A Primer for Single-Cell Sequencing in Non-Model Organisms
Abstract
:1. Introduction
2. Considerations When Planning a scSeq Study in Non-Model Organisms
2.1. Reference Genome or No Reference Genome?
2.2. Sample Preparation for scSeq
2.2.1. Whole-Cell Sequencing
2.2.2. Single-Nucleus Sequencing
2.3. Library Preparation and Sequencing
2.3.1. scDNA-seq Library Preparation and Sequencing
2.3.2. scRNA-seq Library Preparation and Sequencing
2.3.3. Spatial Transcriptomics
2.4. Data Analysis
3. Examples of Research Questions Suited to scSeq Approaches in Non-Model Organisms
3.1. Dosage Compensation
3.2. Meiotic Sex Chromosome Inactivation
3.3. Applications in Livestock Research
4. Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee-Liu, D.; Edwards-Faret, G.; Tapia, V.S.; Larraín, J. Spinal Cord Regeneration: Lessons for Mammals from Non-Mammalian Vertebrates. Genesis 2013, 51, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. mRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Reichard, A.; Asosingh, K. Best Practices for Preparing a Single Cell Suspension from Solid Tissues for Flow Cytometry. Cytometry A 2019, 95, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Hyeon, D.Y.; Hwang, D. Single-Cell Multiomics: Technologies and Data Analysis Methods. Exp. Mol. Med. 2020, 52, 1428–1442. [Google Scholar] [CrossRef]
- Tosches, M.A.; Yamawaki, T.M.; Naumann, R.K.; Jacobi, A.A.; Tushev, G.; Laurent, G. Evolution of Pallium, Hippocampus, and Cortical Cell Types Revealed by Single-Cell Transcriptomics in Reptiles. Science 2018, 360, 881–888. [Google Scholar] [CrossRef] [Green Version]
- Sheng, L.; Shields, E.J.; Gospocic, J.; Glastad, K.M.; Ratchasanmuang, P.; Berger, S.L.; Raj, A.; Little, S.; Bonasio, R. Social Reprogramming in Ants Induces Longevity-Associated Glia Remodeling. Sci. Adv. 2020, 6, eaba9869. [Google Scholar] [CrossRef]
- Shafer, M.E.R.; Sawh, A.N.; Schier, A.F. Gene Family Evolution Underlies Cell-Type Diversification in the Hypothalamus of Teleosts. Nat. Ecol. Evol. 2022, 6, 63–76. [Google Scholar] [CrossRef]
- Musser, J.M.; Schippers, K.J.; Nickel, M.; Mizzon, G.; Kohn, A.B.; Pape, C.; Ronchi, P.; Papadopoulos, N.; Tarashansky, A.J.; Hammel, J.U.; et al. Profiling Cellular Diversity in Sponges Informs Animal Cell Type and Nervous System Evolution. Science 2021, 374, 717–723. [Google Scholar] [CrossRef]
- Fincher, C.T.; Wurtzel, O.; de Hoog, T.; Kravarik, K.M.; Reddien, P.W. Cell Type Transcriptome Atlas for the Planarian Schmidtea mediterranea. Science 2018, 360, eaaq1736. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Nanes Sarfati, D.; Xue, Y.; Yu, X.; Tarashansky, A.J.; Quake, S.R.; Wang, B. Single-Cell Analysis of Schistosoma Mansoni Identifies a Conserved Genetic Program Controlling Germline Stem Cell Fate. Nat. Commun. 2021, 12, 485. [Google Scholar] [CrossRef]
- Svensson, V.; da Veiga Beltrame, E.; Pachter, L. A Curated Database Reveals Trends in Single-Cell Transcriptomics. Database 2020, 2020, baaa073. [Google Scholar] [CrossRef]
- Marioni, J.C.; Arendt, D. How Single-Cell Genomics Is Changing Evolutionary and Developmental Biology. Annu. Rev. Cell Dev. Biol. 2017, 33, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Titus Brown, C.; Howe, A.; Zhang, Q.; Pyrkosz, A.B.; Brom, T.H. A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data. arXiv 2012, arXiv:1203.4802. [Google Scholar]
- Nip, K.M.; Chiu, R.; Yang, C.; Chu, J.; Mohamadi, H.; Warren, R.L.; Birol, I. RNA-Bloom Enables Reference-Free and Reference-Guided Sequence Assembly for Single-Cell Transcriptomes. Genome Res. 2020, 30, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Botvinnik, O.B.; Vemuri, V.N.P.; Tessa Pierce, N.; Logan, P.A.; Nafees, S.; Karanam, L.; Travaglini, K.J.; Ezran, C.S.; Ren, L.; Juang, Y.; et al. Single-Cell Transcriptomics for the 99.9% of Species without Reference Genomes. bioRxiv 2021, 2021.07.09.450799. [Google Scholar]
- Vitak, S.A.; Torkenczy, K.A.; Rosenkrantz, J.L.; Fields, A.J.; Christiansen, L.; Wong, M.H.; Carbone, L.; Steemers, F.J.; Adey, A. Sequencing Thousands of Single-Cell Genomes with Combinatorial Indexing. Nat. Methods 2017, 14, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, A.B.; Roco, C.M.; Muscat, R.A.; Kuchina, A.; Sample, P.; Yao, Z.; Graybuck, L.T.; Peeler, D.J.; Mukherjee, S.; Chen, W.; et al. Single-Cell Profiling of the Developing Mouse Brain and Spinal Cord with Split-Pool Barcoding. Science 2018, 360, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Adiconis, X.; Simmons, S.K.; Kowalczyk, M.S.; Hession, C.C.; Marjanovic, N.D.; Hughes, T.K.; Wadsworth, M.H.; Burks, T.; Nguyen, L.T.; et al. Systematic Comparison of Single-Cell and Single-Nucleus RNA-Sequencing Methods. Nat. Biotechnol. 2020, 38, 737–746. [Google Scholar] [CrossRef]
- Brauner, J.; Al Rawashdeh, W.; Bosio, A.; Hardt, O.T. Abstract 1592: A Complete Workflow for the Isolation of Tumor-Infiltrating Leukocytes from Human Tumors and Humanized Mouse Models. Cancer Res. 2020, 80, 1592. [Google Scholar]
- van den Brink, S.C.; Sage, F.; Vértesy, Á.; Spanjaard, B.; Peterson-Maduro, J.; Baron, C.S.; Robin, C.; van Oudenaarden, A. Single-Cell Sequencing Reveals Dissociation-Induced Gene Expression in Tissue Subpopulations. Nat. Methods 2017, 14, 935–936. [Google Scholar] [CrossRef]
- Wu, A.R.; Wang, J.; Streets, A.M.; Huang, Y. Single-Cell Transcriptional Analysis. Annu. Rev. Anal. Chem. 2017, 10, 439–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adam, M.; Potter, A.S.; Potter, S.S. Psychrophilic Proteases Dramatically Reduce Single-Cell RNA-Seq Artifacts: A Molecular Atlas of Kidney Development. Development 2017, 144, 3625–3632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira Braga, F.A.; Miragaia, R.J. Tissue Handling and Dissociation for Single-Cell RNA-Seq. Methods Mol. Biol. 2019, 1979, 9–21. [Google Scholar]
- Lafzi, A.; Moutinho, C.; Picelli, S.; Heyn, H. Tutorial: Guidelines for the Experimental Design of Single-Cell RNA Sequencing Studies. Nat. Protoc. 2018, 13, 2742–2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabbi, A.; Riabowol, K. Rapid Isolation of Nuclei from Cells In Vitro. Cold Spring Harb. Protoc. 2015, 2015, 769–772. [Google Scholar] [CrossRef] [Green Version]
- Nabbi, A.; Riabowol, K. Isolation of Pure Nuclei Using a Sucrose Method. Cold Spring Harb. Protoc. 2015, 2015, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.M.; Capitani, S.; Valmori, A.; Riederer, B.M.; Martelli, A.M. Different Concentrations of Mg++ Ions Affect Nuclear Matrix Protein Distribution During Thermal Stabilization of Isolated Nuclei. J. Histochem. Cytochem. 1997, 45, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Evrony, G.D.; Hinch, A.G.; Luo, C. Applications of Single-Cell DNA Sequencing. Annu. Rev. Genom. Hum. Genet. 2021, 22, 171–197. [Google Scholar] [CrossRef]
- Huang, L.; Ma, F.; Chapman, A.; Lu, S.; Xie, X.S. Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. Annu. Rev. Genomics Hum. Genet. 2015, 16, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Gawad, C.; Koh, W.; Quake, S.R. Single-Cell Genome Sequencing: Current State of the Science. Nat. Rev. Genet. 2016, 17, 175–188. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, L.; Milholland, B.; Lee, M.; Maslov, A.Y.; Wang, T.; Vijg, J. Accurate Identification of Single-Nucleotide Variants in Whole-Genome-Amplified Single Cells. Nat. Methods 2017, 14, 491–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappell, L.; Russell, A.J.C.; Voet, T. Single-Cell (Multi)omics Technologies. Annu. Rev. Genomics Hum. Genet. 2018, 19, 15–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xing, D.; Tan, L.; Li, H.; Zhou, G.; Huang, L.; Xie, X.S. Single-Cell Whole-Genome Analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 2017, 356, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.K.; Edge, P.; Lee, H.S.; Bansal, V.; Bafna, V.; Huang, X.; Zhang, K. Ultraaccurate Genome Sequencing and Haplotyping of Single Human Cells. Proc. Natl. Acad. Sci. USA 2017, 114, 12512–12517. [Google Scholar] [CrossRef] [Green Version]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, A.M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D.A.; Kirschner, M.W. Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells. Cell 2015, 161, 1187–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashton, J.M.; Rehrauer, H.; Myers, J.; Myers, J.; Zanche, M.; Balys, M.; Foox, J.; Mason, C.E.; Steen, R.; Kuentzel, M.; et al. Comparative Analysis of Single-Cell RNA Sequencing Platforms and Methods. bioRxiv 2020, 2020.07.20.212100. [Google Scholar] [CrossRef]
- Southard-Smith, A.N.; Simmons, A.J.; Chen, B.; Jones, A.L.; Ramirez Solano, M.A.; Vega, P.N.; Scurrah, C.R.; Zhao, Y.; Brenan, M.J.; Xuan, J.; et al. Dual Indexed Library Design Enables Compatibility of in-Drop Single-Cell RNA-Sequencing with exAMP Chemistry Sequencing Platforms. BMC Genom. 2020, 21, 456. [Google Scholar] [CrossRef]
- Kitzman, J.O. Haplotypes Drop by Drop. Nat. Biotechnol. 2016, 34, 296–298. [Google Scholar] [CrossRef]
- Picelli, S.; Faridani, O.R.; Björklund, A.K.; Winberg, G.; Sagasser, S.; Sandberg, R. Full-Length RNA-Seq from Single Cells Using Smart-seq2. Nat. Protoc. 2014, 9, 171–181. [Google Scholar] [CrossRef]
- Hashimshony, T.; Senderovich, N.; Avital, G.; Klochendler, A.; de Leeuw, Y.; Anavy, L.; Gennert, D.; Li, S.; Livak, K.J.; Rozenblatt-Rosen, O.; et al. CEL-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-Seq. Genome Biol. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aicher, T.P.; Carroll, S.; Raddi, G.; Gierahn, T.; Wadsworth, M.H., 2nd; Hughes, T.K.; Love, C.; Shalek, A.K. Seq-Well: A Sample-Efficient, Portable Picowell Platform for Massively Parallel Single-Cell RNA Sequencing. Methods Mol. Biol. 2019, 1979, 111–132. [Google Scholar] [PubMed]
- Gierahn, T.M.; Wadsworth, M.H., 2nd; Hughes, T.K.; Bryson, B.D.; Butler, A.; Satija, R.; Fortune, S.; Love, J.C.; Shalek, A.K. Seq-Well: Portable, Low-Cost RNA Sequencing of Single Cells at High Throughput. Nat. Methods 2017, 14, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.A.; Angerer, P.; Theis, F.J. SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis. Genome Biol. 2018, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial Reconstruction of Single-Cell Gene Expression Data. Nat. Biotechnol. 2015, 33, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated Analysis of Multimodal Single-Cell Data. Cell 2021, 184, 3573–3587.e29. [Google Scholar] [CrossRef]
- Elosua-Bayes, M.; Nieto, P.; Mereu, E.; Gut, I.; Heyn, H. SPOTlight: Seeded NMF Regression to Deconvolute Spatial Transcriptomics Spots with Single-Cell Transcriptomes. Nucleic Acids Res. 2021, 49, e50. [Google Scholar] [CrossRef]
- Poirion, O.B.; Zhu, X.; Ching, T.; Garmire, L. Single-Cell Transcriptomics Bioinformatics and Computational Challenges. Front. Genet. 2016, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Lytal, N.; Ran, D.; An, L. Normalization Methods on Single-Cell RNA-Seq Data: An Empirical Survey. Front. Genet. 2020, 11, 41. [Google Scholar] [CrossRef]
- Hou, W.; Ji, Z.; Ji, H.; Hicks, S.C. A Systematic Evaluation of Single-Cell RNA-Sequencing Imputation Methods. Genome Biol. 2020, 21, 218. [Google Scholar] [CrossRef]
- Rostom, R.; Svensson, V.; Teichmann, S.A.; Kar, G. Computational Approaches for Interpreting scRNA-Seq Data. FEBS Lett. 2017, 591, 2213–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duò, A.; Robinson, M.D.; Soneson, C. A Systematic Performance Evaluation of Clustering Methods for Single-Cell RNA-Seq Data. F1000Research 2018, 7, 1141. [Google Scholar] [CrossRef]
- Wang, T.; Li, B.; Nelson, C.E.; Nabavi, S. Comparative Analysis of Differential Gene Expression Analysis Tools for Single-Cell RNA Sequencing Data. BMC Bioinform. 2019, 20, 40. [Google Scholar] [CrossRef] [Green Version]
- Geirsdottir, L.; David, E.; Keren-Shaul, H.; Weiner, A.; Bohlen, S.C.; Neuber, J.; Balic, A.; Giladi, A.; Sheban, F.; Dutertre, C.-A.; et al. Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program. Cell 2019, 179, 1609–1622.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sun, H.; Jiang, M.; Li, J.; Zhang, P.; Chen, H.; Mei, Y.; Fei, L.; Lai, S.; Han, X.; et al. Tracing Cell-Type Evolution by Cross-Species Comparison of Cell Atlases. Cell Rep. 2021, 34, 108803. [Google Scholar] [CrossRef]
- Tarashansky, A.J.; Musser, J.M.; Khariton, M.; Li, P.; Arendt, D.; Quake, S.R.; Wang, B. Mapping Single-Cell Atlases throughout Metazoa Unravels Cell Type Evolution. Elife 2021, 10, e66747. [Google Scholar] [CrossRef]
- Schield, D.R.; Card, D.C.; Hales, N.R.; Perry, B.W.; Pasquesi, G.M.; Blackmon, H.; Adams, R.H.; Corbin, A.B.; Smith, C.F.; Ramesh, B.; et al. The Origins and Evolution of Chromosomes, Dosage Compensation, and Mechanisms Underlying Venom Regulation in Snakes. Genome Res. 2019, 29, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Walters, J.R. Evolution of Sex Chromosome Dosage Compensation in Animals: A Beautiful Theory, Undermined by Facts and Bedeviled by Details. Genome Biol. Evol. 2017, 9, 2461–2476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranz, J.M.; González, P.M.; Clifton, B.D.; Nazario-Yepiz, N.O.; Hernández-Cervantes, P.L.; Palma-Martínez, M.J.; Valdivia, D.I.; Jiménez-Kaufman, A.; Lu, M.M.; Markow, T.A.; et al. A de Novo Transcriptional Atlas in Danaus Plexippus Reveals Variability in Dosage Compensation across Tissues. Commun. Biol. 2021, 4, 791. [Google Scholar] [CrossRef]
- Turner, J.M.A. Meiotic Sex Chromosome Inactivation. Development 2007, 134, 1823–1831. [Google Scholar] [CrossRef] [Green Version]
- Namekawa, S.H.; Lee, J.T. XY and ZW: Is Meiotic Sex Chromosome Inactivation the Rule in Evolution? PLoS Genet. 2009, 5, e1000493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witt, E.; Shao, Z.; Hu, C.; Krause, H.M.; Zhao, L. Single-Cell RNA-Sequencing Reveals Pre-Meiotic X-Chromosome Dosage Compensation in Drosophila Testis. PLoS Genet. 2021, 17, e1009728. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Liu, X.J. Oocyte Isolation and Enucleation. Methods Mol. Biol. 2006, 322, 31–41. [Google Scholar]
- Honda, A.; Hirose, M.; Hara, K.; Matoba, S.; Inoue, K.; Miki, H.; Hiura, H.; Kanatsu-Shinohara, M.; Kanai, Y.; Kono, T.; et al. Isolation, Characterization, and in Vitro and in Vivo Differentiation of Putative Thecal Stem Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12389–12394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La, H.; Yoo, H.; Lee, E.J.; Thang, N.X.; Choi, H.J.; Oh, J.; Park, J.H.; Hong, K. Insights from the Applications of Single-Cell Transcriptomic Analysis in Germ Cell Development and Reproductive Medicine. Int. J. Mol. Sci. 2021, 22, 823. [Google Scholar] [CrossRef]
- Guo, J.; Grow, E.J.; Mlcochova, H.; Maher, G.J.; Lindskog, C.; Nie, X.; Guo, Y.; Takei, Y.; Yun, J.; Cai, L.; et al. The Adult Human Testis Transcriptional Cell Atlas. Cell Res. 2018, 28, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Vento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.-E.; Stephenson, E.; Polański, K.; Goncalves, A.; et al. Single-Cell Reconstruction of the Early Maternal-Fetal Interface in Humans. Nature 2018, 563, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabula Sapiens: An Atlas of Single-Cell Gene Expression. Am. J. Med. Genet. A 2021, 185, 2857–2858. [CrossRef]
- Yamagata, M. Towards Tabula Gallus. Int. J. Mol. Sci. 2022, 23, 613. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, J.M.; Wang, G.; Jonika, M.M.; Gill, C.A.; Blackmon, H.; Athrey, G.N. A Primer for Single-Cell Sequencing in Non-Model Organisms. Genes 2022, 13, 380. https://doi.org/10.3390/genes13020380
Alfieri JM, Wang G, Jonika MM, Gill CA, Blackmon H, Athrey GN. A Primer for Single-Cell Sequencing in Non-Model Organisms. Genes. 2022; 13(2):380. https://doi.org/10.3390/genes13020380
Chicago/Turabian StyleAlfieri, James M., Guosong Wang, Michelle M. Jonika, Clare A. Gill, Heath Blackmon, and Giridhar N. Athrey. 2022. "A Primer for Single-Cell Sequencing in Non-Model Organisms" Genes 13, no. 2: 380. https://doi.org/10.3390/genes13020380
APA StyleAlfieri, J. M., Wang, G., Jonika, M. M., Gill, C. A., Blackmon, H., & Athrey, G. N. (2022). A Primer for Single-Cell Sequencing in Non-Model Organisms. Genes, 13(2), 380. https://doi.org/10.3390/genes13020380