Mutation Analysis of Thin Basement Membrane Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Extraction
2.3. Sanger Sequencing
2.4. Multiplex Ligation-Dependent Probe Amplification (MLPA) Analyses
2.5. Exome Sequencing
2.6. Pathogenicity Evaluation
3. Results
3.1. Background Data
3.2. Mutation Analyses of Thin Basement Membrane Nephropathy
3.2.1. Sanger Sequencing
3.2.2. MLPA Analyses
3.2.3. Exome Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalluri, R.; Shield, C.F.; Todd, P.; Hudson, B.G.; Neilson, E.G. Isoform switching of type IV collagen is developmentally arrested in X-linked Alport syndrome leading to increased susceptibility of renal basement membranes to endoproteolysis. J. Clin. Investig. 1997, 99, 2470–2478. [Google Scholar] [CrossRef]
- Matthaiou, A.; Poulli, T.; Deltas, C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: A systematic review. Clin. Kidney J. 2020, 13, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Savige, J.; Rana, K.; Tonna, S.; Buzza, M.; Dagher, H.; Wang, Y.Y. Thin basement membrane nephropathy. Kidney Int. 2003, 64, 1169–1178. [Google Scholar] [CrossRef] [Green Version]
- Gregory, M.C. The clinical features of thin basement membrane nephropathy. Semin. Nephrol. 2005, 25, 140–145. [Google Scholar] [CrossRef]
- Rayat, C.S.; Joshi, K.; Sakhuja, V.; Datta, U. Glomerular basement membrane thickness in normal adults and its application to the diagnosis of thin basement membrane disease: An Indian study. Indian J. Pathol. Microbiol. 2005, 48, 453–458. [Google Scholar]
- Lemmink, H.H.; Nillesen, W.N.; Mochizuki, T.; Schröder, C.H.; Brunner, H.G.; van Oost, B.A.; Monnens, L.A.; Smeets, H.J. Benign familial hematuria due to mutation of the type IV collagen alpha4 gene. J. Clin. Investig. 1996, 98, 1114–1118. [Google Scholar] [CrossRef] [Green Version]
- Badenas, C.; Praga, M.; Tazón, B.; Heidet, L.; Arrondel, C.; Armengol, A.; Andrés, A.; Morales, E.; Camacho, J.A.; Lens, X.; et al. Mutations in theCOL4A4 and COL4A3 genes cause familial benign hematuria. J. Am. Soc. Nephrol. 2002, 13, 1248–1254. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Rana, K.; Tonna, S.; Lin, T.; Sin, L.; Savige, J. COL4A3 mutations and their clinical consequences in thin basement membrane nephropathy (TBMN). Kidney Int. 2004, 65, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Nozu, K.; Nakanishi, K.; Abe, Y.; Udagawa, T.; Okada, S.; Okamoto, T.; Kaito, H.; Kanemoto, K.; Kobayashi, A.; Tanaka, E.; et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 2019, 23, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, J.A.; Lemmink, H.H.; Hughes, A.E.; Hill, C.M.; Smeets, H.J.; Doherty, C.C.; Maxwell, A.P. Autosomal dominant Alport syndrome linked to the type IV collage alpha 3 and alpha 4 genes (COL4A3 and COL4A4). Nephrol Dial. Transplant. 1997, 12, 1595–1599. [Google Scholar] [CrossRef] [Green Version]
- Van der Loop, F.T.; Heidet, L.; Timmer, E.D.; van den Bosch, B.J.; Leinonen, A.; Antignac, C.; Jefferson, J.A.; Maxwell, A.P.; Monnens, L.A.; Schröder, C.H.; et al. Autosomal dominant Alport syndrome caused by a COL4A3 splice site mutation. Kidney Int. 2000, 58, 1870–1875. [Google Scholar] [CrossRef]
- Fallerini, C.; Dosa, L.; Tita, R.; Del Prete, D.; Feriozzi, S.; Gai, G.; Clementi, M.; La Manna, A.; Miglietti, N.; Mancini, R.; et al. Unbiased next generation sequencing analysis confirms the existence of autosomal dominant Alport syndrome in a relevant fraction of cases. Clin. Genet. 2014, 86, 252–257. [Google Scholar] [CrossRef]
- Morinière, V.; Dahan, K.; Hilbert, P.; Lison, M.; Lebbah, S.; Topa, A.; Bole-Feysot, C.; Pruvost, S.; Nitschke, P.; Plaisier, E.; et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J. Am. Soc. Nephrol. 2014, 25, 2740–2751. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.Z.; Kopp, J.B. Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [Google Scholar] [CrossRef] [Green Version]
- Voskarides, K.; Damianou, L.; Neocleous, V.; Zouvani, I.; Christodoulidou, S.; Hadjiconstantinou, V.; Ioannou, K.; Athanasiou, Y.; Patsias, C.; Alexopoulos, E.; et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J. Am. Soc. Nephrol. 2007, 18, 3004–3016. [Google Scholar] [CrossRef] [Green Version]
- Pierides, A.; Voskarides, K.; Athanasiou, Y.; Ioannou, K.; Damianou, L.; Arsali, M.; Zavros, M.; Pierides, M.; Vargemezis, V.; Patsias, C.; et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 2009, 24, 2721–2729. [Google Scholar]
- Deltas, C.; Savva, I.; Voskarides, K.; Papazachariou, L.; Pierides, A. Carriers of Autosomal Recessive Alport Syndrome with Thin Basement Membrane Nephropathy Presenting as Focal Segmental Glomerulosclerosis in Later Life. Nephron. 2015, 130, 271–280. [Google Scholar] [CrossRef]
- Papazachariou, L.; Papagregoriou, G.; Hadjipanagi, D.; Demosthenous, P.; Voskarides, K.; Koutsofti, C.; Stylianou, K.; Ioannou, P.; Xydakis, D.; Tzanakis, I.; et al. Frequent COL4 mutations in familial microhematuria accompanied by later-onset Alport nephropathy due to focal segmental glomerulosclerosis. Clin. Genet. 2017, 92, 517–527. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [Green Version]
- Bomba, L.; Walter, K.; Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef]
- Fokkema, I.F.A.C.; Taschner, P.E.M.; Schaafsma, G.C.; Celli, J.; Laros, J.F.; den Dunnen, J.T. LOVD v.2.0: The next generation in gene variant databases. Hum. Mutat. 2011, 32, 557–563. [Google Scholar] [CrossRef]
- Preston, R.; Stuart, H.M.; Lennon, R. Genetic testing in steroid-resistant nephrotic syndrome: Why, who, when and how? Pediatr. Nephrol. 2019, 34, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Voskarides, K.; Arsali, M.; Athanasiou, Y.; Elia, A.; Pierides, A.; Deltas, C. Evidence that NPHS2-R229Q predisposes to proteinuria and renal failure in familial hematuria. Pediatr. Nephrol. 2012, 27, 675–679. [Google Scholar] [CrossRef]
- Tsiakkis, D.; Pieri, M.; Koupepidou, P.; Demosthenous, P.; Panayidou, K.; Deltas, C. Genotype-phenotype correlation in X-linked Alport syndrome patients carrying missense mutations in the collagenous domain of COL4A5. Clin. Genet. 2012, 82, 297–299. [Google Scholar] [CrossRef]
- Savige, J.; Storey, H.; Watson, E.; Hertz, J.M.; Deltas, C.; Renieri, A.; Mari, F.; Hilbert, P.; Plevova, P.; Byers, P.; et al. Consensus statement on standards and guidelines for the molecular diagnostics of Alport syndrome: Refining the ACMG criteria. Eur. J. Hum. Genet. 2021, 29, 1186–1197. [Google Scholar] [CrossRef]
- Kamiyoshi, N.; Nozu, K.; Fu, X.J.; Morisada, N.; Nozu, Y.; Ye, M.J.; Imafuku, A.; Miura, K.; Yamamura, T.; Minamikawa, S.; et al. Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome. Clin. J. Am. Soc. Nephrol. 2016, 11, 1441–1449. [Google Scholar] [CrossRef] [Green Version]
- Mencarelli, M.A.; Heidet, L.; Storey, H.; van Geel, M.; Knebelmann, B.; Fallerini, C.; Miglietti, N.; Antonucci, M.F.; Cetta, F.; A Sayer, J.; et al. Evidence of digenic inheritance in Alport syndrome. J. Med. Genet. 2015, 52, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Gross, O.; Licht, C.; Anders, H.J.; Hoppe, B.; Beck, B.; Tönshoff, B.; Höcker, B.; Wygoda, S.; Ehrich, J.H.; Pape, L.; et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 2012, 81, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, A.; Madeira, C.; Castorina, P.; Giani, M.; Montini, G. Heterozygous COL4A3/COL4A4 mutations: The hidden part of the iceberg? Nephrol. Dial. Transplant. 2021, gfab334. [Google Scholar] [CrossRef]
- Yang, C.; Song, Y.; Chen, Z.; Yuan, X.; Chen, X.; Ding, G.; Guan, Y.; McGrath, M.; Song, C.; Tong, Y.; et al. A Nonsense Mutation in COL4A4 Gene Causing Isolated Hematuria in Either Heterozygous or Homozygous State. Front. Genet. 2019, 10, 628. [Google Scholar] [CrossRef]
- Imafuku, A.; Nozu, K.; Sawa, N.; Hasegawa, E.; Hiramatsu, R.; Kawada, M.; Hoshino, J.; Tanaka, K.; Ishii, Y.; Takaichi, K.; et al. Autosomal dominant form of type IV collagen nephropathy exists among patients with hereditary nephritis difficult to diagnose clinicopathologically. Nephrology 2018, 23, 940–947. [Google Scholar] [CrossRef]
Age | Sex | Family History | Comorbidity | Microhematuria (/HF) | Proteinuria (g/g Cr) | eGFR (mL/min/1.73 m2) | Biopsy | GBM (nm) | Variants | |
---|---|---|---|---|---|---|---|---|---|---|
Sanger | ||||||||||
Pt 1 | 37 | M | (−) | (−) | 30 to 49 | 0.34 | 88.5 | (+) | NA | (+) |
Pt 2 | 60 | F | (+) | HT | 20 to 29 | 0.54 | 55.7 | (+) | 210.7 ± 57.1 | (+) |
Pt 3 | 44 | F | (−) | HT | 50 to 99 | 1.1 | 105.6 | (+) | 177.9 ± 35.7 | (+) |
Pt 4 | 41 | F | (−) | HL | 10 to 19 | 0.01 | 86.4 | (+) | 195.2 ± 57.5 | (+) |
Pt 5 | 22 | M | (−) | (−) | 50 to 99 | 0.02 | 121.8 | (+) | 232.8 ± 40.1 | (+) |
Pt 6 | 36 | M | (−) | (−) | 50 to 99 | 0.01 | 87.3 | (+) | NA | (+) |
Pt 7 | 36 | F | (−) | (−) | 50 to 99 | 0.01 | 87.3 | (+) | 181.7 ± 37.1 | (+) |
Pt 8 | 40 | F | (+) | (−) | 30 to 49 | 0.15 | 74.6 | (+) | NA | (+) |
Pt 9 | 49 | F | (−) | Obesity | 30 to 49 | 0.81 | 60.7 | (+) | 174.4 ± 62.1 | (+) |
Exome | ||||||||||
Pt 10 | 64 | F | (−) | IgA-N | 10 to 19 | 0.88 | 70.8 | (+) | 215.4 ± 58.0 | (−) |
Pt 11 | 50 | M | (−) | HT | 5 to 9 | 0.05 | 60.1 | (+) | 242.1 ± 54.7 | (−) |
Pt 12 | 69 | F | (−) | HT, HL | 30 to 49 | 0.09 | 67 | (+) | 223.7 ± 43.5 | (−) |
Pt 13 | 41 | M | (−) | (−) | 5 to 9 | 0.62 | 85.3 | (+) | 234.2 ± 47.3 | (−) |
Sanger Sequencing Results | Amino Acid Change | ACMG | ClinVar | LOVD | dbSNP | gnomAD | 8.3KJPN | Variant Category | PolyPhen-2 (Score) | PROVEAN (Score) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Pt 1 | COL4A3 c.469G > C | p.Gly157Arg | US | US | Unreported | rs764451365 | 0.000016 | ND | Rare | PD (1.00) | Deleterious (−6.778) |
Pt 1 | COL4A4 c.2510G > C | p.Gly837Ala | Likely Pathogenic | Pathogenic | Pathogenic | rs201648982 | 0.000008 | 0.0009 | Rare | PD (1.00) | Deleterious (−5.934) |
Pt 2 | COL4A3 c.697G > A | p.Gly233Arg | Likely Pathogenic | Likely Pathogenic | Unreported | ND | ND | ND | ND | PD (1.00) | Deleterious (−6.007) |
Pt 3 | COL4A3 c.1229G > A | p.Gly410Glu | US | US | Unreported | rs1350342816 | 0.000004 | ND | Rare | PD (1.00) | Deleterious (−5.457) |
Pt 4 | COL4A4 c.827G > C | p.Gly276Ala | US | Unreported | US | rs202242354 | 0.000016 | 0.0016 | Rare | PD (1.00) | Deleterious (−4.493) |
Pt 5 | COL4A4 c.2573G > A | p.Gly858Glu | Likely Pathogenic | Unreported | Unreported | CM148120 | ND | ND | ND | PD (1.00) | Deleterious (−7.583) |
Pt 6 | COL4A4 c.71 + 1G > A | p.? | Pathogenic | Pathogenic | Likely Pathogenic | rs1559742015 | ND | ND | ND | ND | ND |
Pt 7 | COL4A3 c.2969_2980del | p.Ala990_Pro993del | Likely Pathogenic | Unreported | Unreported | ND | ND | ND | ND | ND | Deleterious (−9.159) |
Pt 8 | COL4A4 c.1733G > T | p.Gly578Val | Likely Pathogenic | Unreported | Pathogenic | CM143835 | ND | ND | ND | PD (1.00) | Deleterious (−8.424) |
Pt 9 | COL4A4 c.904delG | p.Gly302ValfsTer23 | Pathogenic | Unreported | Unreported | ND | ND | ND | ND | ND | ND |
CKD | Proteinuria | Kidney Outcomes | |||||||
---|---|---|---|---|---|---|---|---|---|
eGFR < 60, (%) | eGFR > 60, (%) | ND, (%) | >0.5 g, (%) | <0.5 g, (%) | ND, (%) | ESKD cases, (%) | |||
ADAS | Missense | 48 | 15 (31.3) | 22 (45.8) | 11 (22.9) | 26 (54.2) | 14 (29.2) | 8 (16.7) | 15 (31.3) |
Non-missense | 19 | 4 (21.1) | 7 (36.8) | 8 (42.1) | 13 (68.4) | 3 (15.8) | 3 (15.8) | 4 (21.1) | |
TBMN | Missense | 37 | 3 (8.1) | 16 (43.2) | 18 (48.6) | 12 (32.4) | 13 (35.1) | 12 (32.4) | 2 (5.4) |
Non-missense | 19 | 1 (5.3) | 8 (42.1) | 10 (52.6) | 6 (31.6) | 6 (31.6) | 7 (36.8) | 1 (5.3) | |
TBMN-FSGS | Missense | 14 | 1 (7.1) | 0 (0.0) | 13 (92.9) | 3 (21.4) | 0 (0.0) | 11 (78.6) | 9 (64.3) |
Non-missense | 7 | 0 (0.0) | 3 (42.9) | 4 (57.1) | 3 (42.9) | 1 (14.3) | 3 (42.9) | 2 (28.6) | |
The present study (TBMN) | Missense | 5 | 1 (20) | 4 (80) | 0 (0.0) | 2 (40) | 3 (60) | 0 (0.0) | 0 (0.0) |
Non-missense | 3 | 0 (0.0) | 3 (100) | 0 (0.0) | 1 (33.3) | 2 (66.7) | 0 (0.0) | 0 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirabayashi, Y.; Katayama, K.; Mori, M.; Matsuo, H.; Fujimoto, M.; Joh, K.; Murata, T.; Ito, M.; Dohi, K. Mutation Analysis of Thin Basement Membrane Nephropathy. Genes 2022, 13, 1779. https://doi.org/10.3390/genes13101779
Hirabayashi Y, Katayama K, Mori M, Matsuo H, Fujimoto M, Joh K, Murata T, Ito M, Dohi K. Mutation Analysis of Thin Basement Membrane Nephropathy. Genes. 2022; 13(10):1779. https://doi.org/10.3390/genes13101779
Chicago/Turabian StyleHirabayashi, Yosuke, Kan Katayama, Mutsuki Mori, Hiroshi Matsuo, Mika Fujimoto, Kensuke Joh, Tomohiro Murata, Masaaki Ito, and Kaoru Dohi. 2022. "Mutation Analysis of Thin Basement Membrane Nephropathy" Genes 13, no. 10: 1779. https://doi.org/10.3390/genes13101779
APA StyleHirabayashi, Y., Katayama, K., Mori, M., Matsuo, H., Fujimoto, M., Joh, K., Murata, T., Ito, M., & Dohi, K. (2022). Mutation Analysis of Thin Basement Membrane Nephropathy. Genes, 13(10), 1779. https://doi.org/10.3390/genes13101779