Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction
2.2. Plastome Assembly and Annotation
2.3. Comparative Analysis of cp Genomes
2.4. Molecular Evolution Analysis
3. Results and Discussion
3.1. Chloroplast Genome Features of A. tanguticus
3.2. Codon Usage Analysis
3.3. Repeat Sequence and SSR Analysis
3.4. IR Contraction and Expansion
3.5. Comparative Chloroplast Genome Analysis
3.6. Synonymous (Ks) and Non-Synonymous (Ka) Substitution Rate Analysis
3.7. Phylogenetic Analysis of the A. tanguticus cp Genome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rodríguez-Ezpeleta, N.; Brinkmann, H.; Burey, S.C.; Roure, B.; Burger, G.; Löffelhardt, W.; Bohnert, H.J.; Philippe, H.; Lang, B.F. Monophyly of primary photosynthetic eukaryotes: Green plants, red algae, and glaucophytes. Curr. Biol. 2005, 15, 1325–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.D. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 1985, 19, 325–354. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R. Mutation rates in plastid genomes: They are lower than you might think. Genome Biol. Evol. 2015, 7, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchene, D.; Bromham, L. Rates of molecular evolution and diversification in plants: Chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol. Biol. 2013, 13, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maliga, P. Plastid transformation in higher plants. Annu. Rev. Plant Biol. 2004, 55, 289–313. [Google Scholar] [CrossRef]
- Liu, S.W. Flora of Qinghai; Qinghai People’s Publishing House: Xining, China, 1999. [Google Scholar]
- Yang, Y.C. Tibetan Medcine; Qinghai People’s Publishing House: Xining, China, 1990. [Google Scholar]
- Xiao, P.G.; Xia, G.C.; He, L.Y. The occurrence of some important tropane alkaloids in Chinese solanaceous plants. J. Integr. Plant Biol. 1973, 15, 187–194.4. [Google Scholar]
- Wang, H.; Zhang, X.F.; Chen, G.C.; Li, T.C.; Zhou, G.Y.; Shen, J.W. Comparative study of contents of four tropane alkaloids in cultural and wild Anisodus tanguticus. Acta Bot. Boreal.-Occid. Sin. 2005, 25, 575–577. [Google Scholar]
- Spinks, A.; Wasiak, J.; Villanueva, E.; Bernath, V. Scopolamine (hyoscine) for preventing and treating motion sickness. Cochrane Database Syst. Rev. 2007, 18, CD002851. [Google Scholar]
- Lei, T.X.; Cai, X.J.; Wang, H.; Li, S.L.; Shen, J.W.; Zhou, D.W. Progress on molecular mechanism of tropane alkaloids synthesis and plant bioengineering research. Acta Bot. Boreal. Occid. Sin. 2016, 36, 0204–0214. [Google Scholar]
- Zheng, W.; Wang, L.Y.; Meng, L.H.; Liu, J.Q. Genetic variation in the endangered Anisodus tanguticus (Solanaceae), an alpine perennial endemic to the Qinghai-Tibetan Plateau. Genetica 2008, 132, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.W.; Zhang, T.F.; Liu, J.Q. Pollination biology of Anisodus tanguticus (Solanaceae). Biodivers. Sci. 2007, 15, 584–591. [Google Scholar]
- Li, M.; Cao, H.; But, P.P.H.; Shaw, P.C. Identification of herbal medicinal materials using DNA barcodes. J. Syst. Evol. 2011, 49, 271–283. [Google Scholar] [CrossRef]
- Raclariu, A.C.; Heinrich, M.; Ichim, M.C.; de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 2018, 29, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.Y. Phylogeny and Biogeography of the tribes Nolaneae, Hyoscyameae and Mandragoreae of Solanaceae. Ph.D. Thesis, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China, 2008. [Google Scholar]
- Sanchez-Puerta, M.V.; Abbona, C.C. The Chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS ONE 2014, 9, e98353. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Qi, P.; Liu, Y. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Boetzer, M.; Henkel, C.V.; Jansen, H.J.; Butler, D.; Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011, 27, 578–579. [Google Scholar] [CrossRef] [Green Version]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Shi, L.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CPGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genom. 2012, 13, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 7–274. [Google Scholar] [CrossRef] [PubMed]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Rong, C.X.; Qin, L.; Mo, C.Y.; Fan, L.; Yan, J.; Zhang, M.R. Complete chloroplast genome sequence of Malus hupehensis: Genome Structure, comparative analysis, and phylogenetic relationships. Molecules 2018, 23, 2917. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Wu, M.; Liao, B.; Liu, Z.; Bai, R.; Xiao, S.; Li, X.; Zhang, B.; Xu, J.; Chen, S. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 2017, 22, 1330. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Du, J.C.; Gao, L.; Li, Y.; Hou, X.L. The complete chloroplast genome sequence of watercress (Nasturtium officinale R. Br.): Genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene 2019, 699, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xue, Q. Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. J. Genet. 2005, 84, 55–62. [Google Scholar] [PubMed]
- Sharp, P.M.; Li, W.H. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Redwan, R.M.; Saidin, A.; Kumar, S.V. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae. BMC Plant Biol. 2015, 15, 196. [Google Scholar] [CrossRef]
- Cavaliersmith, T. Chloroplast evolution: Secondary symbiogenesis and multiple losses. Curr. Biol. 2002, 12, R62–R64. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Yu, H.; Wang, J.; Lei, W.; Gao, J.; Qiu, X.; Wang, J. The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Int. J. Mol. Sci. 2017, 18, 2288. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Lv, S.; Zhang, Y.; Du, X.; Wang, L.; Biradar, S.S.; Tan, X.; Wan, F.; Weining, S. Complete chloroplast genome sequence of a major invasive species, Croftonweed (Ageratina adenophora). PLoS ONE 2012, 7, e36869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timme, R.E.; Kuehl, J.V.; Boore, J.L.; Jansen, R.K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 2007, 94, 302–312. [Google Scholar] [CrossRef]
- Huang, H.; Shi, C.; Liu, Y.; Mao, S.Y.; Gao, L.Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: Genome structure and phylogenetic relationships. BMC Evol. Biol. 2014, 14, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.B.; Yin, J.L.; Guo, H.Y.; Zhang, Y.Y.; Xiao, W.; Sun, C.; Wu, J.Y.; Qu, X.B.; Yu, J.; Wang, X.M.; et al. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front. Plant Sci. 2015, 5, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.G.; Zheng, K.X.; Jiao, K.L.; Cai, Y.C.; Chen, C.L.; Mao, Y.Y.; Wang, L.Y.; Zhan, X.R.; Ying, Q.C.; Wang, H.Z. Complete chloroplast genomes of four Physalis species (Solanaceae): Lights into genome structure, comparative analysis, and phylogenetic relationships. BMC Plant Biol. 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- Raubeson, L.A.; Peery, R.; Chumley, T.W.; Dziubek, C.; Fourcade, H.M.; Boore, J.L.; Jansen, R.K. Comparative chloroplast genomics: Analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genom. 2007, 8, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.J.; Cheng, C.L.; Chang, C.C.; Wu, C.L.; Su, T.M.; Chaw, S.M. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yue, M.; Niu, C.; Ma, X.F.; Li, Z.H. Comparative analysis of the complete chloroplast genome of four endangered herbals of Notopterygium. Genes 2017, 8, 124. [Google Scholar] [CrossRef]
- Zhao, K.H.; Li, L.Q.; Lu, Y.Z.; Yang, J.B.; Zhang, Z.R.; Zhao, F.Y.; Quan, H.; Ma, X.J.; Liao, Z.H.; Lan, X.Z. Characterization and comparative analysis of two Rheum complete chloroplast genomes. BioMed. Res. Int. 2020, 2020, 6490164. [Google Scholar] [CrossRef] [PubMed]
- Oxelman, B.; Erixon, P. Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 2008, 3, e1386. [Google Scholar]
- Zong, D.; Zhou, A.P.; Zhang, Y.; Zou, X.L.; Li, D.; Duan, A.N.; He, C.Z. Characterization of the complete chloroplast genomes of five Populus species from the western Sichuan plateau, southwest China: Comparative and phylogenetic analyses. Peer J. 2019, 7, e6386. [Google Scholar]
- Wu, Y.; Liu, F.; Yang, D.G.; Li, W.; Zhou, X.J.; Pei, X.Y.; Liu, Y.G.; He, K.L.; Zhang, W.S.; Ren, Z.Y.; et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front. Plant Sci. 2018, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.D.; Baek, K.H. Protective roles of cytosolic and plastidal proteasomes on abiotic stress and pathogene invasion. Plants 2020, 9, 832. [Google Scholar] [CrossRef]
- Ali, M.D.; Baek, K.H. Co-Suppression of NbClpC1 and NbClpC2, encoding Clp protease chaperons, elicits significant changes in the metabolic profile of Nicotiana benthamiana. Plants 2020, 9, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoschke, R.; Barkan, A. Genome-wide analysis of thylakoid-bound ribosomes in maize reveals principles of cotranslational targeting to the thylakoid membrane. Proc. Natl. Acad. Sci. USA 2015, 112, E1678–E1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Börner, T.; Yu, A.; Yan, O.; Zubo, A.; Victor, V.; Kusnetsov, V.V. Chloroplast RNA polymerases: Role in chloroplast biogenesis. Biochim. Biophys. Acta 2015, 1874, 761–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, F.; Abdullah.; Ubaid, Z.; Shahzadi, I.; Ahmed, I.; Waheed, M.T.; Poczai, P.; Mirza, B. Plastid genomics of Nicotiana (Solanaceae): Insights into molecular evolution, positive selection and the origin of the maternal genome of Aztec tobacco (Nicotiana rustica). Peer J. 2020, 8, e9552. [Google Scholar] [CrossRef]
- Zhang, D.; Fan, L.Q.; Zhang, L.; Wang, T.J.; Guo, X.Y.; Hu, Q.J. Characterization of the complete chloroplast genome of the endangered Przewalskia tangutica Maxim. Conserv. Genet. Resour. 2017, 9, 409–413. [Google Scholar] [CrossRef]
Genome Feature | A. tanguticus | P. tangutica | S. parviflora | H. niger | D. stramonium | N. tabacum | S. tuberosum |
---|---|---|---|---|---|---|---|
Genome Size (bp) | 155,765 | 155,569 | 156,193 | 155,720 | 155,871 | 155, 943 | 155,298 |
LSC (bp) | 86,516 | 86,707 | 86,364 | 86,105 | 86,301 | 86, 686 | 85,749 |
SSC (bp) | 17,487 | 18,288 | 25,905 | 17,863 | 18,366 | 18, 573 | 18,373 |
IR (bp) | 25,881 | 25,287 | 25,876 | 25,876 | 25,602 | 25,342 | 25,595 |
GC content (%) | 37.63 | 37.6 | 37.6 | 37.6 | 37.9 | 37.9 | 37.9 |
Total number of genes | 132 | 138 | 131 | 118 | 134 | 156 | 130 |
Protein-coding gene | 87 | 85 | 86 | 80 | 88 | 111 | 81 |
tRNA | 37 | 44 | 37 | 30 | 38 | 37 | 37 |
rRNA | 8 | 8 | 8 | 4 | 8 | 8 | 8 |
Category for Genes | Groups of Genes | Name of Genes |
---|---|---|
Photosynthesis | Subunits of photosystem Ⅰ | psaA, psaB, psaC, psaI, psaJ |
Subunits of photosystemⅡ | psbA, psbB, psbC, psbD, psbE, psbF, psbH | |
psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | ||
Subunits of cytochrome b/f complex | petA, petB, petD *, petG, petL, petN | |
Large subunit of Rubisco | rbcL | |
Subunits of ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | |
Subunits of NADH-dehydrogenase | ndhA *, ndhB a*, ndhC, ndhD, ndhE, ndhF, ndhG, ndhHndhI, ndhJ, ndhK | |
Self-replication | Ribosomal RNA genes | rrn16 a, rrn23 a, rrn5 a, rrn4.5 a |
Transfer RNA genes | trnA-UGC *a, trnC-GCA, trnD-GUC, trnE-UUC *a, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-CAU a, trnI-GAU a*, trnK-UUU *, trnL-CAA a, trnL-UAG, trnL-UAA *, trnM-CAU, trnN-GUU a, trnP-UGG, trnQ-UUG, trnR-ACG a, | |
trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnY-GUA, trnT-GGU, trnT-UGU, trnV-GAC a, trnV-UAC *, trnW-CCA | ||
Small subunit of ribosome | rps2, rps3, rps4, rps7 a, rps8, rps11, rps12 a**, rps14, rps15, rps16, rps18, rps19 | |
Large subunit of ribosome | rpl2 a*, rpl14, rpl16 *, rpl20, rpl22, rpl23 a, rpl32, rpl33, rpl36 | |
DNA-dependent RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | |
Other genes | Maturase | matK |
Envelope membrane protein | cemA | |
Subunit of acetyl-CoA | accD | |
C-type cytochrome synthesis gene | ccsA | |
Protease | clpP ** | |
Genes of unknown function | Conserved Open reading frames | ycf1 a, ycf2 a, ycf3 **, ycf4, ycf15 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Mehmood, F.; Lin, P.; Cheng, T.; Wang, H.; Shi, S.; Zhang, J.; Meng, J.; Zheng, K.; Poczai, P. Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence. Genes 2022, 13, 2125. https://doi.org/10.3390/genes13112125
Zhou D, Mehmood F, Lin P, Cheng T, Wang H, Shi S, Zhang J, Meng J, Zheng K, Poczai P. Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence. Genes. 2022; 13(11):2125. https://doi.org/10.3390/genes13112125
Chicago/Turabian StyleZhou, Dangwei, Furrukh Mehmood, Pengcheng Lin, Tingfeng Cheng, Huan Wang, Shenbo Shi, Jinkui Zhang, Jing Meng, Kun Zheng, and Péter Poczai. 2022. "Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence" Genes 13, no. 11: 2125. https://doi.org/10.3390/genes13112125
APA StyleZhou, D., Mehmood, F., Lin, P., Cheng, T., Wang, H., Shi, S., Zhang, J., Meng, J., Zheng, K., & Poczai, P. (2022). Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence. Genes, 13(11), 2125. https://doi.org/10.3390/genes13112125