Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, J.L. Malformations in infants of diabetic mothers. Teratology 1982, 25, 385–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, L.M.; Tygstrup, I.; Pedersen, J. Congenital malformations in newborn infants of diabetic women: Correlation with maternal diabetic vascular complications. Lancet 1964, 1, 1124–1126. [Google Scholar] [CrossRef]
- Ornoy, A.; Reece, E.A.; Pavlinkova, G.; Kappen, C.; Miller, R.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res. Part. C Embryo Today Rev. 2015, 105, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Kucera, J. Rate and type of congenital anomalies among offspring of diabetic women. J. Reprod Med. 1971, 7, 73–82. [Google Scholar] [PubMed]
- Vlachova, Z.; Bytoft, B.; Knorr, S.; Clausen, T.D.; Jensen, R.B.; Mathiesen, E.R.; Hojlund, K.; Ovesen, P.; Beck-Nielsen, H.; Gravholt, C.H.; et al. Increased metabolic risk in adolescent offspring of mothers with type 1 diabetes: The EPICOM study. Diabetologia 2015, 58, 14541463. [Google Scholar] [CrossRef] [Green Version]
- Plagemann, A.; Harder, T.; Kohlhoff, R.; Rohde, W.; Dorner, G. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, L.; Gobl, C.S.; Rami-Merhar, B.; Winhofer, Y.; Baumgartner-Parzer, S.; Schober, E.; Kautzky-Willer, A. The Cross-Link between Adipokines, Insulin Resistance and Obesity in Offspring of Diabetic Pregnancies. Horm. Res. Paediatr. 2016, 86, 300–308. [Google Scholar] [CrossRef]
- Dorner, G.; Plagemann, A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm. Metab. Res. 1994, 26, 213–221. [Google Scholar] [CrossRef]
- Catalano, P.M.; Hauguel-De Mouzon, S. Is it time to revisit the Pedersen hypothesis in the face of the obesity epidemic? Am. J. Obstet. Gynecol. 2011, 204, 479–487. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L.; Thornburg, K.L. Placental Origins of Chronic Disease. Physiol. Rev. 2016, 96, 1509–1565. [Google Scholar] [CrossRef]
- Kappen, C.; Kruger, C.; MacGowan, J.; Salbaum, J.M. Maternal diet modulates the risk for neural tube defects in a mouse model of diabetic pregnancy. Reprod. Toxicol. 2011, 31, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Kappen, C.; Kruger, C.; MacGowan, J.; Salbaum, J.M. Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy. PLoS ONE 2012, 7, e38445. [Google Scholar] [CrossRef] [PubMed]
- Salbaum, J.M.; Kruger, C.; Zhang, X.; Delahaye, N.A.; Pavlinkova, G.; Burk, D.H.; Kappen, C. Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy. Diabetologia 2011, 54, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, M.; Nishimura, T.; Nakanishi, T.; Shimada, H.; Noguchi, S.; Akanuma, S.I.; Tachikawa, M.; Hosoya, K.I.; Tamai, I.; Nakashima, E.; et al. Contribution of Prostaglandin Transporter OATP2A1/SLCO2A1 to Placenta-to-Maternal Hormone Signaling and Labor Induction. iScience 2020, 23, 101098. [Google Scholar] [CrossRef] [PubMed]
- Nicola, C.; Lala, P.K.; Chakraborty, C. Prostaglandin E2-mediated migration of human trophoblast requires RAC1 and CDC42. Biol. Reprod. 2008, 78, 976–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horita, H.; Kuroda, E.; Hachisuga, T.; Kashimura, M.; Yamashita, U. Induction of prostaglandin E2 production by leukemia inhibitory factor promotes migration of first trimester extravillous trophoblast cell line, HTR-8/SVneo. Hum. Reprod. 2007, 22, 1801–1809. [Google Scholar] [CrossRef] [Green Version]
- Kruger, C.; Talmadge, C.; Kappen, C. Expression of folate pathway genes in the cartilage of Hoxd4 and Hoxc8 transgenic mice. Birth Defects Res. A Clin. Mol. Teratol. 2006, 76, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Kappen, C.; Kruger, C.; Jones, S.; Herion, N.J.; Salbaum, J.M. Maternal diet modulates placental nutrient transporter gene expression in a mouse model of diabetic pregnancy. PLoS ONE 2019, 14, e0224754. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L. The insulin-like growth factors and feto-placental growth. Placenta 2003, 24, 803–812. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Q.; Haider, M.; Bell, M.; Gruslin, A.; Christians, J.K. Expression of pregnancy-associated plasma protein A2 during pregnancy in human and mouse. J. Endocrinol. 2009, 202, 337–345. [Google Scholar] [CrossRef]
- Gyrup, C.; Oxvig, C. Quantitative analysis of insulin-like growth factor-modulated proteolysis of insulin-like growth factor binding protein-4 and -5 by pregnancy-associated plasma protein-A. Biochemistry 2007, 46, 1972–1980. [Google Scholar] [CrossRef]
- Gaidamauskas, E.; Gyrup, C.; Boldt, H.B.; Schack, V.R.; Overgaard, M.T.; Laursen, L.S.; Oxvig, C. IGF dependent modulation of IGF binding protein (IGFBP) proteolysis by pregnancy-associated plasma protein-A (PAPP-A): Multiple PAPP-A-IGFBP interaction sites. Biochim. Biophys. Acta 2013, 1830, 2701–2709. [Google Scholar] [CrossRef]
- Conover, C.A.; Bale, L.K.; Overgaard, M.T.; Johnstone, E.W.; Laursen, U.H.; Fuchtbauer, E.M.; Oxvig, C.; van Deursen, J. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development 2004, 131, 1187–1194. [Google Scholar] [CrossRef] [Green Version]
- Christians, J.K.; de Zwaan, D.R.; Fung, S.H. Pregnancy associated plasma protein A2 (PAPP-A2) affects bone size and shape and contributes to natural variation in postnatal growth in mice. PLoS ONE 2013, 8, e56260. [Google Scholar] [CrossRef] [Green Version]
- Ozanne, S.E.; Nicholas Hales, C. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 2005, 126, 852–854. [Google Scholar] [CrossRef]
- Berends, L.M.; Dearden, L.; Tung, Y.C.L.; Voshol, P.; Fernandez-Twinn, D.S.; Ozanne, S.E. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018, 61, 2225–2234. [Google Scholar] [CrossRef] [Green Version]
- Essalmani, R.; Hamelin, J.; Marcinkiewicz, J.; Chamberland, A.; Mbikay, M.; Chretien, M.; Seidah, N.G.; Prat, A. Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol. 2006, 26, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996, 122, 2977–2986. [Google Scholar] [CrossRef]
- Li, Y.; Klena, N.T.; Gabriel, G.C.; Liu, X.; Kim, A.J.; Lemke, K.; Chen, Y.; Chatterjee, B.; Devine, W.; Damerla, R.R.; et al. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015, 521, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Koscielny, G.; Yaikhom, G.; Iyer, V.; Meehan, T.F.; Morgan, H.; Atienza-Herrero, J.; Blake, A.; Chen, C.K.; Easty, R.; Di Fenza, A.; et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014, 42, D802–D809. [Google Scholar] [CrossRef] [Green Version]
- Holmbeck, K.; Bianco, P.; Caterina, J.; Yamada, S.; Kromer, M.; Kuznetsov, S.A.; Mankani, M.; Robey, P.G.; Poole, A.R.; Pidoux, I.; et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999, 99, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wen, G.; Shao, G.; Wang, C.; Lin, C.; Fang, H.; Balajee, A.S.; Bhagat, G.; Hei, T.K.; Zhao, Y. TGFBI deficiency predisposes mice to spontaneous tumor development. Cancer Res. 2009, 69, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Boing, M.; Brand-Saberi, B.; Napirei, M. Murine transcription factor Math6 is a regulator of placenta development. Sci. Rep. 2018, 8, 14997. [Google Scholar] [CrossRef] [PubMed]
- Perez-Garcia, V.; Fineberg Em Wilson, R.; Murray, A.; Mazzeo, C.I.; Tudor, C.; Sienerth, A.; White, J.K.; Tuck, E.; Ryder, E.J. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature 2018, 555, 463–468. [Google Scholar] [CrossRef]
- Guillemot, F.; Nagy, A.; Auerbach, A.; Rossant, J.; Joyner, A.L. Essential role of Mash-2 in extraembryonic development. Nature 1994, 371, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Yavarone, M.S.; Shuey, D.L.; Sadler, T.W.; Lauder, J.M. Serotonin uptake in the ectoplacental cone and placenta of the mouse. Placenta 1993, 14, 149–161. [Google Scholar] [CrossRef]
- Lescisin, K.R.; SVarmuza Rossant, J. Isolation and characterization of a novel trophoblast-specific cDNA in the mouse. Genes Dev. 1988, 2, 1639–1646. [Google Scholar] [CrossRef] [Green Version]
- Wiemers, D.O.; Shao, L.J.; Ain, R.; Dai, G.; Soares, M.J. The mouse prolactin gene family locus. Endocrinology 2003, 144, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuey, D.L.; Yavarone, M.; Sadler, T.W.; Lauder, J.M. Serotonin and morphogenesis in the cultured mouse embryo. Adv. Exp. Med. Biol. 1990, 265, 205–215. [Google Scholar]
- Lauder, J.M.; JAWallace Krebs, H. Roles for serotonin in neuroembryogenesis. Adv. Exp. Med. Biol. 1981, 133, 477–506. [Google Scholar]
- Murphy, D.L.; Fox, M.A.; Timpano, K.R.; Moya, P.R.; Ren-Patterson, R.; Andrews, A.M.; Holmes, A.; Lesch, K.P.; Wendland, J.R. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008, 55, 932–960. [Google Scholar] [CrossRef] [Green Version]
- Cote, F.; Fligny, C.; Bayard, E.; Launay, J.M.; Gershon, M.D.; Mallet, J.; Vodjdani, G. Maternal serotonin is crucial for murine embryonic development. Proc. Natl. Acad. Sci. USA 2007, 104, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenfeld, C.S. Placental serotonin signaling, pregnancy outcomes, and regulation of fetal brain development. Biol. Reprod. 2020, 102, 532–538. [Google Scholar] [CrossRef]
- McGrath, K.E.; Koniski, A.D.; Malik, J.; Palis, J. Circulation is established in a stepwise pattern in the mammalian embryo. Blood 2003, 101, 1669–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, M.; Nishimura, T.; Akanuma, S.I.; Nakanishi, T.; Tachikawa, M.; Tamai, I.; Hosoya, K.I.; Nakashima, E.; Tomi, M. Co-localization of microsomal prostaglandin E synthase-1 with cyclooxygenase-1 in layer II of murine placental syncytiotrophoblasts. Placenta 2017, 53, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Chida, S.; Mettler, L. Effects of indomethacin, prostaglandin E2 and prostaglandin F2 alpha on mouse blastocyst attachment and trophoblastic outgrowth in vitro. Prostaglandins 1989, 37, 411–416. [Google Scholar] [CrossRef]
- Holmes, P.V.; Gordashko, B.J. Evidence of prostaglandin involvement in blastocyst implantation. J. Embryol. Exp. Morphol. 1980, 55, 109–122. [Google Scholar] [CrossRef]
- Song, H.; Lim, H.; Paria, B.C.; Matsumoto, H.; Swift, L.L.; Morrow, J.; Bonventre, J.V.; Dey, S.K. Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ’on-time’ embryo implantation that directs subsequent development. Development 2002, 129, 2879–2889. [Google Scholar] [CrossRef]
- Scherle, P.A.; Ma, W.; Lim, H.; Dey, S.K.; Trzaskos, J.M. Regulation of cyclooxygenase-2 induction in the mouse uterus during decidualization: An event of early pregnancy. J. Biol. Chem. 2000, 275, 37086–37092. [Google Scholar] [CrossRef] [Green Version]
- White, V.; Jawerbaum, A.; Sinner, D.; Pustovrh, C.; Capobianco, E.; Gonzalez, E. Oxidative stress and altered prostanoid production in the placenta of streptozotocin-induced diabetic rats. Reprod. Fertil. Dev. 2002, 14, 117–123. [Google Scholar] [CrossRef]
- Zhao, J.; Del Bigio, M.R.; Weiler, H.A. Maternal arachidonic acid supplementation improves neurodevelopment of offspring from healthy and diabetic rats. Prostaglandins Leukot Essent Fatty Acids 2009, 81, 349–356. [Google Scholar] [CrossRef]
- Goto, M.P.; Goldman ASUhing, M.R. PGE2 prevents anomalies induced by hyperglycemia or diabetic serum in mouse embryos. Diabetes 1992, 41, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Reece, E.A.; Homko, C.J.; Wu, Y.K.; Wiznitzer, A. The role of free radicals and membrane lipids in diabetes-induced congenital malformations. J. Soc. Gynecol. Investig. 1998, 5, 178–187. [Google Scholar] [CrossRef]
- Baker, L.; Piddington, R.; Goldman, A.; Egler, J.; Moehring, J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia 1990, 33, 593–596. [Google Scholar] [CrossRef]
- Goldman, A.S.; Baker, L.; Piddington, R.; Marx, B.; Herold, R.; Egler, J. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc. Natl. Acad. Sci. USA 1985, 82, 8227–8231. [Google Scholar] [CrossRef] [Green Version]
- Maiorino, M.; MConrad Ursini, F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid. Redox Signal. 2018, 29, 61–74. [Google Scholar] [CrossRef]
- Kroetz, D.L.; Xu, F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 413–438. [Google Scholar] [CrossRef]
- Bean, C.; Verma, N.K.; Yamamoto, D.L.; Chemello, F.; Cenni, V.; Filomena, M.C.; Chen, J.; Bang, M.L.; Lanfranchi, G. Ankrd2 is a modulator of NF-kappaB-mediated inflammatory responses during muscle differentiation. Cell Death Dis. 2014, 5, e1002. [Google Scholar] [CrossRef]
- Manabe, R.; Tsutsui, K.; Yamada, T.; Kimura, M.; Nakano, I.; Shimono, C.; Sanzen, N.; Furutani, Y.; Fukuda, T.; Oguri, Y.; et al. Transcriptome-based systematic identification of extracellular matrix proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 12849–12854. [Google Scholar] [CrossRef] [Green Version]
- Zigrino, P.; Kuhn, I.; Bauerle, T.; Zamek, J.; Fox, J.W.; Neumann, S.; Licht, A.; Schorpp-Kistner, M.; Angel, P.; Mauch, C. Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J. Investig. Dermatol. 2009, 129, 2686–2693. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Ooms, L.; Bird, C.H.; Sutton, V.R.; Trapani, J.A.; Bird, P.I. A new family of 10 murine ovalbumin serpins includes two homologs of proteinase inhibitor 8 and two homologs of the granzyme B inhibitor (proteinase inhibitor 9). J. Biol. Chem. 1997, 272, 15434–15441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsutsui, K.; Manabe, R.; Yamada, T.; Nakano, I.; Oguri, Y.; Keene, D.R.; Sengle, G.; Sakai, L.Y.; Sekiguchi, K. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J. Biol. Chem. 2010, 285, 4870–4882. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.J.; Barker, T.; Dyer, K.D.; Rice, T.A.; Percopo, C.M.; Garcia-Crespo, K.E.; Cho, S.; Lee, J.J.; Druey, K.M.; Rosenberg, H.F. Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J. Biol. Chem. 2015, 290, 8863–8875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemberger, M.; Himmelbauer, H.; Ruschmann, J.; Zeitz, C.; Fundele, R. cDNA subtraction cloning reveals novel genes whose temporal and spatial expression indicates association with trophoblast invasion. Dev. Biol. 2000, 222, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Wu, N.; Song, Y.; Pang, L.; Chen, Z. CRCT1 regulated by microRNA-520 g inhibits proliferation and induces apoptosis in esophageal squamous cell cancer. Tumour. Biol. 2016, 37, 8271–8279. [Google Scholar] [CrossRef]
- Marsh, B.; Blelloch, R. Single nuclei RNA-seq of mouse placental labyrinth development. Elife 2020, 9, e60266. [Google Scholar] [CrossRef]
- Nelson, A.C.; Mould, A.W.; Bikoff, E.K.; Robertson, E.J. Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal-foetal interface during pregnancy. Nat. Commun. 2016, 7, 11414. [Google Scholar] [CrossRef] [Green Version]
- Piddington, R.; Joyce, J.; Dhanasekaran, P.; Baker, L. Diabetes mellitus affects prostaglandin E2 levels in mouse embryos during neurulation. Diabetologia 1996, 39, 15–20. [Google Scholar] [CrossRef]
- Nicola, C.; Timoshenko, A.V.; Dixon, S.J.; Lala, P.K.; Chakraborty, C. EP1 receptor-mediated migration of the first trimester human extravillous trophoblast: The role of intracellular calcium and calpain. J. Clin. Endocrinol. Metab. 2005, 90, 4736–4746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anson-Cartwright, L.; Dawson, K.; Holmyard, D.; Fisher, S.J.; Lazzarini, R.A.; Cross, J.C. The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat. Genet. 2000, 25, 311–314. [Google Scholar] [CrossRef]
- Jacquemin, P.; Sapin, V.; Alsat, E.; Evain-Brion, D.; Dolle, P.; Davidson, I. Differential expression of the TEF family of transcription factors in the murine placenta and during differentiation of primary human trophoblasts in vitro. Dev. Dyn. 1998, 212, 423–436. [Google Scholar] [CrossRef]
- Colosi, P.; Swiergiel, J.J.; Wilder, E.L.; Oviedo, A.; Linzer, D.I. Characterization of proliferin-related protein. Mol. Endocrinol. 1988, 2, 579–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constancia, M.; Angiolini, E.; Sandovici, I.; Smith, P.; Smith, R.; Kelsey, G.; Dean, W.; Ferguson-Smith, A.; Sibley, C.P.; Reik, W.; et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc. Natl. Acad. Sci. USA 2005, 102, 19219–19224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aykroyd, B.R.L.; SJTunster Sferruzzi-Perri, A.N. Igf2 deletion alters mouse placenta endocrine capacity in a sexually dimorphic manner. J. Endocrinol. 2020, 246, 93–108. [Google Scholar] [CrossRef]
- Constancia, M.; Hemberger, M.; Hughes, J.; Dean, W.; Ferguson-Smith, A.; Fundele, R.; Stewart, F.; Kelsey, G.; Fowden, A.; Sibley, C.; et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002, 417, 945–948. [Google Scholar] [CrossRef]
- Sferruzzi-Perri, A.N.; Vaughan, O.R.; Coan, P.M.; Suciu, M.C.; Darbyshire, R.; Constancia, M.; Burton, G.J.; Fowden, A.L. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 2011, 152, 3202–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemberger, M.; Hanna, C.W.; Dean, W. Mechanisms of early placental development in mouse and humans. Nat. Rev. Genet. 2020, 21, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, P.A.; Frias, J.P.; Peters, K.A.; Chillara, B.; Garg, S.K. Optimizing insulin therapy in pregnant women with type 1 diabetes mellitus. Treat Endocrinol. 2002, 1, 235–240. [Google Scholar] [CrossRef]
- Hogan, B.; Beddington, R.; Costantini, F.; Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 1994. [Google Scholar]
Gene Symbol | Forward Primer—Sequence | Position | Reverse Primer—Sequence | Position | Exon–Exon Boundary | Amplification Efficiency |
---|---|---|---|---|---|---|
Ascl2 | GCTTGACTTTTCCAGTTGGTTAGG | 1024–1047 | TCTTGGGCTAGAAGCAGGTAGGT | 1124–1102 | yes | 1.84 |
Bmp2 | CGAAGAAGCCGTGGAGGAA | 1539–1557 | GGGACAGAACTTAAATTGAAGAAGAAG | 1616–1590 | yes | 1.86 |
Calcb | TGGAACAGGAGGAGCAAGAGA | 290–310 | GGTGGCAGTGTTGCAGGAT | 360–342 | yes | 1.85 |
Cbr1 | CGAAGCGAGACCATCACAGA | 604–623 | CGCATGGACTCCTTTCTTTGTA | 684–663 | no | 1.94 |
Cck | ATCCAGCAGGTCCGCAAA | 263–280 | TCCAGGCTCTGCAGGTTCTTA | 327–307 | yes | 1.93 |
Ctsq | TGGCTATGGTTATGTGGGAAATG | 921–943 | CATCGTCTACCCCAGCTGTTC | 995–975 | yes | 1.87 |
Gpx4 | AGGCAGGAGCCAGGAAGTAATC | 499–520 | CACAGATCTTGCTGTACATGTCAAA | 583–559 | yes | 1.88 |
Htr2b | CGGAAGAGCAGGTCAGCTACA | 1741–1761 | CGTGCGTCCTGCTCATCAC | 1810–1792 | yes | 1.90 |
Igf1 | ATGAGTCTGCTCCACTGAAAATGTA | 115–139 | AAGGATTTTTTTACCCCAGGAAA | 186–164 | no | 1.85 |
Igf1r | GCTTCTGTGAACCCCGAGTATTT | 3525–3547 | TGGTGATCTTCTCTCGAGCTACCT | 3606–3583 | yes | 1.93 |
Igf2 | TCTCGAGGCACCCTAAATTACC | 3534–3555 | TCAGCAAATGCCCCTGAAAG | 3628–3609 | no | 1.96 |
Igf2r | TGCAACCCTCTGCCTTATATCC | 3483–3504 | TGAGAGACCCATTTCCAGTAGCT | 3612–3590 | yes | 1.94 |
Igfbp3 | GCGTCCACATCCCAAACTGT | 837–856 | CTGCCCATACTTGTCCACACA | 946–926 | yes | 1.97 |
Igfbp5 | GCCCCGTGCTGTGTACCT | 1353–1370 | GGCAGCTTCATTCCGTACTTG | 1478–1458 | yes | 1.97 |
Kazald1 | CCCATGGCCTCGATTGAGT | 732–750 | CCCCTAAACTGCACAGAGATATGA | 817–794 | yes | 1.96 |
Klhl5 | AGGCGGAAGGATCTCAGTAGACT | 1217–1239 | CCCGGAAAAGTGCATTGTTT | 1313–1294 | yes | 1.88 |
Klk8 | GCCCACTGCAAAAAACAGAAG | 700–720 | CCTGCTCCGGCTGATCTCT | 775–757 | yes | 1.93 |
Mmp1a | AGGCAGGTTCTACATTCGGGTAA | 941–963 | TGGCCAGAGAATACCTATTAAATTGA | 1013–988 | yes | 1.95 |
Mmp13 | AATCTATGATGGCACTGCTGACAT | 478–501 | GTTTGGTCCAGGAGGAAAAGC | 595–575 | yes | 1.84 |
Mmp14 | TCGTGTTGCCTGATGACGAT | 1069–1088 | TTTGGGCTTATCTGGGACAGA | 1193–1173 | yes | 1.91 |
Mmp15 | ATGCAGCCTACACCTACTTCTACAAG | 2085–2110 | CCATGAAGTCCCGCAGGAT | 2192–2174 | yes | 1.89 |
Mmp2 | CTGAGCTCCCAGAAAAGATTGAC | 1844–1866 | CATTCCCTGCGAAGAACACA | 1918–1899 | yes | 1.92 |
Mmp3 | GGAGGTTTGATGAGAAGAAACAATC | 1308–1332 | GTAGAGAAACCCAAATGCTTCAAAGA | 1426–1401 | yes | 1.84 |
Mmp8 | GCACACCCAAAGCCTGTGA | 901-919 | GAGGATGCCGTCTCCAGAAG | 1005–986 | yes | 1.91 |
Mmp9 | CCAAGGGTACAGCCTGTTCCT | 1195–1215 | GCACGCTGGAATGATCTAAGC | 1268–1248 | yes | 1.88 |
Pappa | CAGATACAGCGGGACGATGA | 4104–4123 | TCGGTACATGTCACTGTGATGCT | 4171–4149 | yes | 1.94 |
Pappa2 | CCAGGGCCCTCCACAGA | 4414–4430 | AGGCTGCCATGCTACTATTGAAG | 4549–4527 | no | 1.93 |
Pla2g4a | CAGCAAAGCACATCGTGAGTAAT | 1440–1462 | CGGTGCCTTTGGGTCCTT | 1508–1491 | yes | 1.90 |
Pla2g5 | CCCAAGGATGGCACTGATTG | 460–479 | TCCGAATGGCACAGTCTTTTT | 541–521 | yes | 1.87 |
Ptges | CAGATGAGGCTGCGGAAGA | 188–206 | CCACATCTGGGTCACTCCTGTA | 278–257 | yes | 1.90 |
Ptges3 | TGGCTCAGTGTGGACTTCAATAA | 623–645 | GTGATCCATCATCTCAGAGAAACG | 718–695 | yes | 1.90 |
Ptgs1 | CCAGGAGCTCACAGGAGAGAA | 1577–1597 | ACCCCGGGTAGAACTCTAAAGC | 1662–1641 | yes | 1.94 |
Rbbp9 | TGGCCTTGGACATTAAGTTGAA | 1157–1178 | CTGGCATCCGTGTAGGACACT | 1241–1221 | yes | 1.92 |
Rnase2a | CCACAAAGCAGACTGGGAAAC | 25–45 | TGAGGCAAGCATTAGGACATGT | 117–96 | yes | 1.81 |
Sfrp5 | TGTGCCCAGTGTGAGATGGA | 652–671 | GCGCATCTTGACCACAAAGTC | 732–712 | yes | 1.61 |
Slco2a1 | CCTGTATCCGGTGGAACTACCT | 1866–1887 | AGCAGTGTGCCCAAGACCTT | 1989–1970 | yes | 1.82 |
Spi16 | TGACCGCCCATTCCTTTTC | 363–381 | GAAGAGAACCTGCCACAGAACAA | 434–412 | no | 1.95 |
Spink8 | GGCCAGCTCAGTGTGGACTT | 171–190 | AAGCTCCCCGGTCATGTG | 243–226 | yes | 1.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kappen, C.; Kruger, C.; Salbaum, J.M. Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes 2022, 13, 130. https://doi.org/10.3390/genes13010130
Kappen C, Kruger C, Salbaum JM. Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes. 2022; 13(1):130. https://doi.org/10.3390/genes13010130
Chicago/Turabian StyleKappen, Claudia, Claudia Kruger, and J. Michael Salbaum. 2022. "Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta" Genes 13, no. 1: 130. https://doi.org/10.3390/genes13010130
APA StyleKappen, C., Kruger, C., & Salbaum, J. M. (2022). Effects of Maternal Diabetes and Diet on Gene Expression in the Murine Placenta. Genes, 13(1), 130. https://doi.org/10.3390/genes13010130