M.; Nishimura, T.; Nakanishi, T.; Shimada, H.; Noguchi, S.; Akanuma, S.I.; Tachikawa, M.; Hosoya, K.I.; Tamai, I.; Nakashima, E.; et al. Contribution of Prostaglandin Transporter OATP2A1/SLCO2A1 to Placenta-to-Maternal Hormone Signaling and Labor Induction. iScience 2020, 23, 101098. [Google Scholar] [CrossRef] [PubMed]
- Nicola, C.; Lala, P.K.; Chakraborty, C. Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. Biol. Reprod. 2008, 78, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Horita, H.; Kuroda, E.; Hachisuga, T.; Kashimura, M.; Yamashita, U. Induction of prostaglandin E2 production by leukemia inhibitory factor promotes migration of first trimester extravillous trophoblast cell line, HTR-8/SVneo. Hum. Reprod. 2007, 22, 1801–1809. [Google Scholar] [CrossRef]
- Kruger, C.; Talmadge, C.; Kappen, C. Expression of folate pathway genes in the cartilage of Hoxd4 and Hoxc8 transgenic mice. Birth Defects Res. A Clin. Mol. Teratol. 2006, 76, 216–229. [Google Scholar] [CrossRef]
- Kappen, C.; Kruger, C.; Jones, S.; Herion, N.J.; Salbaum, J.M. Maternal diet modulates placental nutrient transporter gene expression in a mouse model of diabetic pregnancy. PLoS ONE 2019, 14, e0224754. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L. The insulin-like growth factors and feto-placental growth. Placenta 2003, 24, 803–812. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Q.; Haider, M.; Bell, M.; Gruslin, A.; Christians, J.K. Expression of pregnancy-associated plasma protein A2 during pregnancy in human and mouse. J. Endocrinol. 2009, 202, 337–345. [Google Scholar] [CrossRef]
- Gyrup, C.; Oxvig, C. Quantitative analysis of insulin-like growth factor-modulated proteolysis of insulin-like growth factor binding protein-4 and -5 by pregnancy-associated plasma protein-A. Biochemistry 2007, 46, 1972–1980. [Google Scholar] [CrossRef]
- Gaidamauskas, E.; Gyrup, C.; Boldt, H.B.; Schack, V.R.; Overgaard, M.T.; Laursen, L.S.; Oxvig, C. IGF dependent modulation of IGF binding protein (IGFBP) proteolysis by pregnancy-associated plasma protein-A (PAPP-A): Multiple PAPP-A-IGFBP interaction sites. Biochim. Biophys. Acta 2013, 1830, 2701–2709. [Google Scholar] [CrossRef]
- Conover, C.A.; Bale, L.K.; Overgaard, M.T.; Johnstone, E.W.; Laursen, U.H.; Fuchtbauer, E.M.; Oxvig, C.; van Deursen, J. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 2004, 131, 1187–1194. [Google Scholar] [CrossRef]
- Christians, J.K.; de Zwaan, D.R.; Fung, S.H. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice. PLoS ONE 2013, 8, e56260. [Google Scholar] [CrossRef]
- Ozanne, S.E.; Nicholas Hales, C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 2005, 126, 852–854. [Google Scholar] [CrossRef]
- Berends, L.M.; Dearden, L.; Tung, Y.C.L.; Voshol, P.; Fernandez-Twinn, D.S.; Ozanne, S.E. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018, 61, 2225–2234. [Google Scholar] [CrossRef]
- Essalmani, R.; Hamelin, J.; Marcinkiewicz, J.; Chamberland, A.; Mbikay, M.; Chretien, M.; Seidah, N.G.; Prat, A. Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol. 2006, 26, 354–361. [Google Scholar] [CrossRef]
- Zhang, H.; Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996, 122, 2977–2986. [Google Scholar] [CrossRef]
- Li, Y.; Klena, N.T.; Gabriel, G.C.; Liu, X.; Kim, A.J.; Lemke, K.; Chen, Y.; Chatterjee, B.; Devine, W.; Damerla, R.R.; et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015, 521, 520–524. [Google Scholar] [CrossRef]
- Koscielny, G.; Yaikhom, G.; Iyer, V.; Meehan, T.F.; Morgan, H.; Atienza-Herrero, J.; Blake, A.; Chen, C.K.; Easty, R.; Di Fenza, A.; et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014, 42, D802–D809. [Google Scholar] [CrossRef]
- Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.; Kromer, M.; Kuznetsov, S.A.; Mankani, M.; Robey, P.G.; Poole, A.R.; Pidoux, I.; et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999, 99, 81–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, G.; Shao, G.; Wang, C.; Lin, C.; Fang, H.; Balajee, A.S.; Bhagat, G.; Hei, T.K.; Zhao, Y. TGFBI deficiency predisposes mice to spontaneous tumor development. Cancer Res. 2009, 69, 37–44. [Google Scholar] [CrossRef]
- Boing, M.; Brand-Saberi, B.; Napirei, M. Murine transcription factor Math6 is a regulator of placenta development. Sci. Rep. 2018, 8, 14997. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, V.; Fineberg Em Wilson, R.; Murray, A.; Mazzeo, C.I.; Tudor, C.; Sienerth, A.; White, J.K.; Tuck, E.; Ryder, E.J. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 2018, 555, 463–468. [Google Scholar] [CrossRef]
- Guillemot, F.; Nagy, A.; Auerbach, A.; Rossant, J.; Joyner, A.L. Essential role of Mash-2 in extraembryonic development. Nature 1994, 371, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Yavarone, M.S.; Shuey, D.L.; Sadler, T.W.; Lauder, J.M. Serotonin uptake in the ectoplacental cone and placenta of the mouse. Placenta 1993, 14, 149–161. [Google Scholar] [CrossRef]
- Lescisin, K.R.; SVarmuza Rossant, J. Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev. 1988, 2, 1639–1646. [Google Scholar] [CrossRef]
- Wiemers, D.O.; Shao, L.J.; Ain, R.; Dai, G.; Soares, M.J. The mouse prolactin gene family locus. Endocrinology 2003, 144, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Shuey, D.L.; Yavarone, M.; Sadler, T.W.; Lauder, J.M. Serotonin and morphogenesis in the cultured mouse embryo. Adv. Exp. Med. Biol. 1990, 265, 205–215. [Google Scholar]
- Lauder, J.M.; JAWallace Krebs, H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 1981, 133, 477–506. [Google Scholar]
- Murphy, D.L.; Fox, M.A.; Timpano, K.R.; Moya, P.R.; Ren-Patterson, R.; Andrews, A.M.; Holmes, A.; Lesch, K.P.; Wendland, J.R. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008, 55, 932–960. [Google Scholar] [CrossRef]
- Cote, F.; Fligny, C.; Bayard, E.; Launay, J.M.; Gershon, M.D.; Mallet, J.; Vodjdani, G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA 2007, 104, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol. Reprod. 2020, 102, 532–538. [Google Scholar] [CrossRef]
- McGrath, K.E.; Koniski, A.D.; Malik, J.; Palis, J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood 2003, 101, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, M.; Nishimura, T.; Akanuma, S.I.; Nakanishi, T.; Tachikawa, M.; Tamai, I.; Hosoya, K.I.; Nakashima, E.; Tomi, M. Co-localization of microsomal prostaglandin E synthase-1 with cyclooxygenase-1 in layer II of murine placental syncytiotrophoblasts. Placenta 2017, 53, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Chida, S.; Mettler, L. Effects of indomethacin, prostaglandin E2 and prostaglandin F2 alpha on mouse blastocyst attachment and trophoblastic outgrowth in vitro. Prostaglandins 1989, 37, 411–416. [Google Scholar] [CrossRef]
- Holmes, P.V.; Gordashko, B.J. Evidence of prostaglandin involvement in blastocyst implantation. J. Embryol. Exp. Morphol. 1980, 55, 109–122. [Google Scholar] [CrossRef]
- Song, H.; Lim, H.; Paria, B.C.; Matsumoto, H.; Swift, L.L.; Morrow, J.; Bonventre, J.V.; Dey, S.K. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ’on-time’ embryo implantation that directs subsequent development. Development 2002, 129, 2879–2889. [Google Scholar] [CrossRef]
- Scherle, P.A.; Ma, W.; Lim, H.; Dey, S.K.; Trzaskos, J.M. Regulation of cyclooxygenase-2 induction in the mouse uterus during decidualization: An event of early pregnancy. J. Biol. Chem. 2000, 275, 37086–37092. [Google Scholar] [CrossRef]
- White, V.; Jawerbaum, A.; Sinner, D.; Pustovrh, C.; Capobianco, E.; Gonzalez, E. Oxidative stress and altered prostanoid production in the placenta of streptozotocin-induced diabetic rats. Reprod. Fertil. Dev. 2002, 14, 117–123. [Google Scholar] [CrossRef]
- Zhao, J.; Del Bigio, M.R.; Weiler, H.A. Maternal arachidonic acid supplementation improves neurodevelopment of offspring from healthy and diabetic rats. Prostaglandins Leukot Essent Fatty Acids 2009, 81, 349–356. [Google Scholar] [CrossRef]
- Goto, M.P.; Goldman ASUhing, M.R. PGE2 prevents anomalies induced by hyperglycemia or diabetic serum in mouse embryos. Diabetes 1992, 41, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Reece, E.A.; Homko, C.J.; Wu, Y.K.; Wiznitzer, A. The role of free radicals and membrane lipids in diabetes-induced congenital malformations. J. Soc. Gynecol. Investig. 1998, 5, 178–187. [Google Scholar] [CrossRef]
- Baker, L.; Piddington, R.; Goldman, A.; Egler, J.; Moehring, J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia 1990, 33, 593–596. [Google Scholar] [CrossRef]
- Goldman, A.S.; Baker, L.; Piddington, R.; Marx, B.; Herold, R.; Egler, J. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc. Natl. Acad. Sci. USA 1985, 82, 8227–8231. [Google Scholar] [CrossRef]
- Maiorino, M.; MConrad Ursini, F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid. Redox Signal. 2018, 29, 61–74. [Google Scholar] [CrossRef]
- Kroetz, D.L.; Xu, F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 413–438. [Google Scholar] [CrossRef]
- Bean, C.; Verma, N.K.; Yamamoto, D.L.; Chemello, F.; Cenni, V.; Filomena, M.C.; Chen, J.; Bang, M.L.; Lanfranchi, G. Ankrd2 is a modulator of NF-kappaB-mediated inflammatory responses during muscle differentiation. Cell Death Dis. 2014, 5, e1002. [Google Scholar] [CrossRef]
- Manabe, R.; Tsutsui, K.; Yamada, T.; Kimura, M.; Nakano, I.; Shimono, C.; Sanzen, N.; Furutani, Y.; Fukuda, T.; Oguri, Y.; et al. Transcriptome-based systematic identification of extracellular matrix proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 12849–12854. [Google Scholar] [CrossRef]
- Zigrino, P.; Kuhn, I.; Bauerle, T.; Zamek, J.; Fox, J.W.; Neumann, S.; Licht, A.; Schorpp-Kistner, M.; Angel, P.; Mauch, C. Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J. Investig. Dermatol. 2009, 129, 2686–2693. [Google Scholar] [CrossRef]
- Sun, J.; Ooms, L.; Bird, C.H.; Sutton, V.R.; Trapani, J.A.; Bird, P.I. A new family of 10 murine ovalbumin serpins includes two homologs of proteinase inhibitor 8 and two homologs of the granzyme B inhibitor (proteinase inhibitor 9). J. Biol. Chem. 1997, 272, 15434–15441. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Manabe, R.; Yamada, T.; Nakano, I.; Oguri, Y.; Keene, D.R.; Sengle, G.; Sakai, L.Y.; Sekiguchi, K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J. Biol. Chem. 2010, 285, 4870–4882. [Google Scholar] [CrossRef]
- Yamada, K.J.; Barker, T.; Dyer, K.D.; Rice, T.A.; Percopo, C.M.; Garcia-Crespo, K.E.; Cho, S.; Lee, J.J.; Druey, K.M.; Rosenberg, H.F. Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J. Biol. Chem. 2015, 290, 8863–8875. [Google Scholar] [CrossRef] [PubMed]
- Hemberger, M.; Himmelbauer, H.; Ruschmann, J.; Zeitz, C.; Fundele, R. cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Dev. Biol. 2000, 222, 158–169. [Google Scholar] [CrossRef][Green Version]
- Wu, N.; Song, Y.; Pang, L.; Chen, Z. CRCT1 regulated by microRNA-520 g inhibits proliferation and induces apoptosis in esophageal squamous cell cancer. Tumour. Biol. 2016, 37, 8271–8279. [Google Scholar] [CrossRef]
- Marsh, B.; Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth development. Elife 2020, 9, e60266. [Google Scholar] [CrossRef]
- Nelson, A.C.; Mould, A.W.; Bikoff, E.K.; Robertson, E.J. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy. Nat. Commun. 2016, 7, 11414. [Google Scholar] [CrossRef]
- Piddington, R.; Joyce, J.; Dhanasekaran, P.; Baker, L. Diabetes mellitus affects prostaglandin E2 levels in mouse embryos during neurulation. Diabetologia 1996, 39, 15–20. [Google Scholar] [CrossRef]
- Nicola, C.; Timoshenko, A.V.; Dixon, S.J.; Lala, P.K.; Chakraborty, C. EP1 receptor-mediated migration of the first trimester human extravillous trophoblast: The role of intracellular calcium and calpain. J. Clin. Endocrinol. Metab. 2005, 90, 4736–4746. [Google Scholar] [CrossRef] [PubMed]
- Anson-Cartwright, L.; Dawson, K.; Holmyard, D.; Fisher, S.J.; Lazzarini, R.A.; Cross, J.C. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet. 2000, 25, 311–314. [Google Scholar] [CrossRef]
- Jacquemin, P.; Sapin, V.; Alsat, E.; Evain-Brion, D.; Dolle, P.; Davidson, I. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev. Dyn. 1998, 212, 423–436. [Google Scholar] [CrossRef]
- Colosi, P.; Swiergiel, J.J.; Wilder, E.L.; Oviedo, A.; Linzer, D.I. Characterization of proliferin-related protein. Mol. Endocrinol. 1988, 2, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Constancia, M.; Angiolini, E.; Sandovici, I.; Smith, P.; Smith, R.; Kelsey, G.; Dean, W.; Ferguson-Smith, A.; Sibley, C.P.; Reik, W.; et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl. Acad. Sci. USA 2005, 102, 19219–19224. [Google Scholar] [CrossRef] [PubMed]
- Aykroyd, B.R.L.; SJTunster Sferruzzi-Perri, A.N. Igf2 deletion alters mouse placenta endocrine capacity in a sexually dimorphic manner. J. Endocrinol. 2020, 246, 93–108. [Google Scholar] [CrossRef]
- Constancia, M.; Hemberger, M.; Hughes, J.; Dean, W.; Ferguson-Smith, A.; Fundele, R.; Stewart, F.; Kelsey, G.; Fowden, A.; Sibley, C.; et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002, 417, 945–948. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Vaughan, O.R.; Coan, P.M.; Suciu, M.C.; Darbyshire, R.; Constancia, M.; Burton, G.J.; Fowden, A.L. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 2011, 152, 3202–3212. [Google Scholar] [CrossRef] [PubMed]
- Hemberger, M.; Hanna, C.W.; Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 2020, 21, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, P.A.; Frias, J.P.; Peters, K.A.; Chillara, B.; Garg, S.K. Optimizing insulin therapy in pregnant women with type 1 diabetes mellitus. Treat Endocrinol. 2002, 1, 235–240. [Google Scholar] [CrossRef]
- Hogan, B.; Beddington, R.; Costantini, F.; Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1994. [Google Scholar]
Gene Symbol | Forward Primer—Sequence | Position | Reverse Primer—Sequence | Position | Exon–Exon Boundary | Amplification Efficiency |
---|---|---|---|---|---|---|
Ascl2 | GCTTGACTTTTCCAGTTGGTTAGG | 1024–1047 | TCTTGGGCTAGAAGCAGGTAGGT | 1124–1102 | yes | 1.84 |
Bmp2 | CGAAGAAGCCGTGGAGGAA | 1539–1557 | GGGACAGAACTTAAATTGAAGAAGAAG | 1616–1590 | yes | 1.86 |
Calcb | TGGAACAGGAGGAGCAAGAGA | 290–310 | GGTGGCAGTGTTGCAGGAT | 360–342 | yes | 1.85 |
Cbr1 | CGAAGCGAGACCATCACAGA | 604–623 | CGCATGGACTCCTTTCTTTGTA | 684–663 | no | 1.94 |
Cck | ATCCAGCAGGTCCGCAAA | 263–280 | TCCAGGCTCTGCAGGTTCTTA | 327–307 | yes | 1.93 |
Ctsq | TGGCTATGGTTATGTGGGAAATG | 921–943 | CATCGTCTACCCCAGCTGTTC | 995–975 | yes | 1.87 |
Gpx4 | AGGCAGGAGCCAGGAAGTAATC | 499–520 | CACAGATCTTGCTGTACATGTCAAA | 583–559 | yes | 1.88 |
Htr2b | CGGAAGAGCAGGTCAGCTACA | 1741–1761 | CGTGCGTCCTGCTCATCAC | 1810–1792 | yes | 1.90 |
Igf1 | ATGAGTCTGCTCCACTGAAAATGTA | 115–139 | AAGGATTTTTTTACCCCAGGAAA | 186–164 | no | 1.85 |
Igf1r | GCTTCTGTGAACCCCGAGTATTT | 3525–3547 | TGGTGATCTTCTCTCGAGCTACCT | 3606–3583 | yes | 1.93 |
Igf2 | TCTCGAGGCACCCTAAATTACC | 3534–3555 | TCAGCAAATGCCCCTGAAAG | 3628–3609 | no | 1.96 |
Igf2r | TGCAACCCTCTGCCTTATATCC | 3483–3504 | TGAGAGACCCATTTCCAGTAGCT | 3612–3590 | yes | 1.94 |
Igfbp3 | GCGTCCACATCCCAAACTGT | 837–856 | CTGCCCATACTTGTCCACACA | 946–926 | yes | 1.97 |
Igfbp5 | GCCCCGTGCTGTGTACCT | 1353–1370 | GGCAGCTTCATTCCGTACTTG | 1478–1458 | yes | 1.97 |
Kazald1 | CCCATGGCCTCGATTGAGT | 732–750 | CCCCTAAACTGCACAGAGATATGA | 817–794 | yes | 1.96 |
Klhl5 | AGGCGGAAGGATCTCAGTAGACT | 1217–1239 | CCCGGAAAAGTGCATTGTTT | 1313–1294 | yes | 1.88 |
Klk8 | GCCCACTGCAAAAAACAGAAG | 700–720 | CCTGCTCCGGCTGATCTCT | 775–757 | yes | 1.93 |
Mmp1a | AGGCAGGTTCTACATTCGGGTAA | 941–963 | TGGCCAGAGAATACCTATTAAATTGA | 1013–988 | yes | 1.95 |
Mmp13 | AATCTATGATGGCACTGCTGACAT | 478–501 | GTTTGGTCCAGGAGGAAAAGC | 595–575 | yes | 1.84 |
Mmp14 | TCGTGTTGCCTGATGACGAT | 1069–1088 | TTTGGGCTTATCTGGGACAGA | 1193–1173 | yes | 1.91 |
Mmp15 | ATGCAGCCTACACCTACTTCTACAAG | 2085–2110 | CCATGAAGTCCCGCAGGAT | 2192–2174 | yes | 1.89 |
Mmp2 | CTGAGCTCCCAGAAAAGATTGAC | 1844–1866 | CATTCCCTGCGAAGAACACA | 1918–1899 | yes | 1.92 |
Mmp3 | GGAGGTTTGATGAGAAGAAACAATC | 1308–1332 | GTAGAGAAACCCAAATGCTTCAAAGA | 1426–1401 | yes | 1.84 |
Mmp8 | GCACACCCAAAGCCTGTGA | 901-919 | GAGGATGCCGTCTCCAGAAG | 1005–986 | yes | 1.91 |
Mmp9 | CCAAGGGTACAGCCTGTTCCT | 1195–1215 | GCACGCTGGAATGATCTAAGC | 1268–1248 | yes | 1.88 |
Pappa | CAGATACAGCGGGACGATGA | 4104–4123 | TCGGTACATGTCACTGTGATGCT | 4171–4149 | yes | 1.94 |
Pappa2 | CCAGGGCCCTCCACAGA | 4414–4430 | AGGCTGCCATGCTACTATTGAAG | 4549–4527 | no | 1.93 |
Pla2g4a | CAGCAAAGCACATCGTGAGTAAT | 1440–1462 | CGGTGCCTTTGGGTCCTT | 1508–1491 | yes | 1.90 |
Pla2g5 | CCCAAGGATGGCACTGATTG | 460–479 | TCCGAATGGCACAGTCTTTTT | 541–521 | yes | 1.87 |
Ptges | CAGATGAGGCTGCGGAAGA | 188–206 | CCACATCTGGGTCACTCCTGTA | 278–257 | yes | 1.90 |
Ptges3 | TGGCTCAGTGTGGACTTCAATAA | 623–645 | GTGATCCATCATCTCAGAGAAACG | 718–695 | yes | 1.90 |
Ptgs1 | CCAGGAGCTCACAGGAGAGAA | 1577–1597 | ACCCCGGGTAGAACTCTAAAGC | 1662–1641 | yes | 1.94 |
Rbbp9 | TGGCCTTGGACATTAAGTTGAA | 1157–1178 | CTGGCATCCGTGTAGGACACT | 1241–1221 | yes | 1.92 |
Rnase2a | CCACAAAGCAGACTGGGAAAC | 25–45 | TGAGGCAAGCATTAGGACATGT | 117–96 | yes | 1.81 |
Sfrp5 | TGTGCCCAGTGTGAGATGGA | 652–671 | GCGCATCTTGACCACAAAGTC | 732–712 | yes | 1.61 |
Slco2a1 | CCTGTATCCGGTGGAACTACCT | 1866–1887 | AGCAGTGTGCCCAAGACCTT | 1989–1970 | yes | 1.82 |
Spi16 | TGACCGCCCATTCCTTTTC | 363–381 | GAAGAGAACCTGCCACAGAACAA | 434–412 | no | 1.95 |
Spink8 | GGCCAGCTCAGTGTGGACTT | 171–190 | AAGCTCCCCGGTCATGTG | 243–226 | yes | 1.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappen, C.; Kruger, C.; Salbaum, J.M. Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes 2022, 13, 130. https://doi.org/10.3390/genes13010130
Kappen C, Kruger C, Salbaum JM. Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes. 2022; 13(1):130. https://doi.org/10.3390/genes13010130
Chicago/Turabian StyleKappen, Claudia, Claudia Kruger, and J. Michael Salbaum. 2022. "Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta" Genes 13, no. 1: 130. https://doi.org/10.3390/genes13010130
APA StyleKappen, C., Kruger, C., & Salbaum, J. M. (2022). Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes, 13(1), 130. https://doi.org/10.3390/genes13010130