Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Single Nucleotide Variant (SNV) Selection
2.3. DNA Extraction and Genotyping
2.4. Quantitative Methylation Analysis
2.5. Data Analysis/Statistical Analysis
3. Results
3.1. Allelic and Genotype Frequencies and Association Analysis
3.2. Methylation Status: Cases vs. Controls
3.3. Methylation Status: Wild-Type vs. Risk Variant
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corsello, G.; Giuffrè, M. Congenital malformations. J. Matern. Fetal. Neonatal. Med. 2012, 25 (Suppl. S1), 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burn, J.; Goodship, J. Congenital heart disease. In Emery and Rimoin’s Principles and Practice of Medical Genetics, 5th ed.; Rimoin, D., Connor, J., Pyeritz, R., Korf, B., Eds.; Elsevier: Philadelphia, PA, USA, 2007; pp. 1083–1159. [Google Scholar]
- Mendieta-Alcántara, G.G.; Santiago-Alcántara, E.; Mendieta-Zerón, H.; Dorantes-Piña, R.; Zárate-Alarcón, O.d.G.; Otero-Ojeda, G.A. Incidencia de las cardiopatías congénitas y los factores asociados a la letalidad en niños nacidos en dos hospitales del Estado de México. Gac. Med. Mex. 2013, 149, 617–623. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Causas de Mortalidad. 2016. Available online: http://www.inegi.org.mx/est/contenidos/proyectos/registros/vitales/mortalidad/tabulados/ConsultaMortalidad.asp (accessed on 22 October 2020).
- Bahado-Singh, R.O.; Zaffra, R.; Albayarak, S.; Chelliah, A.; Bolinjkar, R.; Turkoglu, O.; Radhakrishna, U. Epigenetic markers for newborn congenital heart defect (CHD). J. Matern. Fetal. Neonatal. Med. 2016, 29, 1881–1887. [Google Scholar] [CrossRef]
- Davison, B.C. Concordance and discordance of congenital heart disease in 20 families. J. Med. Genet. 1967, 4, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-F.; Lin, Y.-S.; Chang, S.-H.; Chou, I.-J.; Luo, S.-F.; See, L.-C.; Yu, K.-H.; Huang, L.-S.; Chu, P.-H. Familial Aggregation and Heritability of Congenital Heart Defects. Circ. J. 2017, 82, 232–238. [Google Scholar] [CrossRef] [Green Version]
- Torres-Cosme, J.L.; Rolón-Porras, C.; Aguinaga-Ríos, M.; Acosta-Granado, P.M.; Reyes-Muñoz, E.; Murguía-Peniche, T. Mortality from Congenital Heart Disease in Mexico: A Problem on the Rise. PLoS ONE 2016, 11, e0150422. [Google Scholar] [CrossRef]
- Jarrell, D.K.; Lennon, M.L.; Jacot, J.G. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Dis. 2019, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [Green Version]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Dong, L.; Zheng, J.; Zhang, H.; Liu, J.; Xu, Z. Meta analysis of the association between MTHFR C677T polymorphism and the risk of congenital heart defects. Ann. Hum. Genet. 2012, 76, 9–16. [Google Scholar] [CrossRef]
- Hernández-Almaguer, M.D.; Calvo-Anguiano, G.; Cerda-Flores, R.M.; Salinas-Torres, V.M.; Orozco-Galicia, F.; Glenn, E.; García-Guerra, J.; Sánchez-Cortés, G.; Lugo-Trampe, J.; Martínez-Garza, L.E. Genetic Variants at the rs4720169 Locus of TBX20 and the rs12921862 Locus of AXIN1 May Increase the Risk of Congenital Heart Defects in the Mexican Population: A Pilot Study. Genet. Test. Mol. Biomark. 2019, 23, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, U.; Albayrak, S.; Alpay-Savasan, Z.; Zeb, A.; Turkoglu, O.; Sobolewski, P.; Bahado-Singh, R.O. Genome-Wide DNA Methylation Analysis and Epigenetic Variations Associated with Congenital Aortic Valve Stenosis (AVS). PLoS ONE 2016, 11, e0154010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunert, M.; Dorn, C.; Cui, H.; Dunkel, I.; Schulz, K.; Schoenhals, S.; Sun, W.; Berger, F.; Chen, W.; Sperling, S.R. Comparative DNA methylation and gene expression analysis identifies novel genes for structural congenital heart diseases. Cardiovasc. Res. 2016, 112, 464–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, W.; Qian, Y.; Wang, H.; Ma, X.; Zhang, P.; Diao, L.; An, Q.; Chen, L.; Ma, D.; Huang, G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC Med. Genom. 2013, 6, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friso, S.; Choi, S.-W.; Girelli, D.; Mason, J.B.; Dolnikowski, G.G.; Bagley, P.J.; Olivieri, O.; Jacques, P.F.; Rosenberg, I.H.; Corrocher, R.; et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc. Natl. Acad. Sci. USA 2002, 99, 5606–5611. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.J.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.-Y.C.; Gindler, J.; et al. Prevention of neural-tube defects with folic acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef]
- González-Peña, S.; Calvo-Anguiano, G.; Martínez-De-Villarreal, L.; Ancer-Rodríguez, P.; Lugo-Trampe, J.; Saldivar-Rodríguez, D.; Hernández-Almaguer, M.; Calzada-Dávila, M.; Guerrero-Orjuela, L.; Campos-Acevedo, L. Maternal Folic Acid Intake and Methylation Status of Genes Associated with Ventricular Septal Defects in Children: Case-Control Study. Nutrients 2021, 13, 2071. [Google Scholar] [CrossRef]
- Obeid, R.; Holzgreve, W.; Pietrzik, K. Folate suppleme.entation for prevention of congenital heart defects and low birth weight: An update. Cardiovasc. Diagn Ther. 2019, 9 (Suppl. S2), S424–S433. [Google Scholar] [CrossRef]
- Botto, L.D.; Mulinare, J.; Erickson, J.D. Occurrence of congenital heart defects in relation to maternal mulitivitamin use. Am. J. Epidemiol. 2000, 151, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, S.; Mu, D.; Liu, Z.; Li, Y.; Lin, Y.; Chen, X.; You, F.; Li, N.; Deng, K.; et al. The association between periconceptional folic acid supplementation and congenital heart defects: A case-control study in China. Prev. Med. 2013, 56, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Czeizel, A.E. Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am. J. Med. Genet. 1996, 62, 179–183. [Google Scholar] [CrossRef]
- Van Beynum, I.M.; Kapusta, L.; Bakker, M.K.; Heijer, M.D.; Blom, H.J.; De Walle, H.E. Protective effect of periconceptional folic acid supplements on the risk of congenital heart defects: A registry-based case-control study in the northern Netherlands. Eur. Heart J. 2010, 31, 464–471. [Google Scholar] [CrossRef] [PubMed]
Cases | Controls | p | |||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
Sex | 12 | 10 | 20 | 24 | |
Type of CHD | |||||
ASD | 5 | 2 | 0 | 0 | |
VSD | 10 | 5 | 0 | 0 | |
Weeks of gestation | |||||
<37 | 4 | 4 | 1 | 4 | 0.0122 |
38–41 | 10 | 4 | 19 | 20 | |
>42 | 0 | 0 | 0 | 0 | |
Weight | |||||
<2500 g | 2 | 3 | 0 | 0 | 0.023 |
2500–3500 g | 10 | 3 | 14 | 21 | |
>3500 g | 2 | 2 | 6 | 3 | |
Height | |||||
<48 cm | 6 | 6 | 2 | 1 | 0.0001 |
48–50 cm | 4 | 0 | 8 | 14 | |
>50 cm | 4 | 2 | 10 | 9 | |
Maternal folic acid intake | |||||
Preconceptional | 0 | 3 | 0 | 0 | 0.0071 |
During pregnancy | 10 | 7 | 20 | 24 | |
None | 2 | 0 | 0 | 0 | |
Origin | Northeastern Mexico |
Gene | Locus | Function | Forward Primer | Reverse Primer | SNV | Position | Ref. a | Frequency | MAF a | Frequency |
---|---|---|---|---|---|---|---|---|---|---|
AXIN1 | 16p13.3 | Cytoplasmic protein | ATGTCAGCCCCTT GTTTTTGCT | ATCTCGGGTAG CCGGTTTAGACT | rs370681 | Intron | C | 0.6295 | T | 0.3705 |
rs12921862 | Intron | C | 0.887 | A | 0.113 | |||||
rs1805105 | Exon 2 | A | 0.53508 | G | 0.4692 | |||||
TBX20 | 7p14.2 | Transcription factor | CTGTGCAGACT GTCGTCCTG | CACTGGCCTC TATTCCCCAC | rs4720169 | Intron | G | 0.3847 | A | 0.6153 |
TBX1 | 22q11.2 | Transcription factor | AATGGGCGTCTT GTCTTCGC | GGGTCGCAGGG TCTGATTCC | rs41260844 | Upstream | C | 0.791 | T | 0.238 |
MTHFR | 1p36 | Folate metabolism | GGGCCTGAGCT GACAGAGAT | AACATGCTCCT CGGTGACAG | rs1801133 | Exon 5 | G | 0.5473 | A | 0.4527 |
rs1801131 | Exon 8 | T | 0.808 | G | 0.192 |
Gene | MS Case Group | MS Control Group | p |
---|---|---|---|
AXIN1 | 73.81 (SD: ±35.60) | 96.5 (SD: ±39.8) | 0.036 |
TBX20 | 4.97 (SD: ±7.16) | 11.17 (SD: ±21.8) | 0.369 |
TBX1 | 4.1 (SD: ±5.67) | 5.71 (SD: ±10.85) | 0.523 |
MTHFR | 4.48 (SD: ±4.63) | 9.44 (SD: ±37.9) | 0.041 |
Gene | MS VSD (n = 15) | MSD ASD (n = 7) | p |
---|---|---|---|
AXIN1 | 57.79 (SD: ±29.2) | 108.14 (SD: ±20.74) | 0.001 |
TBX20 | 2.23 (SD: ±2.17) | 10.84 (SD: ±11.61) | 0.017 |
TBX1 | 1.69 (SD: ±1.94) | 9.56 (SD: ±7.47) | 0.001 |
MTHFR | 3.43 (SD: ±6.3) | 6.72 (SD: ±6.3) | 0.21 |
Case Group | Control Group | |||||
---|---|---|---|---|---|---|
Gene | SNV | MS Alternate Allele | MS Wild-Type | MS Alternate Allele | MS Wild-Type | p |
AXIN1 | rs370681 | 71.98 (SD: ±35.66) | 75. 64 (SD: ±37.19) | 98.19 (SD: ±49.09) | 94.81 (SD: ±28.77) | 0.651 |
rs12921862 | 74.95 (SD: ±35.26) | 66.58 (SD: ±21.52) | 70.26 (SD: ±27.03) | 101 (SD: ±41.64) | 0.093 | |
rs1805105 | 74.09 (SD: ±34.78) | 73.47 (SD: ±38.46) | 99.015 (SD: ±44.78) | 92.1 (SD: ±29.98) | 0.574 | |
TBX20 | rs4720169 | 5.23 (SD: ±7.99) | 2.37 (SD: ±0.43) | 10.46 (SD: ±22.41) | 12.10 (SD: ±21.71) | 0.354 |
TBX1 | rs41260844 | 5.97 (SD: ±4.1) | 3.88 (SD: ±5.97) | 4.84 (SD: ±7.2) | 6.2 (SD: ±12.53) | 0.064 |
MTHFR | rs1801133 | 4.85 (SD: ±6.63) | 4.34 (SD: ±4.90) | 37.34 (SD: ±85.9) | 3.245 (SD: ±8.8) | 0.004 |
rs1801131 | 4.48 (SD: ±5.88) | 4.46 (SD: ±2.68) | 10.89 (SD: ±43.18) | 4.52 (SD: ±4.76) | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzada-Dávila, M.; Calvo-Anguiano, G.; Martínez-de-Villarreal, L.E.; Lugo-Trampe, J.J.; González-Peña, S.M.; Ancer-Rodríguez, P.R.; Hernández-Almaguer, M.D.; Campos-Acevedo, L.D. Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes 2022, 13, 2115. https://doi.org/10.3390/genes13112115
Calzada-Dávila M, Calvo-Anguiano G, Martínez-de-Villarreal LE, Lugo-Trampe JJ, González-Peña SM, Ancer-Rodríguez PR, Hernández-Almaguer MD, Campos-Acevedo LD. Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes. 2022; 13(11):2115. https://doi.org/10.3390/genes13112115
Chicago/Turabian StyleCalzada-Dávila, Melissa, Geovana Calvo-Anguiano, Laura E. Martínez-de-Villarreal, José J. Lugo-Trampe, Sandra M. González-Peña, Patricia R. Ancer-Rodríguez, María D. Hernández-Almaguer, and Luis D. Campos-Acevedo. 2022. "Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status" Genes 13, no. 11: 2115. https://doi.org/10.3390/genes13112115
APA StyleCalzada-Dávila, M., Calvo-Anguiano, G., Martínez-de-Villarreal, L. E., Lugo-Trampe, J. J., González-Peña, S. M., Ancer-Rodríguez, P. R., Hernández-Almaguer, M. D., & Campos-Acevedo, L. D. (2022). Congenital Heart Diseases: Genetic Risk Variants and Their Methylation Status. Genes, 13(11), 2115. https://doi.org/10.3390/genes13112115