Codon Pattern and Compositional Constraints Determination of Genes Associated with Chronic Periodontitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Retrieval
2.2. Compositional Analysis
2.3. Relative Synonymous Codon Usages (RSCU)
2.4. Codon Adaptation Index (CAI)
2.5. Effective Number of Codons (ENc)
2.6. PR2-Bias Plot Analysis
2.7. Neutrality Plot
2.8. Principal Component Analysis (PCA)
2.9. Phylogenetic Analysis
3. Results
3.1. Nucleotide Composition Affects the Codon Usage Bias
3.2. RSCU Analysis
3.3. At the Third Codon Position, G and T Are Preferred
3.4. Selection Is Dominant Force Affecting Codon Usage Evidenced by ENc-GC3 Plot
3.5. Selection Is Dominant Force Affecting Codon Usage Evidenced by Neutrality Plot
3.6. Principal Component Analysis (PCA) Revealed the Effect of Composition, Gene Expression, and Protein Properties on Codon Usage
3.7. Phylogenetic Analysis
4. Discussion
5. Conclusions
6. Future Directions and Clinical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Righolt, A.J.; Jevdjevic, M.; Marcenes, W.; Listl, S. Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in 2015. J. Dent. Res. 2018, 97, 501–507. [Google Scholar] [CrossRef]
- Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2163–2196. [Google Scholar] [CrossRef]
- Bretz, W.A.; Corby, P.M.; Schork, N.J.; Robinson, M.T.; Coelho, M.; Costa, S.; Melo Filho, M.R.; Weyant, R.J.; Hart, T.C. Longitudinal analysis of heritability for dental caries traits. J. Dent. Res. 2005, 84, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Preshaw, P.M.; Alba, A.L.; Herrera, D.; Jepsen, S.; Konstantinidis, A.; Makrilakis, K.; Taylor, R. Periodontitis and diabetes: A two-way relationship. Diabetologia 2012, 55, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Moura, M.F.; Navarro, T.P.; Silva, T.A.; Cota, L.O.M.; Soares Dutra Oliveira, A.M.; Costa, F.O. Periodontitis and Endothelial Dysfunction: Periodontal Clinical Parameters and Levels of Salivary Markers Interleukin-1β, Tumor Necrosis Factor-α, Matrix Metalloproteinase-2, Tissue Inhibitor of Metalloproteinases-2 Complex, and Nitric Oxide. J. Periodontol. 2017, 88, 778–787. [Google Scholar] [CrossRef]
- Sanz, M.; Marco Del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Sun, D.; Yang, J. Interaction between periodontitis and liver diseases. Biomed. Rep. 2016, 5, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Bingham, C.O.; Moni, M. Periodontal disease and rheumatoid arthritis: The evidence accumulates for complex pathobiologic interactions. Curr. Opin. Rheumatol. 2013, 25, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Gil Montoya, J.A.; Cutando Soriano, A.; Jimenez Prat, J. Alopecia areata of dental origin. Med. Oral. 2002, 7, 303–308. [Google Scholar] [PubMed]
- Varotto, B.L.R.; Martinez, R.C.R.; Gouveia, F.V.; Antunes, G.F.; de Campos Fabri, G.M.; Ballester, G.; Antequera, R.; de Siqueira, S.R.D.T.; Fonoff, E.T.; Teixeira, M.J.; et al. Increased Anxiety-Like Behavior in the Acute Phase of a Preclinical Model of Periodontal Disease. Front. Neurol. 2020, 11, 598851. [Google Scholar] [CrossRef]
- Bansal, M.; Khatri, M.; Taneja, V. Potential role of periodontal infection in respiratory diseases—A review. J. Med. Life 2013, 6, 244–248. [Google Scholar]
- Alvarenga, M.O.P.; Miranda, G.H.N.; Ferreira, R.O.; Saito, M.T.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. Association between Diabetic Retinopathy and Periodontitis—A Systematic Review. Front. Public Health 2020, 8, 550614. [Google Scholar] [CrossRef] [PubMed]
- Mahendra, J.; Mahendra, L.; Mugri, M.H.; Sayed, M.E.; Bhandi, S.; Alshahrani, R.T.; Balaji, T.M.; Varadarajan, S.; Tanneeru, S.; Rao, A.N.; et al. Role of Periodontal Bacteria, Viruses, and Placental mir155 in Chronic Periodontitis and Preeclampsia—A Genetic Microbiological Study. Curr. Issues Mol. Biol. 2021, 43, 831–844. [Google Scholar] [CrossRef]
- Graves, D.T.; Oates, T.; Garlet, G.P. Review of osteoimmunology and the host response in endodontic and periodontal lesions. J. Oral. Microbiol. 2011, 3, 5304. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Wei, Z.; Yin, J.; Zhang, B.; Zhang, T.; Deng, C.; Huang, Y.; Zhang, N. Genetic susceptibility of common polymorphisms in NIN and SIGLEC5 to chronic periodontitis. Sci. Rep. 2019, 9, 2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodin, K.; Divaris, K.; North, K.E.; Barros, S.P.; Moss, K.; Beck, J.D.; Offenbacher, S. Chronic periodontitis genome-wide association studies: Gene-centric and gene set enrichment analyses. J. Dent. Res. 2014, 93, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, M.N.; Chakraborty, S. Codon usage pattern in human SPANX genes. Bioinformation 2015, 11, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Moura, G.R.; Pinheiro, M.; Freitas, A.; Oliveira, J.L.; Frommlet, J.C.; Carreto, L.; Soares, A.R.; Bezerra, A.R.; Santos, M.A.S. Species-specific codon context rules unveil non-neutrality effects of synonymous mutations. PLoS ONE 2011, 6, e26817. [Google Scholar] [CrossRef] [Green Version]
- Payne, B.L.; Alvarez-Ponce, D. Codon Usage Differences among Genes Expressed in Different Tissues of Drosophila melanogaster. Genome Biol. Evol. 2019, 11, 1054–1065. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, J.B.; Robins, H.; Levine, A.J. Tissue-specific codon usage and the expression of human genes. Proc. Natl. Acad. Sci. USA 2004, 101, 12588–12591. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, T.; Khandia, R.; Puranik, N.; Alqahtani, A.M.; Almikhlafi, M.A.; Algahtany, M.A. Leucine encoding codon TTG shows an inverse relationship with GC content in genes involved in neurodegeneration with iron accumulation. J. Integr. Neurosci. 2021, 20, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Khandia, R.; Alqahtani, T.; Alqahtani, A.M. Genes Common in Primary Immunodeficiencies and Cancer Display Overrepresentation of Codon CTG and Dominant Role of Selection Pressure in Shaping Codon Usage. Biomedicines 2021, 9, 1001. [Google Scholar] [CrossRef]
- Paul, P.; Malakar, A.K.; Chakraborty, S. Compositional bias coupled with selection and mutation pressure drives codon usage in Brassica campestris genes. Food Sci. Biotechnol. 2018, 27, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Dang, Y.; Zhou, M.; Li, L.; Yu, C.-H.; Fu, J.; Chen, S.; Liu, Y. Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc. Natl. Acad. Sci. USA 2016, 113, E6117–E6125. [Google Scholar] [CrossRef] [Green Version]
- Khandia, R.; Ali Khan, A.; Alexiou, A.; Povetkin, S.N.; Verevkina, M.N. Codon Usage Analysis of Pro-Apoptotic Bim Gene Isoforms. J. Alzheimer’s Dis. 2022, 86, 1711–1725. [Google Scholar] [CrossRef]
- Richards, D. Review finds that severe periodontitis affects 11% of the world population. Evid. Based Dent. 2014, 15, 70–71. [Google Scholar] [CrossRef]
- Zhou, T.; Gu, W.; Ma, J.; Sun, X.; Lu, Z. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 2005, 81, 77–86. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef]
- Puigbò, P.; Bravo, I.G.; Garcia-Vallve, S. CAIcal: A combined set of tools to assess codon usage adaptation. Biol. Direct 2008, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P.M.; Li, W.H. The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef]
- Naya, H.; Romero, H.; Carels, N.; Zavala, A.; Musto, H. Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett. 2001, 501, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Stenico, M.; Lloyd, A.T.; Sharp, P.M. Codon usage in Caenorhabditis elegans: Delineation of translational selection and mutational biases. Nucleic Acids Res. 1994, 22, 2437–2446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, F. The “effective number of codons” used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Khandia, R.; Singhal, S.; Kumar, U.; Ansari, A.; Tiwari, R.; Dhama, K.; Das, J.; Munjal, A.; Singh, R.K. Analysis of Nipah Virus Codon Usage and Adaptation to Hosts. Front. Microbiol. 2019, 10, 886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munjal, A.; Khandia, R.; Shende, K.K.; Das, J. Mycobacterium lepromatosis genome exhibits unusually high CpG dinucleotide content and selection is key force in shaping codon usage. Infect. Genet. Evol. 2020, 84, 104399. [Google Scholar] [CrossRef] [PubMed]
- Sueoka, N. Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J. Mol. Evol. 1995, 40, 318–325. [Google Scholar] [CrossRef]
- Wang, L.; Xing, H.; Yuan, Y.; Wang, X.; Saeed, M.; Tao, J.; Feng, W.; Zhang, G.; Song, X.; Sun, X. Genome-wide analysis of codon usage bias in four sequenced cotton species. PLoS ONE 2018, 13, e0194372. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Liu, J.; Li, H.; Liu, B.; Zhao, B.; Ning, Z. Comprehensive analysis of synonymous codon usage patterns and influencing factors of porcine epidemic diarrhea virus. Arch. Virol. 2021, 166, 157–165. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Li, Y.; Ji, K.-K.; Zhu, J.; Ling, P.; Zhou, T.; Fan, L.-Y.; Xie, S.-Q. Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis. Genomics 2020, 112, 2695–2702. [Google Scholar] [CrossRef]
- Guan, D.-L.; Ma, L.-B.; Khan, M.S.; Zhang, X.-X.; Xu, S.-Q.; Xie, J.-Y. Analysis of codon usage patterns in Hirudinaria manillensis reveals a preference for GC-ending codons caused by dominant selection constraints. BMC Genom. 2018, 19, 542. [Google Scholar] [CrossRef] [PubMed]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 4. [Google Scholar]
- Jenkins, G.M.; Holmes, E.C. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 2003, 92, 1–7. [Google Scholar] [CrossRef]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behura, S.K.; Severson, D.W. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS ONE 2012, 7, e43111. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Weon, S.; Lee, S.; Kang, C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol. Bioinform. Online 2010, 6, 47–55. [Google Scholar] [CrossRef]
- Uddin, A. Compositional Features and Codon Usage Pattern of Genes Associated with Anxiety in Human. Mol. Neurobiol. 2020, 57, 4911–4920. [Google Scholar] [CrossRef]
- Tyagi, A.; Singh, N.K.; Gurtler, V.; Karunasagar, I. Bioinformatics analysis of codon usage patterns and influencing factors in Penaeus monodon nudivirus. Arch. Virol. 2016, 161, 459–464. [Google Scholar] [CrossRef]
- Nair, R.R.; Nandhini, M.B.; Monalisha, E.; Murugan, K.; Sethuraman, T.; Nagarajan, S.; Rao, N.S.P.; Ganesh, D. Synonymous codon usage in chloroplast genome of Coffea arabica. Bioinformation 2012, 8, 1096–1104. [Google Scholar] [CrossRef]
- Chakraborty, S.; Nag, D.; Mazumder, T.H.; Uddin, A. Codon usage pattern and prediction of gene expression level in Bungarus species. Gene 2017, 604, 48–60. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.; Yang, G.; Fan, J.; Tang, Y.; Zhao, J.; Long, X.; Guo, S.; Zhao, Z.; Liu, Y.; et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J. Infect. 2020, 81, e28–e32. [Google Scholar] [CrossRef] [PubMed]
- Fuller, S.J.; Sohrabi, H.R.; Goozee, K.G.; Sankaranarayanan, A.; Martins, R.N. Alzheimer’s Disease and Other Neurodegenerative Diseases. In Neurodegeneration and Alzheimer’s Disease; Martins, R.N., Brennan, C.S., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 11–42. ISBN 978-1-119-35678-3. [Google Scholar]
- Schwartz, S.; Meshorer, E.; Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 2009, 16, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.; Chakraborty, S. Codon Usage Pattern of Genes Involved in Central Nervous System. Mol. Neurobiol. 2019, 56, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Kliman, R.M.; Bernal, C.A. Unusual usage of AGG and TTG codons in humans and their viruses. Gene 2005, 352, 92–99. [Google Scholar] [CrossRef] [PubMed]
- de Boer, S.P.M.; Cheng, J.M.; Rangé, H.; Garcia-Garcia, H.M.; Heo, J.H.; Akkerhuis, K.M.; Meilhac, O.; Cosler, G.; Pussinen, P.J.; van Geuns, R.-J.; et al. Antibodies to periodontal pathogens are associated with coronary plaque remodeling but not with vulnerability or burden. Atherosclerosis 2014, 237, 84–91. [Google Scholar] [CrossRef]
- Ranade, S.B.; Doiphode, S. Is there a relationship between periodontitis and rheumatoid arthritis? J. Indian Soc. Periodontol. 2012, 16, 22–27. [Google Scholar] [CrossRef]
- Menchaca-Díaz, R.; Bogarín-López, B.; Zamudio-Gómez, M.A.; Anzaldo-Campos, M.C. Severe periodontitis, edentulism and neuropathy in patients with type 2 diabetes mellitus. Gac. Med. Mex. 2012, 148, 34–41. [Google Scholar] [PubMed]
- Zhang, Y.; Showalter, A.M. CRISPR/Cas9 Genome Editing Technology: A Valuable Tool for Understanding Plant Cell Wall Biosynthesis and Function. Front. Plant Sci. 2020, 11, 589517. [Google Scholar] [CrossRef]
Codon | Amino Acid | NIN | ABHD12B | WHAMM | AP3B3 | SIGLEC6 |
---|---|---|---|---|---|---|
TTT | F | 1.395 | 1.524 | 1.267 | 0.571 | 0.566 |
TTC | 0.605 | 0.476 | 0.733 | 1.429 | 1.434 | |
TTA | L | 0.790 | 0.816 | 0.859 | 0.068 | 0.114 |
TTG | 0.895 | 0.893 | 1.284 | 0.239 | 0.321 | |
CTT | 1.019 | 1.106 | 0.936 | 0.329 | 0.712 | |
CTC | 0.872 | 0.553 | 0.779 | 0.977 | 1.594 | |
CTA | 0.468 | 0.512 | 0.709 | 0.318 | 0.093 | |
CTG | 1.956 | 2.120 | 1.432 | 4.070 | 3.167 | |
ATT | I | 1.194 | 1.669 | 1.258 | 1.296 | 0.335 |
ATC | 0.786 | 1.038 | 0.842 | 1.348 | 2.248 | |
ATA | 1.021 | 0.293 | 0.901 | 0.356 | 0.418 | |
GTT | V | 0.806 | 1.425 | 1.120 | 0.390 | 0.553 |
GTC | 0.851 | 1.069 | 0.808 | 0.827 | 1.364 | |
GTA | 0.704 | 0.315 | 0.438 | 0.422 | 0.298 | |
GTG | 1.639 | 1.190 | 1.634 | 2.361 | 1.786 | |
TCT | S | 1.584 | 1.861 | 1.722 | 0.835 | 0.646 |
TCC | 1.068 | 0.233 | 1.179 | 1.508 | 2.378 | |
TCA | 0.800 | 0.297 | 1.013 | 0.684 | 0.402 | |
TCG | 0.076 | 0.630 | 0.260 | 0.316 | 0.629 | |
AGT | 1.133 | 1.796 | 0.881 | 1.171 | 0.090 | |
AGC | 1.339 | 1.184 | 0.944 | 1.486 | 1.856 | |
CCT | P | 1.043 | 0.873 | 1.083 | 1.183 | 0.807 |
CCC | 0.979 | 1.660 | 0.645 | 1.827 | 1.816 | |
CCA | 1.534 | 1.335 | 1.542 | 0.872 | 1.035 | |
CCG | 0.443 | 0.132 | 0.729 | 0.118 | 0.343 | |
ACT | T | 1.071 | 0.749 | 1.130 | 0.597 | 0.176 |
ACC | 0.990 | 0.783 | 1.209 | 2.507 | 2.299 | |
ACA | 1.447 | 2.153 | 1.593 | 0.726 | 0.854 | |
ACG | 0.491 | 0.315 | 0.068 | 0.171 | 0.672 | |
GCT | A | 1.076 | 0.902 | 1.695 | 0.923 | 1.236 |
GCC | 1.060 | 1.280 | 0.986 | 1.984 | 2.031 | |
GCA | 1.347 | 1.634 | 0.534 | 0.540 | 0.599 | |
GCG | 0.517 | 0.184 | 0.785 | 0.554 | 0.135 | |
TAT | Y | 1.247 | 1.449 | 1.250 | 0.370 | 0.720 |
TAC | 0.753 | 0.551 | 0.750 | 1.630 | 1.280 | |
CAT | H | 1.143 | 0.632 | 0.794 | 0.444 | 0.628 |
CAC | 0.857 | 1.368 | 1.206 | 1.556 | 1.372 | |
CAA | Q | 0.657 | 0.429 | 0.749 | 0.381 | 0.658 |
CAG | 1.343 | 1.571 | 1.251 | 1.619 | 1.342 | |
AAT | N | 1.140 | 0.927 | 1.087 | 0.617 | 0.555 |
AAC | 0.860 | 1.073 | 0.913 | 1.383 | 1.445 | |
AAA | K | 1.023 | 0.803 | 1.356 | 0.543 | 0.549 |
AAG | 0.977 | 1.197 | 0.644 | 1.457 | 1.451 | |
GAT | D | 1.086 | 1.042 | 1.229 | 0.702 | 0.862 |
GAC | 0.914 | 0.958 | 0.771 | 1.298 | 1.139 | |
GAA | E | 1.072 | 1.180 | 1.273 | 0.424 | 0.309 |
GAG | 0.928 | 0.820 | 0.727 | 1.576 | 1.691 | |
TGT | C | 1.021 | 0.973 | 1.196 | 1.464 | 0.687 |
TGC | 0.979 | 1.027 | 0.804 | 0.536 | 1.313 | |
CGT | R | 0.594 | 1.005 | 0.560 | 0.829 | 0.196 |
CGC | 0.344 | 0.479 | 0.691 | 1.249 | 1.321 | |
CGA | 0.628 | 0.123 | 0.501 | 0.715 | 0.534 | |
CGG | 0.929 | 0.882 | 1.088 | 1.706 | 0.677 | |
AGA | 1.752 | 2.353 | 2.009 | 0.447 | 1.805 | |
AGG | 1.753 | 1.157 | 1.151 | 1.053 | 1.467 | |
GGT | G | 0.968 | 0.628 | 1.034 | 0.406 | 0.542 |
GGC | 0.988 | 0.946 | 1.547 | 2.069 | 1.178 | |
GGA | 1.036 | 1.135 | 0.770 | 0.698 | 0.935 | |
GGG | 1.009 | 1.291 | 0.649 | 0.828 | 1.346 |
CAI | ENC | %GC | %GC1 | %GC2 | %GC3 | |
---|---|---|---|---|---|---|
CAI | *** | *** | NS | * | *** | |
ENC | −0.945 | *** | NS | * | *** | |
%GC | 0.808 | −0.819 | NS | *** | *** | |
%GC1 | −0.028 | −0.038 | 0.328 | NS | NS | |
%GC2 | 0.414 | −0.463 | 0.667 | −0.134 | * | |
%GC3 | 0.897 | −0.864 | 0.916 | 0.278 | 0.362 |
Component | %GC(3) | CAI | GRAVY | AROMA | %A | %C | %T | %G |
PC1 (r value) | 0.974 | 0.929 | 0.345 | 0.131 | −0.688 | 0.853 | −0.577 | 0.515 |
Significance | *** | *** | NS | NS | *** | *** | *** | *** |
PC2 (r value) | 0.117 | 0.236 | 0.755 | 0.638 | −0.470 | 0.002 | 0.474 | 0.479 |
Significance | NS | NS | *** | *** | ** | NS | * | * |
Component | %A3 | %C3 | %T3 | %G3 | %G + C | %G3 + C3 | %A + T | %A3 + T3 |
PC1 (r value) | −0.902 | 0.887 | −0.837 | 0.644 | 0.881 | 0.974 | −0.881 | −0.974 |
Significance | *** | *** | *** | *** | *** | *** | *** | *** |
PC2 (r value) | −0.404 | 0.260 | 0.281 | −0.192 | 0.200 | 0.117 | −0.200 | −0.117 |
Significance | NS | NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khandia, R.; Pandey, M.; Rzhepakovsky, I.V.; Khan, A.A.; Legaz, I. Codon Pattern and Compositional Constraints Determination of Genes Associated with Chronic Periodontitis. Genes 2022, 13, 1934. https://doi.org/10.3390/genes13111934
Khandia R, Pandey M, Rzhepakovsky IV, Khan AA, Legaz I. Codon Pattern and Compositional Constraints Determination of Genes Associated with Chronic Periodontitis. Genes. 2022; 13(11):1934. https://doi.org/10.3390/genes13111934
Chicago/Turabian StyleKhandia, Rekha, Megha Pandey, Igor Vladimirovich Rzhepakovsky, Azmat Ali Khan, and Isabel Legaz. 2022. "Codon Pattern and Compositional Constraints Determination of Genes Associated with Chronic Periodontitis" Genes 13, no. 11: 1934. https://doi.org/10.3390/genes13111934