Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Nanocomposite
2.2. Experimental Animals
2.3. Experimental Design
2.4. Determination of Hematological Parameters
2.5. Determination of Serological Parameters
2.6. Determination of Biomarkers of Oxidative Stress in Organs
2.7. Statistical Analysis
3. Results
3.1. Characterization of the Neodymium Zirconate Zinc Sulfide Nanocomposite
3.2. Complete Blood Count Analysis
3.3. Analysis of Serum Biochemical Parameters
3.4. Analysis of Biomarkers of Oxidative Stress in Vital Organs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, M.L.; Wehr, U.; Rambeck, W.A. Effect of low doses of dietary rare earth elements on growth performance of broilers. J. Anim. Physiol. Anim. Nutr. 2020, 94, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Yin, H.; Li, J.; Zhang, L.; Hou, R.; Wang, S. Investigation of rare earth elements in urine and drinking water of children in mining area. Medicine 2018, 97, e12717. [Google Scholar] [CrossRef]
- Zhuang, M.; Zhao, J.; Li, S. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China. Chemosphere 2017, 168, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Shen, X.Y.; Ruan, Q. Effects of subchronic samarium exposure on the histopathological structure and apoptosis regulation in mouse testis. Environ. Toxicol. Pharmacol. 2014, 37, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Hughes, A.; Lim, S.; Vernon, C. Rare earth elements, overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 2014, 3, 614–635. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lim, C.; Shin, S.; Kim, J. Twenty-Eight-Day Repeated Inhalation Toxicity Study of Nano-Sized Neodymium Oxide in Male Sprague-Dawley Rats. Toxicol. Res. 2017, 33, 239–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khosa, T.; Faiz, A.; Haider, A.; Ashiq, M.N.; Iqbal, F. Synthesis and characterization of newly synthesized Neodymium Zirconate Zinc Sulfide nano composite and its effect on selected aspects of albino mice behavior. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 717–725. [Google Scholar] [CrossRef]
- Akhtar, S.; Saba, S.; Rehman, S.; Hassan, A.; Samad, N.; Amir, M.; Iqbal, F. Microemulsion-based synthesis of strontium hexaferrite cobalt iron oxide nanoparticles and their biocompatibility in albino mice. J. Exp. Nanosci. 2018, 13, 199–210. [Google Scholar] [CrossRef] [Green Version]
- Salim, M.; Shahzeen, M.; Khan, M.N.; Tariq, R.; Muhammad, G.; Shabbir, G.; Nisar, L.; Ashiq, M.N.; Iqbal, F. Induction of selenium nanoparticles disturbs behavior, blood and serum biomarkers and oxidative stress markers from vital organs of male and female albino mice. J. Chem. Soc. Pak. 2022, 44, 59–68. [Google Scholar]
- Akram, I.N.; Akhtar, S.; Khadija, G.; Latif, M.; Noreen, A.; Mobeen, M.; Sajjad, F.; Sardar, Z.; Iqbal, S.; Ashiq, M.N.; et al. Synthesis, characterization and biocompatibility of Lanthanum Titanate nanoparticles in albino mice in a sex specific manner. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020, 393, 1089–1101. [Google Scholar] [CrossRef]
- Noureen, H.; Salim, M.; Nadeem, A.; Shafiq, S.; Yousuf, S.; Samad, N.; Ashiq, M.N.; Iqbal, F. Synthesis, characterization and biocompatibility of Holmium Zirconate/Zinc Sulphide nanocomposite in albino mice in a gender specific manner. J. Chem. Soc. Pak. 2021, 43, 46–56. [Google Scholar]
- Saleem, A.; Khadija, G.; Akhtar, Z.; Mumtaz, S.; Rafiq, M.; Rubab, M.; Iqbal, F. Short term exposure to Titanium, Aluminum and Niobium (Ti-6Al-4Nb) alloy powder can disturb the serum low-density lipoprotein concentrations and antioxidant profile in vital organs but not the behavior of male albino mice. Drug Chem. Toxicol. 2020, 43, 298–306. [Google Scholar] [CrossRef]
- Khadija, G.; Saleem, A.; Akhtar, Z.; Naqvi, Z.; Gull, M.; Masood, M.; Iqbal, F. Short term exposure to titanium, aluminum and vanadium (Ti 6Al 4V) alloy powder drastically affects behavior and antioxidant metabolites in vital organs of male albino mice. Toxicol. Rep. 2018, 5, 765–770. [Google Scholar] [CrossRef]
- Henríquez-Hernández, L.A.; Boada, L.D.; Carranza, C.; Pérez-Arellano, J.L.; González-Antuña, A.; Camacho, M.; Almeida-González, M.; Zumbado, M.; Luzardo, O.P. Blood levels of toxic metals and rare earth elements commonly found in e-waste may exert subtle effects on hemoglobin concentration in sub-Saharan immigrants. Environ. Int. 2015, 109, 20–28. [Google Scholar] [CrossRef]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef]
- Simundi, C.M.; Drasler, B.; Sustar, V. Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Vet. Res. 2013, 9, 7. [Google Scholar]
- Rodríguez, L.; Galván, G.; González-Unzaga, M.; Hernandez-Avila, M.; Pérez-Labra, J. Blood toxic metals and hemoglobin levels in Mexican children. Environ. Monit. Asses. 2017, 189, 179–184. [Google Scholar] [CrossRef]
- Adu, O.A.; Akinmuyisitana, I.W.; Gbore, F.A. Growth performance and blood profile of female rabbits fed dietary Cerium Oxide. J. Biol. Sci. 2003, 21, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Cheng, Z.; Hu, R. Immune dysfunction and liver damage of mice following exposure to Lanthanoids. J. Environ. Toxicol. 2011, 29, 64–73. [Google Scholar] [CrossRef]
- Wang, T.C.; He, X.; Zhang, Z.Y.; Jia, G.; Wang, X. Effects on serum glucose and lipids in chronic exposure to lanthanum chloride in rat. Yu Fang Yi Xue Za Zhi 2006, 40, 419–421. [Google Scholar]
- Shin, S.H.; Lim, C.H.; Kim, Y.S.; Lee, Y.H.; Kim, S.H.; Kim, J.C. Twenty-eight-day repeated inhalation toxicity study of nano-sized lanthanum oxide in male sprague-dawley rats. Environ. Toxicol. 2016, 32, 1226–1240. [Google Scholar] [CrossRef]
- Huang, P.; Li, J.; Zhang, S.; Chen, C.; Han, Y.; Liu, N.; Xiao, Y.; Wang, H.; Zhang, M.; Yu, Q.; et al. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes, Accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 2011, 3, 25–32. [Google Scholar] [CrossRef]
- Kawagoe, M.; Ishikawa, K.; Wang, S.C.; Yoshikawa, K.; Arany, S.; Zhou, X.P.; Wang, J.S.; Ueno, Y.; Koizumi, Y.; Kameda, T.; et al. Acute effects on the lung and the liver of oral administration of cerium chloride on adult neonatal and fetal mice. J. Trace Elem. Med. Biol. 2008, 22, 59–65. [Google Scholar] [CrossRef]
- Aftab, M.N.; Akram, I.N.; Khosa, T.; Zahra, S.Q.; Bashir, I.; Ashiq, M.N.; Iqbal, F. Oral supplementation of Lanthanum Zirconate nanoparticles moderately affected behavior but drastically disturbed leukocyte count, serum cholesterol levels and antioxidant parameters from vital organs of albino mice in a gender specific manner. Metabol. Brain Dis. 2018, 33, 1421–1429. [Google Scholar] [CrossRef]
- Zhao, H.; Cheng, Z.; Renping, H.; Chen, J.M.; Min, H.; Gong, Z. Oxidative Injury in the Brain of mice Caused by Lanthanid. Chemosphere 2011, 2, 174–189. [Google Scholar] [CrossRef]
- Zhao, H.; Hong, J.; Yu, X.; Zhao, X.; Hong, F.; Wang, L. Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere 2013, 6, 878–885. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. J. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress, a review. J. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef]
Experiment > | Low Dose (10 mg/mL solvent/kg body weight) | High Dose (20 mg/mL solvent/kg body weight) | ||||||
---|---|---|---|---|---|---|---|---|
Parameters | Saline Treated Male | Neodymium Zirconate Zinc Sulfide Treated Male | Saline Treated Female | Neodymium Zirconate Zinc Sulfide Treated Female | Saline Treated Male | Neodymium Zirconate Zinc Sulfide Treated Male | Saline Treated Female | Neodymium Zirconate Zinc Sulfide Treated Female |
Red blood cells (×106 µL−1) | 4.99 ± 0.51 | 6.23 ± 0.62 | 6.31 ± 0.80 | 6.12 ± 0.59 | 4.99 ± 0.51 | 6.51 ± 1.1 | 6.31 ± 0.80 | 5.97 ± 0.71 |
White blood cells (×103 µL−1) | 5.42 ± 1.6 | 4.25 ± 0.53 | 11.6 ± 3.9 | 13.4 ± 6.1 | 5.42 ± 1.6 | 10.75 ± 8 | 11.6 ± 3.9 | 8.85 ± 2.2 |
Hemoglobin (gdL−1) | 10.97± 0.62 | 10.82 ± 0.31 | 10.61 ± 1.2 | 10.48 ± 0.83 | 10.97± 0.62 | 8.56 ± 0.9 * | 10.61 ± 1.2 | 9.81 ± 1.1 |
Packed cell volume (%) | 26.5 ± 4.7 | 31.5 ± 3.9 | 37.1 ± 5.5 | 34.7 ± 4.7 | 26.5 ± 4.7 | 33.7 ± 9.5 | 37.1 ± 5.5 | 34.5 ± 4.7 |
Mean corpuscular volume (fl) | 52.0 ± 5.1 | 49.60 ± 2.8 | 57.60 ± 2.4 | 55.19 ± 3.4 | 52.0 ± 5.1 | 48.7 ± 5 | 57.60 ± 2.4 | 56.54 ± 2.2 |
Mean corpuscular hemoglobin (pg) | 17.18 ± 0.23 | 18.07 ± 1.3 | 14.57 ± 2.1 | 17.43 ± 0.65 | 17.18 ± 0.23 | 19.06 ± 2.3 | 14.57 ± 2.1 | 16.56 ± 0.56 |
Mean corpuscular hemoglobin concentration (gdL−1) | 34.50 ± 3.7 | 37.15 ± 3.6 | 24.8 ± 3.7 | 32.86 ± 3.1 | 34.50 ± 3.7 | 41.1 ± 7.0 | 24.8 ± 3.7 | 29.57 ± 1.5 |
Platelets (×103 µL−1) | 300 ± 72 | 388 ± 97 | 304 ± 41 | 335 ± 51 | 300 ± 72 | 360 ± 166 | 304 ± 41 | 347 ± 55 |
Lymphocytes (×103 µL−1) | 4.08 ± 1.1 | 3.583 ± 0.40 | 9.05 ± 2.5 | 8.5 ± 3.8 | 4.08 ± 1.1 | 7.6 ± 4.6 | 9.05 ± 2.5 | 6.78 ± 1.8 |
Monocytes (×103 µL−1) | 0.060 ± 0.024 | 0.050 ± 0.022 | 0.213 ± 0.072 | 0.263 ± 0.14 | 0.060 ± 0.024 | 0.280 ± 0.21 | 0.213 ± 0.072 | 0.163 ± 0.042 |
Granulocytes (×103 µL−1) | 1.24 ± 0.52 | 0.633 ± 0.15 | 2.41 ± 0.79 | 3.77 ± 2.4 | 1.24 ± 0.52 | 4.30 ± 3.2 | 2.41 ± 0.79 | 1.93 ± 0.40 |
Lymphocyte (%) | 78 ± 5.1 | 84.60 ± 2.2 | 78.71 ± 2.1 | 76.42 ± 3.5 | 78 ± 5.1 | 73 ± 6.2 | 78.71 ± 2.1 | 75.24 ± 2.2 |
Monocytes (%) | 1.140 ± 0.25 | 1.150 ± 0.18 | 17.63 ± 0.15 | 1.613 ± 0.18 | 1.140 ± 0.25 | 1.720 ± 0.29 | 17.63 ± 0.15 | 1.837 ± 0.19 |
Granulocytes (%) | 20.9 ± 4.9 | 14.25 ± 2.1 | 19.52 ± 2.0 | 21.96 ± 3.3 | 20.9 ± 4.9 | 25.2 ± 6 | 19.52 ± 2.0 | 23.41 ± 2.3 |
Red cell distribution width (%) | 24.90 ± 1.7 | 25.53 ± 2.6 | 12.25 ± 0.92 | 21.0 ± 0.74 | 24.90 ± 1.7 | 25.38 ± 3.5 | 12.25 ± 0.92 | 21.73 ± 1.2 |
Red cell distribution width -SD | 43.98 ± 4.4 | 40.85 ± 3.0 | 47.1 ± 3.8 | 44.3 ± 3.9 | 43.98 ± 4.4 | 38.12 ± 3.8 | 47.1 ± 3.8 | 45.0 ± 1.8 |
Platelet distribution width (%) | 13.98 ± 1.7 | 15.92 ± 1.9 | 13.6 ± 1.4 | 13.40 ± 1.1 | 13.98 ± 1.7 | 13.98 ± 0.75 | 13.6 ± 1.4 | 13.64 ± 1.4 |
Platelet crit | 0.223 ± 0.047 | 0.275 ± 0.061 | 0.215 ± 0.03 | 0.237 ± 0.035 | 0.223 ± 0.047 | 0.249 ± 0.041 | 0.215 ± 0.03 | 0.249 ± 0.041 |
Mean platelet volume (fl) | 7.28 ± 0.65 | 7.250 ± 0.39 | 7.087 ± 0.21 | 7.20 ± 0.42 | 7.28 ± 0.65 | 7.320 ± 0.44 | 7.087 ± 0.21 | 0.7287 ± 0.35 |
Experiment > | Low Dose (10 mg/mL solvent/kg body weight) | High Dose (20 mg/mL solvent/kg body weight) | ||||||
---|---|---|---|---|---|---|---|---|
Parameters | Saline Treated Male | Neodymium Zirconate Zinc Sulfide Treated Male | Saline Treated Female | Neodymium Zirconate Zinc Sulfide Treated Female | Saline Treated Male | Neodymium Zirconate Zinc Sulfide Treated Male | Saline Treated Female | Neodymium Zirconate Zinc Sulfide Treated Female |
Cholesterol mg/dL | 156 ± 7.8 | 167.2 ± 7.5 | 154.2 ± 17 | 190.0 ± 4.7 | 156 ± 7.8 | 171.4 ± 5.2 | 154.2 ± 17 | 194.2 ± 1.7 * |
Triglycerides mgdL−1 | 150.3 ± 24 | 162.0 ± 17 | 168.6 ± 7.5 | 219.2 ± 18 * | 150.3 ± 24 | 151.9 ± 14 | 168.6 ± 7.5 | 222.1 ± 19 * |
Creatinine mgdL−1 | 33.7 ± 28 | 16.1 ± 5.6 | 4.28 ± 2.4 | 7.10 ± 2.3 | 33.7 ± 28 | 14.2 ± 4.3 | 4.28 ± 2.4 | 10.8 ± 6.1 |
High density lipoprotein m | 50.5 ± 5.4 | 49.6 ± 6.7 | 45.79 ± 3.0 | 45.60 ± 1.8 | 50.5 ± 5.4 | 61.6 ± 7.9 | 45.79 ± 3.0 | 50.3 ± 1.6 |
Low density lipoprotein mgdL−1 | 78.6± 11 | 88.7 ± 6.2 | 82.6 ± 13 | 102.1 ± 8.8 | 78.6± 11 | 78.1 ± 9.4 | 82.6 ± 13 | 91.35 ± 4.2 |
Male | Parameter | Brain | Heart | Liver | Kidney | Lungs | ||||||||||
Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | ||
Super oxide dismutase Unit/g | 0.395± 0.22 | 3.32 ± 2.6 | 0.3 | 0.593 ± 0.21 | 0.742 ± 0.21 | 0.6 | 3.50 ± 1.5 | 9.01 ± 3.3 | 0.2 | 1.073 ± 0.32 | 2.75 ± 1.3 | 0.2 | 0.199 ± 0.080 | 2.66 ± 1.5 | 0.1 | |
Malonaldehyde Pico mol/g | 160.3± 25 | 177.3 ± 19 | 0.6 | 464 ± 115 | 518 ± 85 | 0.7 | 169.2 ± 4.6 | 180.7 ± 2.8 | 0.05 * | 375 ± 108 | 704 ± 81 | 0.03 * | 366 ± 52 | 408 ± 71 | 0.6 | |
Catalase mg/dL | 30.7 ± 0.21 | 30.5 ± 0.29 | 0.6 | 29.83 ± 1.3 | 30.47 ± 2.2 | 0.8 | 7.33 ± 1.5 | 13.0 ± 3.9 | 0.2 | 26.19 ± 2.0 | 29.15 ± 1.8 | 0.2 | 29.7 ± 3.8 | 34.18 ± 3.3 | 0.3 | |
Female | Parameter | Brain | Heart | Liver | Kidney | Lungs | ||||||||||
Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | ||
Super oxide dismutase Unit/g | 1.28 ± 0.74 | 2.49 ± 1.9 | 0.6 | 1.12 ± 47 | 0.865 ± 0.62 | 0.05 * | 0.46 ± 0.18 | 4.58 ± 3 | 0.3 | 1.22 ± 0.40 | 0.806 ± 0.70 | 0.2 | 0.567 ± 0.096 | 0.768 ± 0.83 | 0.3 | |
Malonaldehyde Pico mol/g | 138.1 ± 13 | 170.5 ± 5.4 | 0.07 | 103 ± 14 | 59.0 ± 22 | 0.1 | 174.6 ± 5.3 | 168 ± 2.7 | 0.3 | 121 ± 18 | 20 ± 81.2 | 0.1 | 60.6 ± 19 | 90.5 ± 25 | 0.3 | |
Catalase mg/dL | 31.8 ± 0.4 | 31.6 ± 0.13 | 0.9 | 32.08 ± 1.3 | 27.6 ± 1.9 | 0.07 | 8.08 ± 0.9 | 10.04 ± 1.8 | 0.4 | 31.64 ± 1.9 | 31.86 ± 3.8 | 0.9 | 29.47 ± 2.7 | 28 ± 1.7 | 0.7 |
Male | Parameter | Brain | Heart | Liver | Kidney | Lungs | ||||||||||
Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | ||
Super oxide dismutase Unit/g | 0.395 ± 0.22 | 9.39 ± 3.0 | 0.05 * | 0.593 ± 0.21 | 2.11 ± 1.5 | 0.3 | 3.50 ± 1.5 | 5.78 ± 2.2 | 0.4 | 1.073 ± 0.32 | 3.23 ± 1.2 | 0.1 | 0.199 ± 0.080 | 3.82 ± 2.1 | 0.1 | |
Malonaldehyde Pico mol/ g | 160.3 ± 25 | 193.8 ± 17 | 0.3 | 464 ± 115 | 639 ± 69 | 0.2 | 169.2 ± 4.6 | 170.43 ± 3.3 | 0.8 | 3.75 ± 108 | 522 ± 86 | 0.3 | 366 ± 52 | 403 ± 43 | 0.5 | |
Catalase mg/dL | 30.7 ± 0.21 | 31.0 ± 0.53 | 0.8 | 29.83 ± 1.3 | 29.3 ± 4.9 | 0.9 | 7.33 ± 1.5 | 5.24 ± 0.6 | 0.2 | 26.19 ± 2.0 | 36.6 ± 3.8 | 0.03 * | 29.7 ± 3.8 | 31.9 ± 4.4 | 0.7 | |
Female | Parameter | Brain | Heart | Liver | Kidney | Lungs | ||||||||||
Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | Control | Treated | p Value | ||
Super oxide dismutase Unit/g | 1.28 ± 0.74 | 1.83 ± 1.7 | 0.8 | 1.12 ± 47 | 02.41 ± 1.4 | 0.3 | 0.46 ± 0.18 | 0.61 ± 0.41 | 0.7 | 1.22 ± 0.40 | 248.6 ± 11 | 0.6 | 0.567 ± 0.096 | 21.4 ± 5.2 | 0.3 | |
Malonaldehyde Pico mol/ g | 138.1 ± 13 | 145.4 ± 16 | 0.7 | 103 ± 14 | 65.7 ± 11 | 0.05 * | 174.6 ± 5.3 | 174.3 ± 3.0 | 0.1 | 121 ± 18 | 114 ± 1.08 | 0.03 * | 60.6 ± 19 | 58.2 ± 21 | 0.3 | |
Catalase mg/dL | 31.8 ± 0.4 | 31.6 ± 0.24 | 0.8 | 32.08 ± 1.3 | 24.35 ± 2.5 | 0.1 | 8.08 ± 0.9 | 14.54 ± 3.1 | 0.07 | 31.64 ± 1.9 | 19.5 ± 3.7 | 0.01 ** | 29.47 ± 2.7 | 11.3 ± 4.0 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosa, T.; Ben Said, M.; Rehman, Z.U.; Ali, M.; Jamil, S.; Fatima, Q.; Hussain, H.; Iqbal, R.; Khan, A.; Iqbal, F. Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice. Genes 2022, 13, 2262. https://doi.org/10.3390/genes13122262
Khosa T, Ben Said M, Rehman ZU, Ali M, Jamil S, Fatima Q, Hussain H, Iqbal R, Khan A, Iqbal F. Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice. Genes. 2022; 13(12):2262. https://doi.org/10.3390/genes13122262
Chicago/Turabian StyleKhosa, Tafheem, Mourad Ben Said, Zia Ur Rehman, Muhammad Ali, Sania Jamil, Qandeel Fatima, Hafsa Hussain, Rehana Iqbal, Adil Khan, and Furhan Iqbal. 2022. "Varying Doses of Rare-Earth-Metal-Based Neodymium Zirconate Zinc Sulfide Nanocomposite Disrupt Blood and Serum Parameters, as well as Markers of Oxidative Stress in the Selected Organs of Albino Mice" Genes 13, no. 12: 2262. https://doi.org/10.3390/genes13122262