Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals and Sampling
2.2. Animal Grouping
2.3. Whole-Genome Sequencing, Reads Alignment and Variant Calling
2.4. Detection of Selection Signatures
Pairwise Fixation Index (Fst)
2.5. Cross-Population Extended Haplotype Homozygosity (XP-EHH)
2.6. Nucleotide Diversity (θπ)
2.7. Gene Ontology and Functional Analysis
3. Results
3.1. Selection Signatures Based on XP-EHH and Fst
3.2. Differentiation of Individuals within Each Group Based on θπ Ratios
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowness, E.R. An Historical Perspective on the North American Mink Industry. Mink Biol. Health Dis. 1996, 1–9. [Google Scholar]
- Hansen, S.W. Selection for Behavioural Traits in Farm Mink. Appl. Anim. Behav. Sci. 1996, 49, 137–148. [Google Scholar] [CrossRef]
- Kruska, D. The Effect of Domestication on Brain Size and Composition in the Mink (Mustela Vison). J. Zool. 1996, 239, 645–661. [Google Scholar] [CrossRef]
- Morris, K.Y.; Bowman, J.; Schulte Hostedde, A.; Wilson, P.J. Functional Genetic Diversity of Domestic and Wild American Mink (Neovison Vison). Evol. Appl. 2020, 13, 2610–2629. [Google Scholar] [CrossRef]
- Tamlin, A.L.; Bowman, J.; Hackett, D.F. Separating Wild from Domestic American Mink Neovison Vison Based on Skull Morphometries. Wildlife Biol. 2009, 15, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Fur Commission USA. The Colors of Mink. Available online: https://furcommission.com/true-colors/ (accessed on 2 February 2022).
- Wang, L.; Zhou, S.; Liu, G.; Lyu, T.; Shi, L.; Dong, Y.; He, S.; Zhang, H. Comparative Transcriptome Reveals the Mechanism of Mink Fur Development and Color Formation. Available online: https://doi.org/10.21203/rs.3.rs-1556708/v1 (accessed on 1 June 2022).
- Cai, Z.; Villumsen, T.M.; Asp, T.; Guldbrandtsen, B.; Sahana, G.; Lund, M.S. SNP Markers Associated with Body Size and Pelt Length in American Mink (Neovison Vison). BMC Genet. 2018, 19, 103. [Google Scholar] [CrossRef]
- Thirstrup, J.P.; Anistoroaei, R.; Guldbrandtsen, B.; Christensen, K.; Fredholm, M.; Nielsen, V.H. Identifying QTL and Genetic Correlations between Fur Quality Traits in Mink (N Eovison Vison). Anim. Genet. 2014, 45, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Cirera, S.; Markakis, M.N.; Christensen, K.; Anistoroaei, R. New Insights into the Melanophilin (MLPH) Gene Controlling Coat Color Phenotypes in American Mink. Gene 2013, 527, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Anistoroaei, R.; Krogh, A.K.; Christensen, K. A Frameshift Mutation in the LYST Gene Is Responsible for the Aleutian Color and the Associated Chédiak–Higashi Syndrome in American Mink. Anim. Genet. 2013, 44, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Anistoroaei, R.; Fredholm, M.; Christensen, K.; Leeb, T. Albinism in the American Mink (Neovison Vison) Is Associated with a Tyrosinase Nonsense Mutation. Anim. Genet. 2008, 39, 645–648. [Google Scholar] [CrossRef]
- Markakis, M.N.; Soedring, V.E.; Dantzer, V.; Christensen, K.; Anistoroaei, R. Association of MITF Gene with Hearing and Pigmentation Phenotype in Hedlund White American Mink (Neovison Vison). J. Genet. 2014, 93, 477–481. [Google Scholar] [CrossRef]
- Cirera, S.; Markakis, M.N.; Kristiansen, T.; Vissenberg, K.; Fredholm, M.; Christensen, K.; Anistoroaei, R. A Large Insertion in Intron 2 of the TYRP1 Gene Associated with American Palomino Phenotype in American Mink. Mamm. Genome 2016, 27, 135–143. [Google Scholar] [CrossRef]
- Bennett, D.C.; Lamoreux, M.L. The Color Loci of Mice–A Genetic Century. Pigment Cell Res. 2003, 16, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Xu, C.; Liu, Z.; Yue, Z.; Liu, L.; Yang, T.; Cong, B.; Yang, F. Comparative Transcriptome Analysis of Mink (Neovison Vison) Skin Reveals the Key Genes Involved in the Melanogenesis of Black and White Coat Colour. Sci. Rep. 2017, 7, 12461. [Google Scholar] [CrossRef] [Green Version]
- Manakhov, A.D.; Andreeva, T.V.; Trapezov, O.V.; Kolchanov, N.A.; Rogaev, E.I. Genome Analysis Identifies the Mutant Genes for Common Industrial Silverblue and Hedlund White Coat Colours in American Mink. Sci. Rep. 2019, 9, 4581. [Google Scholar] [CrossRef] [Green Version]
- Shackelford, R.M. The Nature of Coat Color Differences in Mink and Foxes. Genetics 1948, 33, 311. [Google Scholar] [CrossRef]
- Trapezov, O.V.; Trapezova, L.I. Whether or Not Selection Can Induce Variability: Model of the American Mink (Mustela Vison). Paleontol. J. 2016, 50, 1649–1655. [Google Scholar] [CrossRef]
- Trapezov, O. V Black Crystal: A Novel Color Mutant in the American Mink (Mustela Vison Schreber). J. Hered. 1997, 88, 164–167. [Google Scholar] [CrossRef] [Green Version]
- Qanbari, S.; Simianer, H. Mapping Signatures of Positive Selection in the Genome of Livestock. Livest. Sci. 2014, 166, 133–143. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, X.; Qanbari, S.; Weigend, S.; Zhang, Q.; Simianer, H. Properties of Different Selection Signature Statistics and a New Strategy for Combining Them. Heredity (Edinb) 2015, 115, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Boitard, S.; Boussaha, M.; Capitan, A.; Rocha, D.; Servin, B. Uncovering Adaptation from Sequence Data: Lessons from Genome Resequencing of Four Cattle Breeds. Genetics 2016, 203, 433–450. [Google Scholar] [CrossRef] [PubMed]
- Vitti, J.J.; Grossman, S.R.; Sabeti, P.C. Detecting Natural Selection in Genomic Data. Annu. Rev. Genet. 2013, 47, 97–120. [Google Scholar] [CrossRef]
- Harris, E.E.; Meyer, D. The Molecular Signature of Selection Underlying Human Adaptations. Am. J. Phys. Anthropol. 2006, 131, 89–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, W.; Fang, C.; Xu, F.; Liu, Y.; Wang, Z.; Yang, R.; Zhang, M.; Liu, S.; Lu, S. Parallel Selection on a Dormancy Gene during Domestication of Crops from Multiple Families. Nat. Genet. 2018, 50, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, J.J.d.S.; da Silva, M.V.G.B.; Paiva, S.R.; de Oliveira, S.M.P. Identification of Selection Signatures in Livestock Species. Genet. Mol. Biol. 2014, 37, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Karimi, K.; Farid, A.H.; Myles, S.; Miar, Y. Detection of Selection Signatures for Response to Aleutian Mink Disease Virus Infection in American Mink. Sci. Rep. 2021, 11, 2944. [Google Scholar] [CrossRef]
- Turner, P.; Buijs, S.; Rommers, J.M.; Tessier, M. The Code of Practice for the Care and Handling of Farmed Mink. Natl. Farm Anim. Care Counc. Rexdale ON Can. 2013, 58. [Google Scholar]
- Thirstrup, J.P.; Jensen, J.; Lund, M.S. Genetic Parameters for Fur Quality Graded on Live Animals and Dried Pelts of American Mink (Neovison Vison). J. Anim. Breed. Genet. 2017, 134, 322–331. [Google Scholar] [CrossRef]
- North American Fur Auctions (NAFA). Wild Fur Pelt Handling Manual. In Wild Fur Pelt Handling Manual; NAFA: Toronto, ON, Canada, 2014; p. 38. [Google Scholar]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z. SOAPnuke: A MapReduce Acceleration-Supported Software for Integrated Quality Control and Preprocessing of High-Throughput Sequencing Data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toolkit, P. Broad Institute, GitHub Repos. 2019. Available online: https://broadinstitute.github.io/picard/ (accessed on 16 September 2022).
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Weir, B.S.; Cockerham, C.C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Akey, J.M.; Zhang, G.; Zhang, K.; Jin, L.; Shriver, M.D. Interrogating a High-Density SNP Map for Signatures of Natural Selection. Genome Res. 2002, 12, 1805–1814. [Google Scholar] [CrossRef] [Green Version]
- Turner, S.D. Qqman: An R Package for Visualizing GWAS Results Using QQ and Manhattan Plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef] [Green Version]
- Qanbari, S.; Pausch, H.; Jansen, S.; Somel, M.; Strom, T.M.; Fries, R.; Nielsen, R.; Simianer, H. Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genet. 2014, 10, e1004148. [Google Scholar] [CrossRef] [Green Version]
- Szpiech, Z.A. Selscan 2.0: Scanning for Sweeps in Unphased Data. bioRxiv 2021. [Google Scholar] [CrossRef]
- Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R. Genome-Wide Detection and Characterization of Positive Selection in Human Populations. Nature 2007, 449, 913–918. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, A.R. BEDTools: The Swiss Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014, 47, 11–12. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.D.; Campbell, M.J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.; Diemer, K.; Muruganujan, A.; Narechania, A. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res. 2003, 13, 2129–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G: Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed]
- Gurgul, A.; Miksza-Cybulska, A.; Szmato a, T.; Jasielczuk, I.; Piestrzy ska-Kajtoch, A.; Fornal, A.; Semik-Gurgul, E.; Bugno-Poniewierska, M. Genotyping-by-Sequencing Performance in Selected Livestock Species. Genomics 2019, 111, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Petersen, B.; Sahana, G.; Madsen, L.B.; Larsen, K.; Thomsen, B.; Bendixen, C.; Lund, M.S.; Guldbrandtsen, B.; Panitz, F. The First Draft Reference Genome of the American Mink (Neovison Vison). Sci. Rep. 2017, 7, 14564. [Google Scholar] [CrossRef] [Green Version]
- Ward, S. Why Is American Mink the World’s Favourite Fur? Available online: https://www.truthaboutfur.com/blog/mink-worlds-favourite-fur/ (accessed on 14 March 2022).
- Rishikaysh, P.; Dev, K.; Diaz, D.; Qureshi, W.M.S.; Filip, S.; Mokry, J. Signaling Involved in Hair Follicle Morphogenesis and Development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef] [Green Version]
- Shimomura, Y.; Agalliu, D.; Vonica, A.; Luria, V.; Wajid, M.; Baumer, A.; Belli, S.; Petukhova, L.; Schinzel, A.; Brivanlou, A.H. APCDD1 Is a Novel Wnt Inhibitor Mutated in Hereditary Hypotrichosis Simplex. Nature 2010, 464, 1043–1047. [Google Scholar] [CrossRef] [Green Version]
- Kömüves, L.G.; Ma, X.K.; Stelnicki, E.; Rozenfeld, S.; Oda, Y.; Largman, C. HOXB13 Homeodomain Protein Is Cytoplasmic throughout Fetal Skin Development. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2003, 227, 192–202. [Google Scholar] [CrossRef]
- Peled, A.; Sarig, O.; Samuelov, L.; Bertolini, M.; Ziv, L.; Weissglas-Volkov, D.; Eskin-Schwartz, M.; Adase, C.A.; Malchin, N.; Bochner, R. Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis. PLoS Genet. 2016, 12, e1006369. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.; Sims, C.; Logue, J.M.; Weatherbee, S.D.; Krumlauf, R. Lrp4 and Wise Interplay Controls the Formation and Patterning of Mammary and Other Skin Appendage Placodes by Modulating Wnt Signaling. Development 2013, 140, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Nakrieko, K.-A.; Welch, I.; Dupuis, H.; Bryce, D.; Pajak, A.; St. Arnaud, R.; Dedhar, S.; D’Souza, S.J.A.; Dagnino, L. Impaired Hair Follicle Morphogenesis and Polarized Keratinocyte Movement upon Conditional Inactivation of Integrin-Linked Kinase in the Epidermis. Mol. Biol. Cell 2008, 19, 1462–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscone, S.; Mardaryev, A.N.; Raafs, B.; Bikker, J.W.; Sticht, C.; Gretz, N.; Farjo, N.; Uzunbajakava, N.E.; Botchkareva, N.V. A New Path in Defining Light Parameters for Hair Growth: Discovery and Modulation of Photoreceptors in Human Hair Follicle. Lasers Surg. Med. 2017, 49, 705–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, S.-S.; Moriyama, M.; Nishioka, E.; Osawa, M.; Nishikawa, S.-I. Indispensable Role of Bcl2 in the Development of the Melanocyte Stem Cell. Dev. Biol. 2006, 291, 144–153. [Google Scholar] [CrossRef]
- Westbroek, W.; Lambert, J.; Schepper, S.D.; Kleta, R.; Bossche, K.V.D.; Seabra, M.C.; Huizing, M.; Mommaas, M.; Naeyaert, J.M. Rab27b Is up Regulated in Human Griscelli Syndrome Type II Melanocytes and Linked to the Actin Cytoskeleton via Exon F Myosin Va Transcripts. Pigment cell Res. 2004, 17, 498–505. [Google Scholar] [CrossRef]
- Pearen, M.A.; Muscat, G.E.O. Minireview: Nuclear Hormone Receptor 4A Signaling: Implications for Metabolic Disease. Mol. Endocrinol. 2010, 24, 1891–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Sieira, S.; López, M.; Nogueiras, R.; Tovar, S. Regulation of NR4A by Nutritional Status, Gender, Postnatal Development and Hormonal Deficiency. Sci. Rep. 2014, 4, 4264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shore, E.M.; Xu, M.; Feldman, G.J.; Fenstermacher, D.A.; Cho, T.-J.; Choi, I.H.; Connor, J.M.; Delai, P.; Glaser, D.L.; LeMerrer, M. A Recurrent Mutation in the BMP Type I Receptor ACVR1 Causes Inherited and Sporadic Fibrodysplasia Ossificans Progressiva. Nat. Genet. 2006, 38, 525–527. [Google Scholar] [CrossRef]
- Cheng, J.; Cao, X.; Hao, D.; Ma, Y.; Qi, X.; Chaogetu, B.; Lei, C.; Chen, H. The ACVR1 Gene Is Significantly Associated with Growth Traits in Chinese Beef Cattle. Livest. Sci. 2019, 229, 210–215. [Google Scholar] [CrossRef]
- Huh, M.S.; Parker, M.H.; Scimè, A.; Parks, R.; Rudnicki, M.A. Rb Is Required for Progression through Myogenic Differentiation but Not Maintenance of Terminal Differentiation. J. Cell Biol. 2004, 166, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Go, G.-Y.; Jo, A.; Seo, D.-W.; Kim, W.-Y.; Kim, Y.K.; So, E.-Y.; Chen, Q.; Kang, J.-S.; Bae, G.-U.; Lee, S.-J. Ginsenoside Rb1 and Rb2 Upregulate Akt/MTOR Signaling–Mediated Muscular Hypertrophy and Myoblast Differentiation. J. Ginseng Res. 2020, 44, 435–441. [Google Scholar] [CrossRef]
- Kirchmaier, B.C.; Poon, K.L.; Schwerte, T.; Huisken, J.; Winkler, C.; Jungblut, B.; Stainier, D.Y.; Brand, T. The Popeye Domain Containing 2 (Popdc2) Gene in Zebrafish Is Required for Heart and Skeletal Muscle Development. Dev. Biol. 2012, 363, 438–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, C.; Seki, T.; Lim, S.; Nakamura, M.; Andersson, P.; Yang, Y.; Honek, J.; Wang, Y.; Gao, Y.; Chen, F. A miR-327-FGF10-FGFR2-Mediated Autocrine Signaling Mechanism Controls White Fat Browning. Nat. Commun. 2017, 8, 2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haworth, K.E.; Farrell, W.E.; Emes, R.D.; Ismail, K.M.K.; Carroll, W.D.; Hubball, E.; Rooney, A.; Yates, A.M.; Mein, C.; Fryer, A.A. Methylation of the FGFR2 Gene Is Associated with High Birth Weight Centile in Humans. Epigenomics 2014, 6, 477–491. [Google Scholar] [CrossRef]
- Hasson, P.; DeLaurier, A.; Bennett, M.; Grigorieva, E.; Naiche, L.A.; Papaioannou, V.E.; Mohun, T.J.; Logan, M.P.O. Tbx4 and Tbx5 Acting in Connective Tissue Are Required for Limb Muscle and Tendon Patterning. Dev. Cell 2010, 18, 148–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pośpiech, E.; Kukla-Bartoszek, M.; Karłowska-Pik, J.; Zieliński, P.; Woźniak, A.; Boroń, M.; Dąbrowski, M.; Zubańska, M.; Jarosz, A.; Grzybowski, T.; et al. Exploring the Possibility of Predicting Human Head Hair Greying from DNA Using Whole-Exome and Targeted NGS Data. BMC Genom. 2020, 21, 538. [Google Scholar]
- Liu, L.; Li, B.; Zhu, Y.L.; Wang, C.Y.; Li, F.C. Differential Gene Expression Profiles in Foetal Skin of Rex Rabbits with Different Wool Density. World Rabbit Sci. 2016, 24, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Midorikawa, T.; Chikazawa, T.; Yoshino, T.; Takada, K.; Arase, S. Different Gene Expression Profile Observed in Dermal Papilla Cells Related to Androgenic Alopecia by DNA Macroarray Analysis. J. Dermatol. Sci. 2004, 36, 25–32. [Google Scholar] [CrossRef]
- Kang, X.; Liu, G.; Liu, Y.; Xu, Q.; Zhang, M.; Fang, M. Transcriptome Profile at Different Physiological Stages Reveals Potential Mode for Curly Fleece in Chinese Tan Sheep. PLoS ONE 2013, 8, e71763. [Google Scholar] [CrossRef] [Green Version]
- Villumsen, T.M.; Su, G.; Guldbrandtsen, B.; Asp, T.; Lund, M.S. Genomic Selection in American Mink (Neovison Vison) Using a Single-Step Genomic Best Linear Unbiased Prediction Model for Size and Quality Traits Graded on Live Mink. J. Anim. Sci. 2021, 99, skab003. [Google Scholar] [CrossRef]
Group | Number of Candidate Regions | Number of Genes |
---|---|---|
Nap size | 177 | 110 |
Overall fur quality | 261 | 163 |
Pelt size | 204 | 98 |
Pastel_Black | 201 | 123 |
Stardust_Black | 103 | 71 |
Chromosome | Position (bp) | Group | Genes |
---|---|---|---|
3 | 182,130,062-182,140,062 | Nap size | RAB31 |
3 | 182,662,938-182,672,938 | Nap size | APCDD1 |
3 | 182,736,504-183,045,067 | Nap size | NAPG, PIEZO2 |
3 | 211,123,039-211,140,367 | Nap size | LDLRAD4 |
5 | 2,940,988-2,952,647 | Nap size | RBFOX3 |
5 | 7,488,192-7,513,312 | Nap size | CDC42EP4, SDK2 |
5 | 7,547,720-7,557,720 | Nap size | CPSF4L, C5H17orf80 |
6 | 27,565,214-27,575,214 | Nap size | USP25 |
6 | 29,333,509-30,616,460 | Nap size | ROBO2 |
8 | 26,111,849-26,121,849 | Nap size | CCM2L |
5 | 28,909,887-28,931,171 | Fur quality | TMEM199, SARM1 |
5 | 28,921,171-28,931,171 | Fur quality | POLDIP2 |
5 | 29,000,969-29,010,969 | Fur quality | NLK |
3 | 2,371,161-2,435,977 | Pelt size | RPS6KA2 |
3 | 54,202,833-54,212,833 | Pelt size | GPD2 |
4 | 4,730,111-4,750,052 | Pelt size | FAM135B |
3 | 127,226,629-127,236,629 | Pastel_Black | ZADH2, TSHZ1 |
3 | 127,816,455-127,839,967 | Pastel_Black | CNDP1, CNDP2 |
6 | 27,436,943-27,589,421 | Pastel_Black | USP25 |
6 | 32,412,680-32,782,053 | Pastel_Black | ROBO1 |
6 | 41,725,705-41,738,492 | Pastel_Black | EPHA3 |
6 | 45,162,190-45,182,915 | Pastel_Black | EPHA6 |
6 | 47,936,381-47,946,381 | Pastel_Black | COL8A1 |
9 | 14,771,596-14,857,094 | Pastel_Black | BRINP1 |
10 | 62,452,956-62,473,337 | Pastel_Black | KCNH1 |
7 | 5,300,435-5,439,094 | Stardust_Black | CDH13 |
10 | 37,647,562-37,657,562 | Stardust_Black | RGS7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valipour, S.; Karimi, K.; Do, D.N.; Barrett, D.; Sargolzaei, M.; Plastow, G.; Wang, Z.; Miar, Y. Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes 2022, 13, 1939. https://doi.org/10.3390/genes13111939
Valipour S, Karimi K, Do DN, Barrett D, Sargolzaei M, Plastow G, Wang Z, Miar Y. Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes. 2022; 13(11):1939. https://doi.org/10.3390/genes13111939
Chicago/Turabian StyleValipour, Shafagh, Karim Karimi, Duy Ngoc Do, David Barrett, Mehdi Sargolzaei, Graham Plastow, Zhiquan Wang, and Younes Miar. 2022. "Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink" Genes 13, no. 11: 1939. https://doi.org/10.3390/genes13111939
APA StyleValipour, S., Karimi, K., Do, D. N., Barrett, D., Sargolzaei, M., Plastow, G., Wang, Z., & Miar, Y. (2022). Genome-Wide Detection of Selection Signatures for Pelt Quality Traits and Coat Color Using Whole-Genome Sequencing Data in American Mink. Genes, 13(11), 1939. https://doi.org/10.3390/genes13111939