Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. DNA Extraction and PCR Amplification
2.3. Library Construction, Sequencing and Assembly
2.4. Genome Annotation and Sequence Analysis
2.5. Repeat Sequence Analysis
2.6. Genome Comparison
2.7. Phylogenetic Analysis
3. Results
3.1. Chloroplast Assembly and Genome Feature
3.2. Repeat Element Analysis
3.3. SSR Analysis
3.4. Comparative Genomics Analysis
3.5. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Jiang, M.; Shi, Y.; Jiao, K.; Shen, C.; Lu, J.; Ying, Q.; Wang, H. Application of the ribosomal DNA ITS2 region of Physalis (Solanaceae): DNA barcoding and phylogenetic study. Front. Plant Sci. 2016, 7, 1047. [Google Scholar] [CrossRef] [Green Version]
- Ding, H.; Hu, Z.; Yu, L.; Ma, Z.; Ma, X.; Chen, Z.; Wang, D.; Zhao, X. Induction of quinone reductase (QR) by withanolides isolated from Physalis angulata L. var. villosa Bonati (Solanaceae). Steroids 2014, 86, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chinese academy of sciences. Flora of China; Science Press: Beijing, China, 1978; Volume 67, p. 58. [Google Scholar]
- Ma, T.; Zhang, W.N.; Yang, L.; Zhang, C.; Lin, R.; Shan, S.M.; Zhu, M.D.; Luo, J.G.; Kong, L.Y. Cytotoxic withanolides from Physalis angulata var. villosa and the apoptosis-inducing effect via ROS generation and the activation of MAPK in human osteosarcoma cells. Rsc. Adv. 2016, 6, 53089–53100. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Zhang, Y.L.; Kong, L.Y.; Luo, J.G. Target discovery of cytotoxic withanolides from Physalis angulata var. villosa via reactivity-based screening. J. Pharm. Biomed. Anal. 2018, 151, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. Soc. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Diekmann, K.; Hodkinson, T.R.; Wolfe, K.H.; van den Bekerom, R.; Dix, P.J.; Barth, S. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res. 2009, 16, 165–176. [Google Scholar] [CrossRef]
- Tian, S.; Lu, P.; Zhang, Z.; Wu, J.Q.; Zhang, H.; Shen, H. Chloroplast genome sequence of Chongming lima bean (Phaseolus lunatus L.) and comparative analyses with other legume chloroplast genomes. BMC Genomics 2021, 22, 194. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.D. CHAPTER 2—Plastid Chromosomes: Structure and Evolution. In The Molecular Biology of Plastids; Bogorad, L., Vasil, I.K., Eds.; Academic Press: Cambridge, MA, USA, 1991; pp. 5–53. [Google Scholar]
- Kim, Y.; Cullis, C. A novel inversion in the chloroplast genome of marama (Tylosema esculentum). J. Exp. Bot. 2017, 68, 2065–2072. [Google Scholar] [CrossRef] [Green Version]
- Raman, G.; Park, K.T.; Kim, J.H.; Park, S. Characteristics of the completed chloroplast genome sequence of Xanthium spinosum: Comparative analyses, identification of mutational hotspots and phylogenetic implications. BMC Genomics 2020, 21, 855. [Google Scholar] [CrossRef]
- Xue, S.; Shi, T.; Luo, W.; Ni, X.; Iqbal, S.; Ni, Z.; Huang, X.; Yao, D.; Shen, Z.; Gao, Z. Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Hortic. Res. 2019, 6, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, J.D.; Thompson, W.F. Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Natl. Acad. Sci. USA 1981, 78, 5533–5537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Koo, H.J.; Lee, J.; Lee, S.C.; Lee, D.Y.; Giang, V.N.L.; Kim, M.; Shim, H.; Park, J.Y.; Yoo, K.O.; et al. Authentication of Zanthoxylum species based on integrated analysis of complete chloroplast genome sequences and metabolite profiles. J. Agric. Food Chem. 2017, 65, 10350–10359. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.A.; Kim, J.S.; Kim, J.H. The complete chloroplast genome of colchicine plants (Colchicum autumnale L. and Gloriosa superba L.) and its application for identifying the genus. Planta 2015, 242, 223–237. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, T.; Ma, Q.; Liang, L.; Wang, G. Comparative genomics and phylogenetic analysis revealed the chloroplast genome variation and interspecific relationships of Corylus (Betulaceae) species. Front. Plant Sci. 2018, 9, 927. [Google Scholar] [CrossRef]
- Mu, X.Y.; Tong, L.; Sun, M.; Zhu, Y.X.; Wen, J.; Lin, Q.W.; Liu, B. Phylogeny and divergence time estimation of the walnut family (Juglandaceae) based on nuclear RAD-Seq and chloroplast genome data. Mol. Phylogenet. Evol. 2020, 147, 106802. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Tu, X.; Li, C.; Zhu, Y.; Zhong, H.; Liu, Z.J.; Wu, S.; Zhai, J. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. Plant Divers. 2021, 43, 281–291. [Google Scholar] [CrossRef]
- Whitson, M.; Manos, P.S. Untangling Physalis (Solanaceae) from the Physaloids: A two-gene phylogeny of the Physalinae. Syst. Bot. 2005, 30, 216–230. [Google Scholar] [CrossRef]
- Olmstead, R.G.; Bohs, L.; Migid, H.A.; Santiago-Valentin, E.; Garcia, V.F.; Collier, S.M. A molecular phylogeny of the Solanaceae. Taxon 2008, 57, 1159–1181. [Google Scholar] [CrossRef]
- Feng, S.; Jiao, K.; Zhu, Y.; Wang, H.; Jiang, M.; Wang, H. Molecular identification of species of Physalis (Solanaceae) using a candidate DNA barcode: The chloroplast psbA-trnH intergenic region. Genome 2018, 61, 15–20. [Google Scholar] [CrossRef]
- Simbaqueba, J.; Sanchez, P.; Sanchez, E.; Zarantes, V.M.N.; Chacon, M.I.; Barrero, L.S.; Marino-Ramirez, L. Development and characterization of microsatellite markers for the cape gooseberry Physalis peruviana. PLoS ONE 2011, 6, e26719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas-Ponce, O.; Perez-Alvarez, L.F.; Zamora-Tavares, P.; Rodriguez, A. Assessing genetic diversity in Mexican Husk tomato species. Plant Mol. Biol. Rep. 2011, 29, 733–738. [Google Scholar] [CrossRef]
- Zamora-Tavares, P.; Vargas-Ponce, O.; Sanchez-Martinez, J.; Cabrera-Toledo, D. Diversity and genetic structure of the husk tomato (Physalis philadelphica Lam.) in Western Mexico. Genet. Resour. Crop. Evol. 2015, 62, 141–153. [Google Scholar] [CrossRef]
- Carbonell-Caballero, J.; Alonso, R.; Ibanez, V.; Terol, J.; Talon, M.; Dopazo, J. A Phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol. Biol. Evol. 2015, 32, 2015–2035. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Duan, L.; Liu, P.L.; Liu, J.; Chang, Z.Y.; Wen, J. Chloroplast phylogenomics and character evolution of eastern Asian Astragalus (Leguminosae): Tackling the phylogenetic structure of the largest genus of flowering plants in Asia. Mol. Phylogenetics Evol. 2021, 156, 107025. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Li, M.; Xu, W.; Schwarzacher, T.; Heslop-Harrison, J.S. Comparative chloroplast genome analyses of Avena: Insights into evolutionary dynamics and phylogeny. BMC Plant Biol. 2020, 20, 406. [Google Scholar] [CrossRef]
- Wen, J.; Harris, A.J.; Kalburgi, Y.; Zhang, N.; Xu, Y.; Zheng, W.; Ickert-Bond, S.M.; Johnson, G.; Zimmer, E.A. Chloroplast phylogenomics of the New World grape species (Vitis, Vitaceae). J. Syst. Evol. 2018, 56, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Yonezawa, T.; Zhong, Y.; Hasegawa, M. The position of gnetales among seed plants: Overcoming pitfalls of chloroplast phylogenomics. Mol. Biol. Evol. 2010, 27, 2855–2863. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yang, J.B.; Ma, W.Z.; Pressel, S.; Liu, H.M.; Wu, Y.H.; Schneider, H. Chloroplast phylogenomics of liverworts: A reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales. Cladistics 2020, 36, 184–193. [Google Scholar] [CrossRef]
- Duan, L.; Harris, A.J.; Su, C.; Zhang, Z.R.; Arslan, E.; Ertugrul, K.; Loc, P.K.; Hayashi, H.; Wen, J.; Chen, H.F. Chloroplast phylogenomics reveals the intercontinental biogeographic history of the Liquorice genus (Leguminosae:Glycyrrhiza). Front. Plant Sci. 2020, 11, 406. [Google Scholar] [CrossRef]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Kim, K.U.; Park, S.K.; Kang, S.A.; Park, M.K.; Cho, M.K.; Jung, H.J.; Kim, K.Y.; Yu, H.S. Comparison of functional gene annotation of Toxascaris leonina and Toxocara canis using CLC genomics workbench. Korean J. Parasitol. 2013, 51, 525–530. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, G.; Tang, J.; Luo, R.; Patterson, J.; Liu, S.; Huang, W.; He, G.; Gu, S.; Li, S.; et al. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014, 30, 1660. [Google Scholar] [CrossRef] [Green Version]
- Gile, G.H.; Moog, D.; Slamovits, C.H.; Maier, U.G.; Archibald, J.M. Dual organellar targeting of aminoacyl-tRNA synthetases in diatoms and cryptophytes. Genome Biol. Evol. 2015, 7, 1728–1742. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mower, J.P. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37, W253–W259. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Thiel, T.; Munch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Zheng, K.; Jiao, K.; Cai, Y.; Chen, C.; Mao, Y.; Wang, L.; Zhan, X.; Ying, Q.; Wang, H. Complete chloroplast genomes of four Physalis species (Solanaceae): Lights into genome structure, comparative analysis, and phylogenetic relationships. BMC Plant Biol. 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- De-la-Cruz, I.M.; Nunez-Farfan, J. The complete chloroplast genomes of two Mexican plants of the annual herb Datura stramonium (Solanaceae). Mitochondrial DNA B Resour. 2020, 5, 2823–2825. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Ruess, H.; Liang, Q.; Colleoni, C.; Spooner, D.M. Analyses of 202 plastid genomes elucidate the phylogeny of Solanum section Petota. Sci. Rep. 2019, 9, 4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmood, F.; Abdullah; Shahzadi, I.; Ahmed, I.; Waheed, M.T.; Mirza, B. Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. Genomics 2020, 112, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.J.; Jung, J.D.; Park, H.W.; Kim, J.H.; Cha, H.W.; Min, S.R.; Jeong, W.J.; Liu, J.R. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Rep. 2006, 25, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Yisilam, G.; Mamut, R.; Li, J.; Li, P.; Fu, C.X. Characterization of the complete chloroplast genome of Lycium ruthenicum (Solanaceae). Mitochondrial DNA B 2018, 3, 361–362. [Google Scholar] [CrossRef] [Green Version]
- Gandini, C.L.; Garcia, L.E.; Abbona, C.C.; Sanchez-Puerta, M.V. The complete organelle genomes of Physochlaina orientalis: Insights into short sequence repeats across seed plant mitochondrial genomes. Mol. Phylogenetics Evol. 2019, 137, 274–284. [Google Scholar] [CrossRef]
- Sanchez-Puerta, M.V.; Abbona, C.C. The chloroplast genome of Hyoscyamus niger and a phylogenetic study of the tribe Hyoscyameae (Solanaceae). PLoS ONE 2014, 9, e98353. [Google Scholar] [CrossRef]
- Zamora-Tavares, M.D.; Sandoval-Padilla, I.; Chavez Zendejas, A.; Perez-Alquicira, J.; Vargas-Ponce, O. Complete chloroplast genome of Physalis chenopodifolia Lam. (Solanaceae). Mitochondrial DNA B 2020, 5, 162–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiryousefi, A.; Hyvonen, J.; Poczai, P. The chloroplast genome sequence of bittersweet (Solanum dulcamara): Plastid genome structure evolution in Solanaceae. PLoS ONE 2018, 13, e0196069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogihara, Y.; Terachi, T.; Sasakuma, T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA 1988, 85, 8573–8577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumley, T.W.; Palmer, J.D.; Mower, J.P.; Fourcade, H.M.; Calie, P.J.; Boore, J.L.; Jansen, R.K. The complete chloroplast genome sequence of Pelargonium x hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 2006, 23, 2175–2190. [Google Scholar] [CrossRef]
- Xie, D.F.; Yu, H.X.; Price, M.; Xie, C.; Deng, Y.Q.; Chen, J.P.; Yu, Y.; Zhou, S.D.; He, X.J. Phylogeny of chinese Allium species in section Daghestanica and adaptive evolution of Allium (Amaryllidaceae, Allioideae) species revealed by the chloroplast complete genome. Front. Plant Sci. 2019, 10, 460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Shen, S.; Wu, F.; Wang, Y. Inferring genetic variation and demographic history of Michelia yunnanensis Franch. (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Front. Plant Sci. 2017, 8, 583. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.S.; Sun, Y.Q.; Jin, Y.Q.; Gao, Q.; Hu, X.G.; Gao, F.L.; Yang, X.L.; Zhu, J.J.; El-Kassaby, Y.A.; Mao, J.F. Development of high transferability cpSSR markers for individual identification and genetic investigation in Cupressaceae species. Ecol. Evol. 2018, 8, 4967–4977. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Liu, S.L.; Pei, S.Y.; Ning, M.M.; Tang, S.Q. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. Plant Divers. 2020, 42, 343–350. [Google Scholar] [CrossRef]
- Han, T.; Li, M.; Li, J.; Lv, H.; Ren, B.; Chen, J.; Li, W. Comparison of chloroplast genomes of Gynura species: Sequence variation, genome rearrangement and divergence studies. BMC Genomics 2019, 20, 791. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.Y.; Yang, J.X.; Li, H.K.; Zhao, H.S. Chloroplast genomes of two species of Cypripedium: Expanded genome size and proliferation of AT-biased repeat sequences. Front. Plant Sci. 2021, 12, 609729. [Google Scholar] [CrossRef]
- Choi, K.S.; Chung, M.G.; Park, S. The complete chloroplast genome sequences of three Veroniceae Species (Plantaginaceae): Comparative analysis and highly divergent regions. Front. Plant Sci. 2016, 7, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Yang, C.; Zhao, X.; Chen, S.; Qu, G.Z. Complete chloroplast genome sequence of Betula platyphylla: Gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genomics 2018, 19, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, D.Q.; Wang, H.Y.; Zhang, J.; Zhao, Y.X.; Wu, F. Complete chloroplast genome sequence of Fagus longipetiolata Seemen (Fagaceae): Genome structure, adaptive evolution, and phylogenetic relationships. Life 2022, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, T.; Kanwal, N.; Zhao, Y.; Bai, G.; Zhao, G. Completion of eight gynostemma BL. (Cucurbitaceae) chloroplast genomes: Characterization, comparative analysis, and phylogenetic relationships. Front. Plant Sci. 2017, 8, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Liu, Z.; Wang, C.; Jing, M.; Liu, J.; Zhou, W.; Kai, G. The complete chloroplast genome sequences of Anisodus Acutangulus and a comparison with other Solanaceae species. Clin. Complement. Med. Pharmacol. 2021, 1, 100002. [Google Scholar] [CrossRef]
P. angulata var. villosa | |
---|---|
Genome size (bp) | 156,898 |
LSC (bp) | 87,108 |
SSC (bp) | 18,462 |
IR (bp) | 25,664 |
GC content (%) | |
Total genome | 37.52 |
LSC | 35.58 |
SSC | 31.33 |
IR | 43.05 |
Gene | 131 |
protein-coding genes | 85 |
rRNA | 8 |
tRNA | 38 |
GenBank accession | OM257167 |
Category for Genes | Group of Genes | Name of Genes |
---|---|---|
Self-replication | rRNA Genes | rrn4.5S (×2), rrn5S (×2), rrn16S (×2), rrn23S (×2) |
tRNA Genes | atrnA-UGC (×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, a trnG-GCC, a trnG-UCC, trnH-GUG, a trnI-GAU (×2), trnI-CAU( ×2), a trnK-UUU, trnL-CAA, a trnL-UAA, trnL-UAG, trnM-CAU, trnN-GUU (×2), trnP-UGG, trnQ-UUG, trnR-ACG (×2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU (×2), trnT-UGU, trnV-GAC (×2), a trnV-UAC, trnW-CCA, trnY-GUA | |
DNA dependent RNA polymerase | rpoA, rpoB, arpoC1, rpoC2 | |
Small subunit of ribosome | rps2, rps3, rps4, rps7 (×2), rps8, rps11, b rps12, rps14, rps15, a rps16, rps18, rps19 | |
Large subunit of ribosome | arpl2 (×2), rpl14, a rpl16, rpl20, rpl22, rpl23 (×2), rpl32, rpl33, rpl36 | |
Photosynthesis | Subunits of ATP synthase | atpA, atpB, atpE, aatpF, atpH, atpI |
Subunits of NADH-dehydrogenase | andhA, andhB (×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Subunits of cytochrome b/f complex | petA, apetB, apetD, petG, petL, petN | |
Subunits of photosystem I | psaA, psaB, psaC, psaI, psaJ, ycf4, bycf3 | |
Subunits of photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, lhbA | |
Subunit of rubisco | rbcL | |
Subunit of Acetyl-CoA-carboxylase | accD | |
c-type cytochrom synthesis gene | ccsA | |
Envelop membrane protein | cemA | |
Protease | bclpP | |
Translational initiation factor | infA | |
Maturase | matK | |
Unknown function | Conserved open reading frames | ycf1, ycf2 (×2), ycf15 (×2) |
Gene | Location | Exon I (bp) | Intron I (bp) | Exon II (bp) | Intron II (bp) | Exon III (bp) |
---|---|---|---|---|---|---|
atpF | LSC | 145 | 710 | 410 | ||
clpP | LSC | 71 | 789 | 292 | 640 | 228 |
ndhA | SSC | 553 | 1147 | 539 | ||
ndhB | IRB | 777 | 679 | 756 | ||
ndhB | IRA | 777 | 679 | 756 | ||
petB | LSC | 6 | 753 | 642 | ||
petD | LSC | 8 | 759 | 475 | ||
rpl2 | IRA | 391 | 666 | 434 | ||
rpl2 | IRB | 391 | 666 | 434 | ||
rpl16 | LSC | 9 | 959 | 396 | ||
rpoC1 | LSC | 432 | 737 | 1614 | ||
rps12① | LSC+IRA | 234 | - | 25 | 536 | 114 |
rps12② | LSC+IRB | 232 | - | 26 | 536 | 114 |
rps16 | LSC | 40 | 855 | 227 | ||
ycf3 | LSC | 124 | 736 | 230 | 782 | 153 |
trnA-UGC | IRA | 37 | 811 | 36 | ||
trnA-UGC | IRB | 36 | 811 | 37 | ||
trnE-UUC | IRA | 32 | 724 | 40 | ||
trnE-UUC | IRB | 40 | 724 | 32 | ||
trnI-GAU | IRA | 36 | 16 | 36 | ||
trnI-GAU | IRB | 36 | 16 | 36 | ||
trnK-UUU | LSC | 36 | 2509 | 37 | ||
trnL-UAA | LSC | 35 | 497 | 50 | ||
trnV-UAC | IRB | 56 | 553 | 36 | ||
trnS-CGA | LSC | 31 | 676 | 60 |
Codon. | Amino Acid | Count | RSCU | tRNA | Codon | Amino Acid | Count | RSCU | tRNA |
---|---|---|---|---|---|---|---|---|---|
UUU | Phe | 2268.0 | 1.22 | UAU | Tyr | 1433.0 | 1.34 | ||
UUC | Phe | 1453.0 | 0.78 | trnF-GAA | UAC | Tyr | 708.0 | 0.66 | trnY-GUA |
UUA | Leu | 1087.0 | 1.27 | trnL-UAA | UAA | TER | 1256.0 | 1.21 | |
UUG | Leu | 1080.0 | 1.26 | trnL-CAA | UAG | TER | 784.0 | 0.75 | |
CUU | Leu | 1107.0 | 1.29 | CAU | His | 855.0 | 1.38 | ||
CUC | Leu | 673.0 | 0.78 | CAC | His | 387.0 | 0.62 | trnH-GUG | |
CUA | Leu | 731.0 | 0.85 | trnL-UAG | CAA | Gln | 1049.0 | 1.43 | trnQ-UUG |
CUG | Leu | 466.0 | 0.54 | CAG | Gln | 423.0 | 0.57 | ||
AUU | Ile | 1855.0 | 1.27 | trnI-CAU | AAU | Asn | 1774.0 | 1.42 | |
AUC | Ile | 1127.0 | 0.77 | trnI-GAU | AAC | Asn | 722.0 | 0.58 | trnN-GUU |
AUA | Ile | 1417.0 | 0.97 | AAA | Lys | 2115.0 | 1.36 | trnK-UUU | |
AUG | Met | 868.0 | 1.00 | trnM-CAU | AAG | Lys | 1004.0 | 0.64 | |
GUU | Val | 817.0 | 1.40 | GAU | Asp | 1059.0 | 1.44 | ||
GUC | Val | 460.0 | 0.79 | trnV-GAC | GAC | Asp | 413.0 | 0.56 | trnD-GUC |
GUA | Val | 668.0 | 1.14 | trnV-UAC | GAA | Glu | 1399.0 | 1.38 | trnE-UUC |
GUG | Val | 392.0 | 0.67 | GAG | Glu | 628.0 | 0.62 | ||
UCU | Ser | 1168.0 | 1.47 | trnS-GCU | UGU | Cys | 713.0 | 1.20 | |
UCC | Ser | 911.0 | 1.15 | trnS-GGA | UGC | Cys | 473.0 | 0.80 | trnC-GCA |
UCA | Ser | 923.0 | 1.16 | trnS-UGA | UGA | TER | 1086.0 | 1.04 | |
UCG | Ser | 583.0 | 0.73 | UGG | Trp | 665.0 | 1.00 | trnW-CCA | |
CCU | Pro | 677.0 | 1.09 | trnP-UGG | CGU | Arg | 413.0 | 0.73 | trnR-ACG |
CCC | Pro | 646.0 | 1.04 | CGC | Arg | 230.0 | 0.41 | trnR-UCU | |
CCA | Pro | 757.0 | 1.22 | CGA | Arg | 645.0 | 1.15 | ||
CCG | Pro | 400.0 | 0.65 | CGG | Arg | 373.0 | 0.66 | ||
ACU | Thr | 679.0 | 1.14 | AGU | Arg | 682.0 | 0.86 | ||
ACC | Thr | 614.0 | 1.03 | trnT-GGU | AGC | Arg | 499.0 | 0.63 | |
ACA | Thr | 717.0 | 1.21 | trnT-UGU | AGA | Arg | 1091.0 | 1.94 | |
ACG | Thr | 364.0 | 0.61 | AGG | Arg | 625.0 | 1.11 | ||
GCU | Ala | 500.0 | 1.25 | GGU | Gly | 594.0 | 1.04 | ||
GCC | Ala | 389.0 | 0.97 | GGC | Gly | 349.0 | 0.61 | trnG-GCC | |
GCA | Ala | 471.0 | 1.18 | trnA-UGC | GGA | Gly | 800.0 | 1.40 | trnG-UCC |
GCG | Ala | 241.0 | 0.60 | GGG | Gly | 543.0 | 0.95 |
Number | Repeat Size | Repeat Type | Repeat Position 1 | Repeat Location 1 | Repeat Position 2 | Repeat Location 2 | E-Value |
---|---|---|---|---|---|---|---|
1 | 56 | P | 79,608 | IGS (petB-petD) | 79,608 | IGS (petB-petD) | 1.85 × 10−20 |
2 | 48 | P | 77,177 | psbT | 77,177 | psbT | 8.74 × 10−20 |
3 | 39 | F | 40,031 | psaB | 42,255 | psaA | 2.29 × 10−14 |
4 | 48 | F | 50,038 | IGS (trnL-UAA-trnF-GAA) | 50,088 | IGS (trnL-UAA-trnF-GAA) | 4.08 × 10−14 |
5 | 41 | F | 101,181 | IGS (rps7-trnV-GAC) | 122,830 | ndhA | 1.76 × 10−13 |
6 | 41 | P | 122,830 | ndhA | 142,400 | ndhA | 1.76 × 10−13 |
7 | 37 | F | 53,125 | IGS (ndhC-trnV-UAC) | 53,145 | IGS (ndhC-trnV-UAC) | 3.67 × 10−13 |
8 | 39 | F | 45,095 | ycf3 | 122,832 | ndhA | 2.68 × 10−12 |
9 | 40 | F | 50,000 | IGS (trnL-UAA-trnF-GAA) | 50,100 | IGS (trnL-UAA-trnF-GAA) | 4.02 × 10−11 |
10 | 39 | F | 45,095 | ycf3 | 101,183 | IGS (rps7-trnV-GAC) | 1.53 × 10−10 |
11 | 39 | P | 45,095 | ycf3 | 142,400 | IGS (trnV-GAC-rps7) | 1.53 × 10−10 |
12 | 35 | P | 96,669 | IGS (ycf15-trnL-CAA) | 96,669 | IGS (ycf15-trnL-CAA) | 6.16 × 10−10 |
13 | 35 | F | 96,669 | IGS (ycf15-trnL-CAA) | 146,918 | IGS (trnL-CAA-ycf15) | 6.16 × 10−10 |
14 | 35 | P | 146,918 | IGS (trnL-CAA-ycf15) | 146,918 | IGS (trnL-CAA-ycf15) | 6.16 × 10−10 |
15 | 30 | P | 8,301 | IGS (psbI-trnS-GCU) | 46,827 | trnS-GGA | 6.01 × 10−9 |
16 | 36 | F | 28,430 | trnC-GCA | 49,976 | IGS (trnL-UAA-trnF-GAA) | 8.31 × 10−9 |
17 | 36 | R | 129,718 | ycf1 | 129,718 | ycf1 | 8.31 × 10−9 |
18 | 33 | F | 38,168 | IGS (trnfM-CAU-rps14) | 38,197 | IGS (trnfM-CAU-rps14) | 9.29 × 10−9 |
19 | 37 | F | 94,191 | ycf2 | 94,209 | ycf2 | 7.69 × 10−8 |
20 | 37 | P | 94,191 | ycf2 | 149,376 | ycf2 | 7.69 × 10−8 |
21 | 37 | P | 94,209 | ycf2 | 149,394 | ycf2 | 7.69 × 10−8 |
22 | 37 | F | 149,376 | ycf2 | 149,394 | ycf2 | 7.69 × 10−8 |
23 | 34 | F | 109,819 | IGS (rrn4.5S-rrn5S) | 109,851 | IGS (rrn4.5S-rrn5S) | 1.18 × 10−7 |
24 | 34 | P | 109,819 | IGS (rrn4.5S-rrn5S) | 133,737 | IGS (rrn5S-rrn4.5S) | 1.18 × 10−7 |
25 | 34 | P | 109,851 | IGS (rrn4.5S-rrn5S) | 133,769 | IGS (rrn5S-rrn4.5S) | 1.18 × 10−7 |
26 | 34 | F | 133,737 | IGS (rrn5S-rrn4.5S) | 133,769 | IGS (rrn5S-rrn4.5S) | 1.18 × 10−7 |
27 | 36 | F | 50,000 | IGS (trnL-UAA-trnF-GAA) | 50,050 | IGS (trnL-UAA-trnF-GAA) | 2.83 × 10−7 |
28 | 33 | F | 50,113 | IGS (trnL-UAA-trnF-GAA) | 50,193 | trnF-GAA | 1.38 × 10−5 |
29 | 31 | F | 8,300 | IGS (psbI-trnS-GCU) | 36,776 | trnS-UGA | 1.82 × 10−4 |
30 | 31 | F | 9,743 | trnG-GCC | 37,739 | trnG-UCC | 1.82 × 10−4 |
31 | 30 | F | 36,630 | IGS (psbC-trnS-UGA) | 74,420 | clpP | 6.58 × 10−4 |
32 | 30 | P | 36,777 | IGS (psbC-trnS-UGA) | 46,827 | trnS-GGA | 6.58 × 10−4 |
33 | 30 | F | 45,107 | ycf3 | 101,195 | IGS (rps7-trnV-GAC) | 6.58 × 10−4 |
34 | 30 | P | 45,107 | ycf3 | 142,397 | IGS (trnV-GAC-rps7) | 6.58 × 10−4 |
35 | 30 | F | 101,195 | IGS (rps7-trnV-GAC) | 122,844 | IGS (ndhI-ndhA) | 6.58 × 10−4 |
36 | 30 | P | 122,844 | IGS (ndhI-ndhA) | 142,397 | ndhA | 6.58 × 10−4 |
37 | 30 | R | 129,723 | ycf1 | 129,731 | ycf1 | 6.58 × 10−4 |
38 | 30 | F | 149,384 | ycf2 | 149,402 | ycf2 | 6.58 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, X.; Zhang, Z.; Zhang, Y.; Gao, Y.; Jin, Y.; Shen, C.; Wang, H.; Feng, S. Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae. Genes 2022, 13, 2291. https://doi.org/10.3390/genes13122291
Zhan X, Zhang Z, Zhang Y, Gao Y, Jin Y, Shen C, Wang H, Feng S. Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae. Genes. 2022; 13(12):2291. https://doi.org/10.3390/genes13122291
Chicago/Turabian StyleZhan, Xiaori, Zhenhao Zhang, Yong Zhang, Yadi Gao, Yanyun Jin, Chenjia Shen, Huizhong Wang, and Shangguo Feng. 2022. "Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae" Genes 13, no. 12: 2291. https://doi.org/10.3390/genes13122291
APA StyleZhan, X., Zhang, Z., Zhang, Y., Gao, Y., Jin, Y., Shen, C., Wang, H., & Feng, S. (2022). Complete Plastome of Physalis angulata var. villosa, Gene Organization, Comparative Genomics and Phylogenetic Relationships among Solanaceae. Genes, 13(12), 2291. https://doi.org/10.3390/genes13122291