Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Grow Condition
2.2. Evaluation of Parthenocarpic Ability
2.3. Low-Temperature Treatment
2.4. Heredity of Parthenocarpy Traits
2.5. Statistical Analysis
3. Results
3.1. Evaluation of Parthenocarpy in Cucumber Germplasm Resources
3.2. Effect of First-Fruit Inhibition in Parthenocarpy Cucumbers
3.3. Screening of Super Ovary Parthenocarpic Germplasms
3.4. Exploring Low-Temperature Enhanced Parthenocarpic Germplasms
3.5. Inheritance Analysis of Parthenocarpy
3.6. Identification of SNPs Associated with Parthenocarpy through GWAS
4. Discussion
4.1. Abundant Diversity of Parthenocarpy in Cucumber
4.2. Comparison of Parthenocarpic Features between Different Cucumber Ecotypes
4.3. Complex Genetic Basis of Parthenocarpy in Cucumber
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picken, A.J.F. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J. Hortic. Sci. 1984, 59, 1–13. [Google Scholar] [CrossRef]
- Kim, I.S.; Okubo, H.; Fujieda, K. Studies on parthenocarpy in Cucumis sativus L. IV. Effects of exogenous growth regulators on induction of parthenocarpy and endogenous hormone levels in cucumber ovaries. J. Korean Soc. Hortic. Sci. 1994, 35, 187–195. [Google Scholar]
- Martínez, C.; Manzano, S.; Megías, Z.; Garrido, D.; Picó, B.; Jamilena, M. Sources of parthenocarpy for Zucchini breeding: Relationship with ethylene production and sensitivity. Euphytica 2014, 200, 349–362. [Google Scholar] [CrossRef]
- Gustafson, F.G. Parthenocarpy: Natural and Artificial. Bot. Rev. 1942, 8, 598–654. [Google Scholar] [CrossRef]
- Gustafson, F.G. The Cause of Natural Parthenocarpy. Am. J. Bot. 1939, 26, 135–138. [Google Scholar] [CrossRef]
- Varoquaux, F.; Blanvillain, R.; Delseny, M.; Gallois, P. Less is better: New approaches for seedless fruit production. Trends Biotechnol. 2000, 18, 233–242. [Google Scholar] [CrossRef]
- Mesejo, C.; Yuste, R.; Martínez-Fuentes, A.; Reig, C.; Iglesias, D.J.; Primo-Millo, E.; Agustí, M. Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (Citrus clementina). Physiol. Plant. 2013, 148, 87–96. [Google Scholar] [CrossRef]
- Galimba, K.D.; Bullock, D.G.; Dardick, C.; Liu, Z.; Callahan, A.M. Gibberellic acid induced parthenocarpic ‘Honeycrisp’ apples (Malus domestica) exhibit reduced ovary width and lower acidity. Hortic. Res. 2019, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Wu, Q.; Li, J.; Wang, D.; Nassarawa, S.S.; Ying, T. Ethylene biosynthesis and signal transduction are enhanced during accelerated ripening of postharvest tomato treated with exogenous methyl jasmonate. Sci. Hortic. 2021, 281, 109965. [Google Scholar] [CrossRef]
- Yin, Z.; Malinowski, R.; Ziółkowska, A.; Sommer, H.; Plcader, W.; Malepszy, S. The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber. Cell. Mol. Biol. Lett. 2006, 11, 279–290. [Google Scholar] [CrossRef]
- Mazzucato, A.; Cellini, F.; Bouzayen, M.; Zouine, M.; Mila, I.; Minoia, S.; Petrozza, A.; Picarella, M.E.; Ruiu, F.; Carriero, F. A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol. Breed. 2015, 35, 22. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, I.; Sherif, S.; El Kayal, W.; Jones, B.; Li, Z.; Sullivan, A.J.; Jayasankar, S. Overexpression of plum auxin receptor PslTIR1 in tomato alters plant growth, fruit development and fruit shelf-life characteristics. BMC Plant Biol. 2016, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficcadenti, N.; Sestili, S.; Pandolfini, T.; Cirillo, C.; Rotino, G.L.; Spena, A. Genetic engineering of parthenocarpic fruit development in tomato. Mol. Breed. 1999, 5, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Gorguet, B.; van Heusden, A.W.; Lindhout, P. Parthenocarpic Fruit Development in Tomato. Plant Biol. 2005, 7, 131–139. [Google Scholar] [CrossRef]
- Ren, Z.; Li, Z.; Miao, Q.; Yang, Y.; Deng, W.; Hao, Y. The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J. Exp. Bot. 2011, 62, 2815–2826. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Zhang, T.; Li, J.; Lou, Q.; Chen, J. Cloning and expression analysis of Cs-TIR1/AFB2: The fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol. Plant. 2014, 36, 139–149. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Cui, L.; Zhang, T.; Wu, Z.; Zhu, P.-Y.; Meng, Y.-J.; Zhang, K.-J.; Yu, X.-Q.; Lou, Q.-F.; et al. New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis. BMC Plant Biol. 2017, 17, 130. [Google Scholar] [CrossRef] [Green Version]
- Pike, L.M.; Peterson, C.E. Inheritance of parthenocarpy in the cucumber (Cucumis sativus L.). Euphytica 1969, 18, 101–105. [Google Scholar] [CrossRef]
- Ponti, O.; Garretsen, F. Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica 1976, 25, 633–642. [Google Scholar] [CrossRef]
- Elshawaf, S.; Baker, L.R. Inheritance of Parthenocarpic Yield in Gynoecious Pickling Cucumber for Onec-Over Mechanical Harvest by Diallel Analysis of Six Gynoecious Lines. J. Am. Soc. Hortic. Sci. 1981, 106, 359–364. [Google Scholar]
- Kim, S.; Okubo, H.; Fujieda, K. Genetic and hormonal control of parthenocarpy in cucumber (Cucumis sativus L.). J. Fac. Agric. Kyushu Univ. 1992, 36, 173–181. [Google Scholar] [CrossRef]
- Wu, Z.; Li, L.; Zhang, T.; Zhang, T.L.; Li, J.; Lou, Q.F.; Chen, J.F. QTL Mapping for parthenocarpy in cucumber. Sci. Agric. Sin. 2015, 48, 112–119. [Google Scholar]
- Lietzow, C.D.; Zhu, H.; Pandey, S.; Havey, M.J.; Weng, Y. QTL mapping of parthenocarpic fruit set in North American processing cucumber. Theor. Appl. Genet. 2016, 129, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.H.; Song, X.F.; Li, X.L.; Guo, X.Y.; He, S.Q.; He, L.J.Z.; Feng, Z.H.; Sun, C.Z.; Yan, L.Y. Inheritance and QTL mapping for parthenocarpy in cucumber. Sci. Agric. Sin. 2020, 53, 160–171. [Google Scholar]
- Tiedjens, V.A. Sex ratios in cucumber flowers as affected by different conditions of soil and light. J. Agric. Res. 1928, 36, 721–746. [Google Scholar]
- Nitsch, J.P.; Kurtz, E.B.; Liverman, J.L.; Went, F.W. The development of sex expression in cucurbit flowers. Am. J. Bot. 1952, 39, 32–43. [Google Scholar] [CrossRef]
- Rotino, G.L.; Acciarri, N.; Sabatini, E.; Mennella, G.; Lo Scalzo, R.; Maestrelli, A.; Molesini, B.; Pandolfini, T.; Scalzo, J.; Mezzetti, B.; et al. Open field trial of genetically modified parthenocarpic tomato: Seedlessness and fruit quality. BMC Biotechnol. 2005, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Rylski, I. Effects of seasons on parthenocarpic and fertilized summer squash (Cucumis pepo L.). Exp. Agric. 1974, 10, 39–44. [Google Scholar] [CrossRef]
- Hao, J.H.; Li, T.L.; Du, Z.; Kan, S.E. Study on the response of endogenous hormone to different night temperature and its relationship with fruit development in melon. Sci. Agric. Sin. 2009, 42, 2442–2448. [Google Scholar]
- Hazra, P.; Dutta, A. Expression of parthenocarpy in tomato due to temperature and pollination treatment. Int. J. Veg. Sci. 2010, 16, 222–232. [Google Scholar] [CrossRef]
- Matlob, A.N.; Kelly, W.C. Growth regulator activity and parthenocarpic fruit production in snake melon and cucumber grown at high temperature. J. Am. Soc. Hortic. Sci. 1975, 100, 406–409. [Google Scholar]
- Rudich, J.; Ba Ker, L.R.; Sell, H.M. Parthenocarpy in Cucumis sativus L. as affected by genetic parthenocarpy, thermo photoperiod, and femaleness. J. Am. Soc. Hortic. Sci. 1977, 102, 225–228. [Google Scholar]
- Tian, Z.; Jahn, M.; Qin, X.D.; Obel, H.O.; Yang, F.; Li, J.; Chen, J.F. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes 2021, 12, 1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, 57–67. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.S.; He, W.M.; Ji, J.J.; Zhang, C.; Guo, Y.; Yang, T.L. LDBlockShow: A fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief. Bioinformatics 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Li, X.X.; Zhu, D.W.; Du, Y.C. Description and Data Standard for Cucumber (Cucumis sativus L.); China Agriculture Press: Beijing, China, 2005. [Google Scholar]
- Wu, Z.; Zhang, T.; Li, L.; Xu, J.; Qin, X.D.; Zhang, T.L.; Cui, L.; Lou, Q.F.; Li, J.; Chen, J.F. Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biol. 2016, 16, 182. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, D.R.; Wehner, T. Growth analysis of three cucumber lines differing in plant habit and yield. Cucurbit Genet. Coop. Rep. 1984, 7, 17–18. [Google Scholar]
- Mitra, D.; Shnaider, Y.; Bar-Ziv, A.; Brotman, Y.; Perl-Treves, R. First fruit inhibition and CRISPR-Cas9 inactivation of candidate genes to study the control of cucumber fruit set. Acta Hortic. 2020, 1294, 135–140. [Google Scholar] [CrossRef]
- Nitsch, J.P. Plant Hormones in the Development of Fruits. Q. Rev. Biol. 1952, 27, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.J.; Zhu, P.Y.; Gou, C.X.; Chen, J.F.; Li, J. Transcriptomics analysis reveals the cue of crosstalk between auxin and ethylene during low temperature induced-parthenocarpy in cucumber (Cucumis sativus L.). Nanjing, Jiangsu, China, 2022; manuscript in preparation. [Google Scholar]
- Zhou, X.; Wakana, A.; Kim, J.-H.; Sakai, K.; Kajiwara, K.; Mizunoe, Y. Parthenocarpy in Citrus accessions with special focus on relatives of Kunenbo (C. nobilis Lour. var. kunep Tanaka). Sci. Hortic. 2018, 232, 29–39. [Google Scholar] [CrossRef]
- Pan, X.Q.; Wu, Y.R.; Gao, X.R. A Discovery of Parthenocarpy D-11 in Eggplant. Acta Agric. Boreali-Sin. 2005, 6, 33. [Google Scholar]
- Yoshioka, Y.; Shimomura, K.; Sugiyama, M. Exploring an East Asian melon (Cucumis melo L.) collection for parthenocarpic ability. Genet. Resour. Crop. Evol. 2018, 65, 91–101. [Google Scholar] [CrossRef]
- de Ponti, O.M.B. Breeding parthenocarpic pickling cucumbers (Cucumis sativus L.): Necessity, genetical possibilities, environmental influences and selection criteria. Euphytica 1976, 25, 29–40. [Google Scholar] [CrossRef]
- Zhao, K.K.; Cui, L.L.; Li, C.X.; Dang, J.B.; Liang, G.L.; Xiang, S.Q. Researches Advances on Parthenocarpy in Citrus. Acta Hortic. Sin. 2021, 48, 811–824. [Google Scholar]
- Jung, C.J.; Hur, Y.Y.; Yu, H.J.; Noh, J.H.; Park, K.S.; Lee, H.J. Gibberellin application at pre-bloom in grapevines down-regulates the expressions of VvIAA9 and VvARF7, negative regulators of fruit set initiation, during parthenocarpic fruit development. PLoS ONE 2014, 9, e95634. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Bao, C.; Hu, T.; Zhu, Q.; Hu, H.; He, Q.; Mao, W. SmARF8, a transcription factor involved in parthenocarpy in eggplant. Mol. Genet. Genom. 2016, 291, 93–105. [Google Scholar] [CrossRef]
- Lu, M. Proteomic Study on Super Ovary Female Corolla in Cucumber (Cucumber sativus L). Master’s Thesis, Hebei Normal University of Science and Technology, Qinhuangdao, China, 2016. [Google Scholar]
- Sun, C.; Li, Y.; Zhao, W.; Song, X.; Lu, M.; Li, X.; Li, X.; Liu, R.; Yan, L.; Zhang, X. Integration of hormonal and nutritional cues orchestrates progressive corolla opening. Plant. Physiol. 2016, 171, 1209–1229. [Google Scholar] [CrossRef] [Green Version]
- Che, G.; Zhang, X. Molecular basis of cucumber fruit domestication. Curr. Opin. Plant Biol. 2019, 47, 38–46. [Google Scholar] [CrossRef]
- Marcelis, L.F.M. Effect of assimilate supply on the growth of individual cucumber fruits. Physiol. Plant. 1993, 87, 313–320. [Google Scholar] [CrossRef]
- Li, Y.W.; Liu, F.Z.; Chen, Y.H.; Zhang, Y.; Zhang, W.W.; Lian, Y. Effect of Temperature on endogenous hormones contents during parthenocarpic eggplant ovary (fruit) development. China Veg. 2013, 1, 32–38. [Google Scholar]
- Shnaider, Y.; Mitra, D.; Miller, G.; Baniel, A.; Doniger, T.; Kuhalskaya, A.; Scossa, F.; Fernie, A.R.; Brotman, Y.; Perl-Treves, R. Cucumber ovaries inhibited by dominant fruit express a dynamic developmental program, distinct from either senescence-determined or fruit-setting ovaries. Plant. J. 2018, 96, 651–669. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.Y.; Lou, L.N.; Li, X.L.; Feng, Z.H.; Lou, Q.F.; Chen, J.F. Evaluation of parthenocarpy in cucumber germplasm. Acta Hortic. Sin. 2009, 36, 975–982. [Google Scholar]
- Zhang, D.Q.; Hou, D.; Yue, H.Z.; LI, Y.L. Evaluation of Parthenocarpy of South China Cucumber Germplasm Resources. Gansu Agric. Sci. Technol. 2018, 1, 47–49. [Google Scholar]
- Juldasheva, L. Inheritance of the tendency towards parthenocarpy in cucumbers. Biull. Vses. Ord. Lenina Inst. Rastenievod Im. N. I. Vavilova 1973, 32, 58–59. [Google Scholar]
- Lietzow, C.D. Characterization and QTL Mapping of Parthenocarpic Fruit Set in Processing Cucumber (Cucumis sativus L.). Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2014. [Google Scholar]
- Sun, Z.; Lower, R.L.; Staub, J.E.; Lebeda, A.; Paris, H.S. Generation means analysis of parthenocarpic characters in a processing cucumber (Cucumis sativus) population. In Proceedings of the Meeting on Progress in Cucurbit Genetics & Breeding Research, Cucurbitaceae, Olomouc, Czech Republic, 12–17 July 2004. [Google Scholar]
- Sun, Z.; Staub, J.E.; Chung, S.M.; Lower, R.L. Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breed. 2006, 125, 281–287. [Google Scholar] [CrossRef]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Hao, W.; Storey, J.D. Testing for genetic associations in arbitrarily structured populations. Nat. Genet. 2015, 47, 550–554. [Google Scholar] [CrossRef] [Green Version]
Cucumber Lines | No. Plants | No. Isolated Ovaries a | No. Parthenocarpic Plants b | No. Parthenocarpic Fruit c | Parthenocarpy Fruit Set (%) |
---|---|---|---|---|---|
Parental lines | |||||
18016s | 10 | 90 | 0 | 0 | 0 |
18134s | 10 | 90 | 10 | 85 | 94.4 |
18021s | 10 | 90 | 10 | 84 | 93.3 |
18003s | 10 | 90 | 10 | 86 | 95.5 |
18093s | 10 | 90 | 10 | 84 | 93.3 |
18011s | 10 | 90 | 10 | 83 | 92.2 |
18014s | 10 | 90 | 10 | 79 | 87.7 |
18038s | 10 | 90 | 10 | 82 | 91.1 |
18001s | 10 | 90 | 10 | 74 | 82.2 |
F1 progeny | |||||
18134s × 18016s | 10 | 90 | 10 | 43 | 47.7 |
18016s × 18134s | 10 | 90 | 10 | 38 | 42.2 |
18021s × 18016s | 10 | 90 | 10 | 36 | 40 |
18016s × 18021s | 10 | 90 | 10 | 32 | 35.5 |
18003s × 18016s | 10 | 90 | 10 | 28 | 31.1 |
18016s × 18003s | 10 | 90 | 10 | 29 | 32.2 |
18093s × 18016s | 10 | 90 | 10 | 37 | 41.1 |
18016s × 18093s | 10 | 90 | 10 | 31 | 34.4 |
18011s × 18016s | 10 | 90 | 10 | 32 | 35.5 |
18016s × 18011s | 10 | 90 | 10 | 37 | 41.1 |
18014s × 18016s | 10 | 90 | 10 | 33 | 36.6 |
18016s × 18014s | 10 | 90 | 10 | 37 | 41.1 |
18038s × 18016s | 10 | 90 | 10 | 42 | 46.6 |
18016s × 18038s | 10 | 90 | 10 | 35 | 38.8 |
18001s × 18016s | 10 | 90 | 10 | 37 | 41.1 |
18016s × 18001s | 10 | 90 | 10 | 35 | 38.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, C.; Zhu, P.; Meng, Y.; Yang, F.; Xu, Y.; Xia, P.; Chen, J.; Li, J. Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber. Genes 2022, 13, 225. https://doi.org/10.3390/genes13020225
Gou C, Zhu P, Meng Y, Yang F, Xu Y, Xia P, Chen J, Li J. Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber. Genes. 2022; 13(2):225. https://doi.org/10.3390/genes13020225
Chicago/Turabian StyleGou, Chenxing, Pinyu Zhu, Yongjiao Meng, Fan Yang, Yan Xu, Pengfei Xia, Jinfeng Chen, and Ji Li. 2022. "Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber" Genes 13, no. 2: 225. https://doi.org/10.3390/genes13020225
APA StyleGou, C., Zhu, P., Meng, Y., Yang, F., Xu, Y., Xia, P., Chen, J., & Li, J. (2022). Evaluation and Genetic Analysis of Parthenocarpic Germplasms in Cucumber. Genes, 13(2), 225. https://doi.org/10.3390/genes13020225