Origin, Evolution, and Research Development of Donkeys
Abstract
:1. Introduction
1.1. Methodology
1.2. Ethical Statement
2. Origin of the Donkey and Archaeological Findings
2.1. Linguistic Evidence on the Origins of the Donkey
2.2. Archaeological Discovery of the Domestic Donkey
2.3. Archeopathological Study of the Domestic Donkey
3. Research Findings at the Molecular Cellular Level
3.1. Chromosomes
3.2. Fluorescence In-Situ Hybridization (FISH)
4. Research on Genetic Material
4.1. Ancient DNA
4.2. Microsatellite Markers
5. Sequencing and Assembly of the Genome
5.1. Mitochondrial DNA (MtDNA)
5.2. Whole Genome Sequencing (WGS)
5.3. Genome Assembly—Dovetail Chicago Technology
5.4. Genome Assembly—Hi-C Technology
5.5. Genome Assembly—Refinement Process (Donkey)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Zhu, M.; Chai, W.; Wang, Y.; Song, Y.; Liu, B.; Cai, C.; Song, Y.; Sun, X.; Xue, P.; et al. Determination of the Heterogeneity of Intramuscular Fat and Visceral Adipose Tissue from Dezhou Donkey by Lipidomics and Transcriptomics Profiling. Front. Nutr. 2021, 8, 746684. [Google Scholar] [CrossRef]
- Souroullas, K.; Aspri, M.; Papademas, P. Donkey milk as a supplement in infant formula: Benefits and technological challenges. Food Res. Int. 2018, 109, 416–425. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Sanka, J.S.; Sani, A. Observations on the Phenotyphic Characteristics and Management of Donkey in Sokoto, Northwestern Nigeria. Sch. J. Agric. Vet. Sci. 2018, 5, 1–5. [Google Scholar] [CrossRef]
- Starkey, P.; Starkey, M. Regional and world trends in donkey populations. In Donkeys, People and Development; A resource book of the Animal Traction Network for Eastern and Southern Africa (ATNESA): Wageningen, The Netherlands, 2000; pp. 10–21. [Google Scholar]
- Zewdie, B.; Welday, K.; Pal, S. Conservation of Indigenous Donkey Breeds of Ethiopia: A Review. Int. J. Interdiscip. Multidiscip. Stud. 2015, 2, 13–22. [Google Scholar]
- Blench, R. The history and spread of donkeys in Africa. In Donkeys, People and Development; A resource book of the Animal Traction Network for Eastern and Southern Africa (ATNESA): Wageningen, The Netherlands, 2000; pp. 22–30. [Google Scholar]
- Rosenbom, S. Genetic Diversity, Conservation and Evolutionary History of the African Wild Ass (Equus africanus): A Non-Invasive Molecular Approach. Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2016. [Google Scholar]
- Blench, R. Wild Asses and Donkeys in Africa: Interdisciplinary Evidence for Their Biogeography, History and Current Use. In Proceedings of the Donkey Conference, SOAS, London, UK, 9 May 2012. [Google Scholar]
- Marshall, F.; Asa, C. A Study of African Wild Ass Behavior Provides Insights into Conservation Issues, Domestication Processes and Archaeological Interpretation. J. Archaeol. Method Theory 2013, 20, 479–494. [Google Scholar] [CrossRef]
- Greenfield, H.J.; Greenfield, T.; Shai, I.; Albaz, S.; Maeir, A.M. Household Rituals and Sacrificial Donkeys: Why Are There So Many Domestic Donkeys Buried in an Early Bronze Age Neighborhood at Tell ecKbâfi/Gath? Near East. Archaeol. 2018, 81, 202–211. [Google Scholar] [CrossRef]
- Milevski, I.; Horwitz, L.K. Domestication of the Donkey (Equus asinus) in the Southern Levant: Archaeozoology, Iconography and Economy. Anim. Hum. Soc. Asia 2019, 93–131. [Google Scholar]
- Driesch, A.V.D. Tierreste aus Buto im Nidelta. Archaeofauna 1997, 6, 23–39. [Google Scholar]
- Rossel, S.; Marshall, F.; Peters, J.; Pilgram, T.; Adams, M.; O’Connor, D. Domestication of the donkey: Timing, processes, and indicators. Proc. Natl. Acad. Sci. USA 2008, 105, 3715–3720. [Google Scholar] [CrossRef] [Green Version]
- Gifford-Gonzalez, D.; Hanotte, O. Domesticating Animals in Africa: Implications of Genetic and Archaeological Findings. J. World Prehistory 2011, 24, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Pei, S.; Zhang, Y.; Wang, H.; Gao, X. A Preliminary Study of the Faunal Remains from the Shuidonggou Locality 7. Acta Anthropol. Sin. 2014, 33, 343–354. [Google Scholar]
- Pei, S.; Gao, X.; Wang, H.; Kuman, K.; Bae, C.J.; Chen, F.; Guan, Y.; Zhang, Y.; Zhang, X.; Peng, F.; et al. The Shuidonggou site complex: New excavations and implications for the earliest Late Paleolithic in North China. J. Archaeol. Sci. 2012, 39, 3610–3626. [Google Scholar] [CrossRef]
- Rosenbom, S.; Costa, V.; Al-Araimi, N.; Kefena, E.; Abdel-Moneim, A.S.; Abdalla, M.A.; Bakhiet, A.; Beja-Pereira, A. Genetic diversity of donkey populations from the putative centers of domestication. Anim. Genet. 2015, 46, 30–36. [Google Scholar] [CrossRef]
- Han, L.; Zhu, S.; Ning, C.; Cai, D.; Wang, K.; Chen, Q.; Hu, S.; Yang, J.; Shao, J.; Zhu, H.; et al. Ancient DNA provides new insight into the maternal lineages and domestication of Chinese donkeys. BMC Evol. Biol. 2014, 14, 246. [Google Scholar] [CrossRef]
- Orlando, L.; Ginolhac, A.; Zhang, G.; Froese, D.; Albrechtsen, A.; Stiller, M.; Schubert, M.; Cappellini, E.; Petersen, B.; Moltke, I.; et al. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 2013, 499, 74–78. [Google Scholar] [CrossRef]
- Jónsson, H.; Schubert, M.; Seguin-Orlando, A.; Ginolhac, A.; Petersen, L.; Fumagalli, M.; Albrechtsen, A.; Petersen, B.; Korneliussen, T.; Vilstrup, J.T.; et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl. Acad. Sci. USA 2014, 111, 18655–18660. [Google Scholar] [CrossRef] [Green Version]
- Orlando, L. Equids. Curr. Biol. 2015, 25, 973–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, C.M.; Giulotto, E.; Sigurdsson, S.; Zoli, M.; Gnerre, S.; Imsland, F.; Lear, T.L.; Adelson, D.L.; Bailey, E.; Bellone, R.R.; et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009, 326, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Livingstone, K.; Rieseberg, L. Chromosomal evolution and speciation: A recombination-based approach. New Phytol 2004, 161, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Graphodatsky, A.S.; Trifonov, V.A.; Stanyon, R. The genome diversity and karyotype evolution of mammals. Mol. Cytogenet. 2011, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Bugno-Poniewierska, M.; Wnuk, M.; Witarski, W.; TBota, E. The fluorescence in situ study of highly repeated DNA sequences in domestic horse (Equus caballus) and domestic donkey (Equus asinus)—Advantages and limits of usefulness in phylogenetic analyses. J. Anim. Feed. Sci. 2009, 18, 723–732. [Google Scholar] [CrossRef]
- Santani, A.; Raudsepp, T.; Chowdhary, B. Interstitial telomeric sites and NORs in Hartmann’s zebra (Equus zebra hartmannae) chromosomes. Chromosome Res. 2004, 10, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Gutiérrez, E.; Dávila-Rodríguez, M.; Lópeš Fernández, C.; Fernández, J.; Crespo, F.; Gosálvez, J. Localization of alkali-labile sites in donkey (Equus asinus) and stallion (Equus caballus) spermatozoa. Theriogenology 2014, 81, 321–325. [Google Scholar] [CrossRef]
- Raimondi, E.; Piras, F.M.; Nergadze, S.; Meo, G.D.D.; Ruiz-Herrera, A.; Ponsa, M.; Ianuzzi, L.; Giulotto, E. Polymorphic organization of constitutive heterochromatin in Equus asinus (2n = 62) chromosome 1. Hereditas 2011, 148, 110–113. [Google Scholar] [CrossRef]
- Millar, C.; Lambert, D. Ancient DNA: Towards a million-year-old genome. Nature 2013, 499, 34–35. [Google Scholar] [CrossRef]
- Kimura, B.; Marshall, F.B.; Chen, S.; Rosenbom, S.; Moehlman, P.D.; Tuross, N.; Sabin, R.C.; Peters, J.; Barich, B.; Yohannes, H.; et al. Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proc. Biol. Sci. 2011, 278, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Todd, E.T.; Tonasso-Calvière, L.; Chauvey, L.; Schiavinato, S.; Fages, A.; Seguin-Orlando, A.; Clavel, P.; Khan, N.; Pérez Pardal, L.; Patterson Rosa, L.; et al. The genomic history and global expansion of domestic donkeys. Science 2022, 377, 1172–1180. [Google Scholar] [CrossRef]
- Dehasque, M.; Ávila-Arcos, M.C.; Díez-del-Molino, D.; Fumagalli, M.; Guschanski, K.; Lorenzen, E.; Malaspinas, A.-S.; Marquès-Bonet, T.; Martin, M.D.; Murray, G.G.R.; et al. Inference of natural selection from ancient DNA. Evol. Lett. 2020, 4, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef]
- Takezaki, N.; Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 1996, 144, 389–399. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, M.; Ge, M.; Guan, X.; Su, Y.; Jiang, Y.; Zhang, G.; Guo, C. Microsatellite Analysis of Genetic Diversity and Phylogenetic Relationship of Eight Donkey Breeds in China. Sci. Agric. Sin. 2006, 39, 398–405. [Google Scholar]
- Di, R.; Liu, Q.; Xie, F.; Hu, W.; Wang, X.Y.; Cao, X.-H.; Pan, Z.; Chen, G.-H.; Chu, M. Evaluation of genetic diversity and population structure of five Chinese indigenous donkey breeds using microsatellite markers. Czech J. Anim. Sci. 2017, 62, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.F.; Xie, W.; Zhang, T.; Lei, C. High polymorphism at microsatellite loci in the Chinese donkey. Genet. Mol. Res. 2016, 15, 15028291. [Google Scholar] [CrossRef]
- Bordonaro, S.; Guastella, A.M.; Criscione, A.; Zuccaro, A.; Marletta, D. Genetic Diversity and Variability in Endangered Pantesco and Two Other Sicilian Donkey Breeds Assessed by Microsatellite Markers. Sci. World J. 2012, 2012, 648427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Dang, R.; Dong, H.; Li, F.; Chen, H.; Lei, C. Genetic diversity and relationships of Chinese donkeys using microsatellite markers. Arch. Anim. Breed. 2019, 62, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Matassino, D.; Cecchi, F.; Ciani, F.; Incoronato, C.; Occidente, M.; Santoro, L.; Ciampolini, R. Genetic Diversity and Variability in two Italian Autochthonous Donkey Genetic Types Assessed by Microsatellite Markers. Ital. J. Anim. Sci. 2014, 13, 3028. [Google Scholar] [CrossRef] [Green Version]
- Jordana, J.; Ferrando, A.; Miró, J.; Goyache, F.; Loarca, A.; López, O.M.; Canelón, J.; Stemmer, A.; Aguirre, L.; Lara, M.; et al. Genetic relationships among American donkey populations: Insights into the process of colonization. J. Anim. Breed. Genet. 2016, 133, 155–164. [Google Scholar] [CrossRef]
- Behl, R.; Niranjan, S.K.; Behl, J.; Arora, R.; Singh, P.; Vijh, R.K. Genetic characterization of donkeys of Braj region of India. Anim. Biotechnol. 2021, 1–3, Advance online publication. [Google Scholar] [CrossRef]
- Yun, S.; Cho, G. Molecular genetic diversity of donkey (Equus asinus) in South Korea. bioRxiv 2017. [Google Scholar]
- Kefena, E.; Rosenbom, S.; Beja-Pereira, A.; Kurtu, M.; Han, J.; Dessie, T. Genetic diversity and population genetic structure in native Ethiopian donkeys (Equus asinus) inferred from equine microsatellite markers. Trop. Anim. Health Prod. 2021, 53, 334. [Google Scholar] [CrossRef]
- Yatl1n, S.; Özdil, F.; Ünal, E.Ö.; Genç, S.; Kaplan, S.; Gürcan, E.K.; Arat, S.; Soysal, M. Genetic Characterization of Native Donkey (Equus asinus) Populations of Turkey Using Microsatellite Markers. Animals 2020, 10, 1093. [Google Scholar]
- Stanisic, L.; Aleksić, J.M.; Dimitrijevic, V.; Kovačević, B.; Stevanovic, J.; Stanimirovic, Z. Banat donkey, a neglected donkey breed from the central Balkans (Serbia). PeerJ 2020, 8, e8598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Zheng, H.; Lei, C.; Dang, R.; Lu, C. Analysis of Microsatellite Polymorphism in Mongolian Donkey. Acta Agric. Boreali-Occident. Sin. 2008, 1, 50–52. [Google Scholar]
- Beja-Pereira, A.; England, P.; Ferrand, N.; Jordan, S.; Bakhiet, A.O.; Abdalla, M.; Mashkour, M.; Jordana, J.; Taberlet, P.; Luikart, G. African Origins of the Domestic Donkey. Science 2004, 304, 1781. [Google Scholar] [CrossRef] [Green Version]
- Stanisic, L.J.; Aleksic, J.M.; Dimitrijevic, V.; Simeunovic, P.; Glavinic, U.; Stevanovic, J.; Stanimirovic, Z. New insights into the origin and the genetic status of the Balkan donkey from Serbia. Anim. Genet. 2017, 48, 580–590. [Google Scholar] [CrossRef]
- Lu, C.; Xie, W.; Su, R.; Ge, Q.; Chen, H.; Shen, S.; Lei, C. African origin of Chinese domestic donkeys. Hereditas. 2008, 30, 324–328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Genetic Diversity and Origin Based on mtDNA Cyt b Gene and Y Chromosome Microsatellite Markers in 13 Chinese Domestic Donkey Breeds. Master’s Thesis, Northwest A&F University, Xian’yang, China, 2009. [Google Scholar]
- Han, H.; Chen, N.; Jordana, J.; Li, C.; Sun, T.; Xia, X.; Zhao, X.; Ji, C.; Shen, S.; Yu, J.; et al. Genetic diversity and paternal origin of domestic donkeys. Anim. Genet. 2017, 48, 708–711. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, Y.; Bai, D.; Shiraigol, W.; Li, B.; Yang, L.; Wu, J.; Bao, W.; Ren, X.; Jin, B.; et al. Donkey genome and insight into the imprinting of fast karyotype evolution. Sci. Rep. 2015, 5, 14106. [Google Scholar] [CrossRef]
- Putnam, N.H.; O Connell, B.L.; Stites, J.; Rice, B.J.; Blanchette, M.; Calef, R.; Troll, C.J.; Fields, A.; Hartley, P.; Sugnet, C.; et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016, 26, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Renaud, G.; Petersen, B.; Seguin-Orlando, A.; Bertelsen, M.; Waller, A.; Newton, R.; Paillot, R.; Bryant, N.; Vaudin, M.; Librado, P.; et al. Improved de novo genomic assembly for the domestic donkey. Sci. Adv. 2018, 4, eaaq0392. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Liu, H.Q.; Tu, X.L.; Ji, C.M.; Gou, X.; Esmailizadeh, A.; Wang, S.; Wang, M.S.; Wang, M.C.; Li, X.L.; et al. Genomes reveal selective sweeps in kiang and donkey for high-altitude adaptation. Zool. Res. 2021, 42, 450–460. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, X.; Zhao, Z.; Wang, Y.; Li, S.; Wang, C. Transcriptome Atlas of 16 Donkey Tissues. Front. Genet. 2021, 12, 682734. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Z. Identification of genomic structure variation based on Hi-C technology and its application in tumor research. Sci. Ser. C 2020, 50, 506–523. [Google Scholar] [CrossRef]
- Foissac, S.; Djebali, S.; Munyard, K.; Vialaneix, N.; Rau, A.; Muret, K.; Esquerré, D.; Zytnicki, M.; Derrien, T.; Bardou, P.; et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol. 2019, 17, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, V. Integrating read-based and population-based phasing for dense and accurate haplotyping of individual genomes. Bioinformatics 2019, 35, 242–248. [Google Scholar]
- Liu, Y.; Xu, J.; Chen, M.; Wang, C.; Li, S. A unified STR profiling system across multiple species with whole genome sequencing data. BMC Bioinform. 2019, 20, 671. [Google Scholar] [CrossRef] [Green Version]
- Humble, E.; Dobrynin, P.; Senn, H.; Chuven, J.; Scott, A.; Mohr, D.W.; Dudchenko, O.; Omer, A.; Colaric, Z.; Aiden, E.L.; et al. Chromosomal level genome assembly of the scimita’ horned oryx: Insights into diversity and demography of a species extinct in the wild. Mol. Ecol. Resour. 2020, 20, 1668–1681. [Google Scholar] [CrossRef]
- Giorgetti, L.; Lajoie, B.; Carter, A.C.; Attia, M.; Zhan, Y.; Xu, J.; Chen, C.; Kaplan, N.; Chang, H.; Heard, E.; et al. Structural organization of the inactive X chromosome in the mouse. Nature 2016, 535, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, H.; Guo, Y.; Huang, J.; Sun, Y.; Min, J.; Wang, J.; Fang, X.; Zhao, Z.; Wang, S.; et al. Donkey genomes provide new insights into domestication and selection for coat color. Nat. Commun. 2020, 11, 6014. [Google Scholar] [CrossRef]
- Chakraborty, M.; Baldwin-Brown, J.G.; Long, A.; Emerson, J.J. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res. 2016, 44, 147. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Hua, X.; Shi, X.; Wang, C. Origin, Evolution, and Research Development of Donkeys. Genes 2022, 13, 1945. https://doi.org/10.3390/genes13111945
Wang Y, Hua X, Shi X, Wang C. Origin, Evolution, and Research Development of Donkeys. Genes. 2022; 13(11):1945. https://doi.org/10.3390/genes13111945
Chicago/Turabian StyleWang, Yonghui, Xiaopeng Hua, Xiaoyuan Shi, and Changfa Wang. 2022. "Origin, Evolution, and Research Development of Donkeys" Genes 13, no. 11: 1945. https://doi.org/10.3390/genes13111945