Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives
Abstract
1. Background
2. Classification of Syndactyly
3. Variable Phenotypic Features of Non-Syndromic Syndactyly Types
4. Genetic Factors Underlying the Differential Phenotypes of Syndactyly
5. Some Excluded Types of Syndactyly and Underlying Genetic Factors
6. HOXD13 and Its Role in Causing Syndactyly
| Mutation Type | cDNA Change | AA Change | NCBI Ref. Sequence | Allele | Phenotype | Ref. |
|---|---|---|---|---|---|---|
| Missense | c.917G>A | p.R306Q | NM_000523.4 | Heterozygous | SD1-c | [13] |
| Missense | c.500A>G | p.Y167C | NM_000523.4 | Heterozygous | SD1-b | [42] |
| Missense | c.961A>C | p.T321P | NM_000523.4 | Heterozygous | SD1-c | [42] |
| Missense | c.917G>A | p.R306Q | NM_000523.3 | Heterozygous | SD1-c | [43] |
| Duplication | c.183_206dup | p.A64_A71dup | NM_000523.3 | Heterozygous | SPD1 | [82] |
| Duplication | c.184_210dup | p.A63_A71dup | NM_000523.3 | Heterozygous | SPD1 | [80] |
| Duplication | c.183_206dup | p.A64_A71dup | NM_000523.4 | Heterozygous | SPD1 | [90] |
| Duplication | c.186-212dup | p.A63_A71dup | NM_000523.4 | Heterozygous | SPD1 | [91] |
| Missense | c.859C>T | p.G287X | NM_000523.3 | Heterozygous | SPD1 | [83] |
| Missense | c.556C>T | p.R186X | NM_000523.4 | Heterozygous | SPD1 | [84] |
| Missense | c.938C>G | p.T313R | NM_000523.4 | Homozygous | SPD1 | [85] |
| Missense | c.892C>T | p.R298W | NM_000523.2 | Heterozygous | SPD1 | [45] |
| Missense | c.659G>T | p.G220V | NM_000523.2 | Heterozygous | SPD1 | [81] |
| Missense | c.938C>G | p.T313R | NM_000523.3 | Homozygous | SPD1 | [86] |
| Missense | c.893G>A | p.A298G | NM_000523.3 | Heterozygous | SPD1 | [44] |
| Deletion | c.708delC | p.A236Lfs*30 | NM_000523.4 | Heterozygous | SPD1 | [92] |
| Missense | c.925A>T | p.I309F | NM_000523.4 | Heterozygous | SPD1 | [88] |
| Splice donor site | c.781+1G>A | - | NC_000002.12 NM_000523.3 | Heterozygous | SPD1 | [93] |
| Missense | c.950A>G | p.Q317R | NM_000523.3 | Heterozygous | SD5 | [27] |
7. Diagnosis and Surgical Treatment of Syndactyly
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, S. Incidence of selected congenital malformations in Iowa. Am. J. Epidemiol. 1971, 94, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Castilla, E.E.; Paz, J.E.; Orioli-Parreiras, I.M. Syndactyly: Frequency of specific types. Am. J. Med. Genet. 1980, 5, 357–364. [Google Scholar] [CrossRef]
- Jordan, D.; Hindocha, S.; Dhital, M.; Saleh, M.; Khan, W. The epidemiology, genetics and future management of syndactyly. Open Orthop. J. 2012, 6, 14–27. [Google Scholar] [CrossRef]
- Malik, S.; Schott, J.; Ali, S.W.; Oeffner, F.; Amin-ud-Din, M.; Ahmad, W.; Grzeschik, K.H.; Koch, M.C. Evidence for clinical and genetic heterogeneity of syndactyly type I: The phenotype of second and third toe syndactyly maps to chromosome 3p21.31. Eur. J. Hum. Genet. 2005, 13, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Giele, H.; Giele, C.; Bower, C.; Allison, M. The incidence and epidemiology of congenital upper limb anomalies: A total population study. J. Hand Surg. Am. 2001, 26, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Yabe, K.; Kimura, Y.; Ito, Y.; Rokukawa, M.; Furukawa, M.; Ito, K.; Matsuura, M.; Kiguchi, M. Syndactyly lethal: New mutation with multiple malformations occurring in Sprague Dawley rats. Congenit. Anom. 2009, 49, 262–268. [Google Scholar] [CrossRef]
- Temtamy, S.A.; McKusick, V.A. The genetics of hand malformations. Birth Defects Orig. Artic. Ser. 1978, 14, 1–619. [Google Scholar]
- Malik, S. Syndactyly: Phenotypes, genetics and current classification. Eur. J. Hum. Genet. 2012, 20, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Sobreira, N.L.; Cernach, M.C.; Brunoni, D.; Perez, A.B. Complex toe syndactyly with characteristic facial phenotype: A new syndrome? Am. J. Med. Genet. A 2008, 146A, 1725–1728. [Google Scholar] [CrossRef]
- Al-Qattan, M.M.; Shamseldin, H.E.; Al Mazyad, M.; Al Deghaither, S.; Alkuraya, F.S. Genetic heterogeneity in type III familial cutaneous syndactyly and linkage to chromosome 7q36. Am. J. Med. Genet. A 2013, 161A, 1579–1584. [Google Scholar] [CrossRef]
- Andersen, H.J.; Hansen, A.K. Tibial hypo-/aplasia with preaxial syn- and polydactyly. Arch. Orthop. Trauma Surg. 1990, 109, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Bosse, K.; Betz, R.C.; Lee, Y.A.; Wienker, T.F.; Reis, A.; Kleen, H.; Propping, P.; Cichon, S.; Nothen, M.M. Localization of a gene for syndactyly type 1 to chromosome 2q34-q36. Am. J. Hum. Genet. 2000, 67, 492–497. [Google Scholar] [CrossRef][Green Version]
- Dai, L.; Liu, D.; Song, M.; Xu, X.; Xiong, G.; Yang, K.; Zhang, K.; Meng, H.; Guo, H.; Bai, Y. Mutations in the homeodomain of HOXD13 cause syndactyly type 1-c in two Chinese families. PLoS ONE 2014, 9, e96192. [Google Scholar] [CrossRef]
- Akarsu, A.N.; Stoilov, I.; Yilmaz, E.; Sayli, B.S.; Sarfarazi, M. Genomic structure of HOXD13 gene: A nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum. Mol. Genet. 1996, 5, 945–952. [Google Scholar] [CrossRef]
- Malik, S.; Grzeschik, K.H. Synpolydactyly: Clinical and molecular advances. Clin. Genet. 2008, 73, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Sarfarazi, M.; Akarsu, A.N.; Sayli, B.S. Localization of the syndactyly type II (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker. Hum. Mol. Genet. 1995, 4, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- Muragaki, Y.; Mundlos, S.; Upton, J.; Olsen, B.R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996, 272, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Schoenmakers, E.F.; Thoelen, R.; Holvoet, M.; Kuittinen, T.; Fabry, G.; Fryns, J.P.; Goodman, F.R.; Van de Ven, W.J. Physical map of a 1.5 mb region on 12p11.2 harbouring a synpolydactyly associated chromosomal breakpoint. Eur. J. Hum. Genet. 2000, 8, 561–570. [Google Scholar] [CrossRef][Green Version]
- Malik, S.; Abbasi, A.A.; Ansar, M.; Ahmad, W.; Koch, M.C.; Grzeschik, K.H. Genetic heterogeneity of synpolydactyly: A novel locus SPD3 maps to chromosome 14q11.2-q12. Clin. Genet. 2006, 69, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, F.; Della Monica, M.; Riccardi, G.; Riccio, I.; Riccio, V.; Scarano, G. A family with X-linked recessive fusion of metacarpals IV and V. Am. J. Med. Genet. A 2004, 124A, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, A.; Donnai, D.; Metcalfe, K.; Schrander-Stumpel, C.; Brueton, L.; Verloes, A.; Aylsworth, A.; Toriello, H.; Winter, R.; Dixon, M. Localization of a gene for oculodentodigital syndrome to human chromosome 6q22-q24. Hum. Mol. Genet. 1997, 6, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.; Pawlik, B.; Li, Y.; Akarsu, N.A.; Caliebe, A.; May, K.J.; Schweiger, B.; Vargas, F.R.; Balci, S.; Gillessen-Kaesbach, G.; et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum. Mutat. 2010, 31, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Samson, P.; Salazard, B. Syndactyly. Chir. Main 2008, 27 (Suppl. 1), S100–S114. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Guo, H.; Meng, H.; Zhang, K.; Hu, H.; Yao, H.; Bai, Y. Confirmation of genetic homogeneity of syndactyly type IV and triphalangeal thumb-polysyndactyly syndrome in a Chinese family and review of the literature. Eur. J. Pediatr. 2013, 172, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Lohan, S.; Spielmann, M.; Doelken, S.C.; Flottmann, R.; Muhammad, F.; Baig, S.M.; Wajid, M.; Hulsemann, W.; Habenicht, R.; Kjaer, K.W.; et al. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin. Genet. 2014, 86, 318–325. [Google Scholar] [CrossRef]
- Robinow, M.; Johnson, G.F.; Broock, G.J. Syndactyly type V. Am. J. Med. Genet. 1982, 11, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, M.; Zhao, J.; Leyva, J.A.; Zhu, H.; Yang, W.; Zeng, X.; Ao, Y.; Liu, Q.; Liu, G.; et al. Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am. J. Hum. Genet. 2007, 80, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.N.; Klar, J.; Ali, Z.; Khan, F.; Baig, S.M.; Dahl, N. Cenani-Lenz syndrome restricted to limb and kidney anomalies associated with a novel LRP4 missense mutation. Eur. J. Med. Genet. 2013, 56, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pawlik, B.; Elcioglu, N.; Aglan, M.; Kayserili, H.; Yigit, G.; Percin, F.; Goodman, F.; Nurnberg, G.; Cenani, A.; et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am. J. Hum. Genet. 2010, 86, 696–706. [Google Scholar] [CrossRef]
- Dimitrov, B.I.; Voet, T.; De Smet, L.; Vermeesch, J.R.; Devriendt, K.; Fryns, J.P.; Debeer, P. Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactyly. J. Med. Genet. 2010, 47, 569–574. [Google Scholar] [CrossRef]
- Percin, E.F.; Percin, S.; Egilmez, H.; Sezgin, I.; Ozbas, F.; Akarsu, A.N. Mesoaxial complete syndactyly and synostosis with hypoplastic thumbs: An unusual combination or homozygous expression of syndactyly type I? J. Med. Genet. 1998, 35, 868–874. [Google Scholar] [CrossRef][Green Version]
- Malik, S.; Percin, F.E.; Ahmad, W.; Percin, S.; Akarsu, N.A.; Koch, M.C.; Grzeschik, K.H. Autosomal recessive mesoaxial synostotic syndactyly with phalangeal reduction maps to chromosome 17p13.3. Am. J. Med. Genet. A 2005, 134, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Wang, R.; Han, S.; Ahmad, W.; Zhang, X. A novel homozygous missense mutation in BHLHA9 causes mesoaxial synostotic syndactyly with phalangeal reduction in a Pakistani family. Hum. Genome Var. 2017, 4, 17054. [Google Scholar] [CrossRef] [PubMed]
- Deunk, J.; Nicolai, J.P.; Hamburg, S.M. Long-term results of syndactyly correction: Full-thickness versus split-thickness skin grafts. J. Hand Surg. Br. 2003, 28, 125–130. [Google Scholar] [CrossRef]
- Hsu, C.K. Hereditary syndactylia in a Chinese family. Chin. Med. J. 1965, 84, 482–485. [Google Scholar]
- Cross, H.E.; Lerberg, D.B.; McKusick, V.A. Type II syndactyly. Am. J. Hum. Genet. 1968, 20, 368–380. [Google Scholar]
- Malik, S.; Girisha, K.M.; Wajid, M.; Roy, A.K.; Phadke, S.R.; Haque, S.; Ahmad, W.; Koch, M.C.; Grzeschik, K.H. Synpolydactyly and HOXD13 polyalanine repeat: Addition of 2 alanine residues is without clinical consequences. BMC Med. Genet. 2007, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Cenani, A.; Lenz, W. Total syndactylia and total radioulnar synostosis in 2 brothers. A contribution on the genetics of syndactylia. Z. Kinderheilkd. 1967, 101, 181–190. [Google Scholar] [CrossRef]
- Harpf, C.; Pavelka, M.; Hussl, H. A variant of Cenani-Lenz syndactyly (CLS): Review of the literature and attempt of classification. Br. J. Plast. Surg. 2005, 58, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Philip-Sarles, N. Genetics of congenital hand malformations. Chir. Main 2008, 27 (Suppl. 1), S7–S20. [Google Scholar] [CrossRef] [PubMed]
- Ghadami, M.; Majidzadeh, A.K.; Haerian, B.S.; Damavandi, E.; Yamada, K.; Pasallar, P.; Najafi, M.T.; Nishimura, G.; Tomita, H.A.; Yoshiura, K.I.; et al. Confirmation of genetic homogeneity of syndactyly type 1 in an Iranian family. Am. J. Med. Genet. 2001, 104, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Singh, S.K.; Bhattacharya, V.; Ali, A. Novel HOXD13 variants in syndactyly type 1b and type 1c, and a new spectrum of TP63-related disorders. J. Hum. Genet. 2022, 67, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Tan, T.; He, Q.; Lin, Q.; Yang, Z.; Zhu, A.; Guan, L.; Xiao, J.; Song, Z.; Guo, Y. Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing. Mol. Med. Rep. 2017, 16, 473–477. [Google Scholar] [CrossRef]
- Wang, B.; Xu, B.; Cheng, Z.; Zhou, X.; Wang, J.; Yang, G.; Cheng, L.; Yang, J.; Ma, X. A novel non-synonymous mutation in the homeodomain of HOXD13 causes synpolydactyly in a Chinese family. Clin. Chim. Acta 2012, 413, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Bacchelli, C.; Scambler, P.J.; De Smet, L.; Fryns, J.P.; Goodman, F.R. Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13. J. Med. Genet. 2002, 39, 852–856. [Google Scholar] [CrossRef]
- Du, Y.; Chen, F.; Zhang, J.; Lin, Z.; Ma, Q.; Xu, G.; Xiao, D.; Gui, Y.; Yang, J.; Wan, S. A rare TTC30B variant is identified as a candidate for synpolydactyly in a Chinese pedigree. Bone 2019, 127, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Schoenmakers, E.F.; Twal, W.O.; Argraves, W.S.; De Smet, L.; Fryns, J.P.; Van De Ven, W.J. The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J. Med. Genet. 2002, 39, 98–104. [Google Scholar] [CrossRef]
- Nishat, S.; Mansoor, Q.; Javaid, A.; Ismail, M. Oculodentodigital Syndrome with Syndactyly Type III in a Pakistani consanguineous family. J. Dermatol. Case Rep. 2012, 6, 43–48. [Google Scholar] [CrossRef][Green Version]
- Schrander-Stumpel, C.T.; De Groot-Wijnands, J.B.; De Die-Smulders, C.; Fryns, J.P. Type III syndactyly and oculodentodigital dysplasia: A clinical spectrum. Genet. Couns. 1993, 4, 271–276. [Google Scholar]
- Xu, J.; Wu, J.; Teng, X.; Cai, L.; Yuan, H.; Chen, X.; Hu, M.; Wang, X.; Jiang, N.; Chen, H. Large duplication in LMBR1 gene in a large Chinese pedigree with triphalangeal thumb polysyndactyly syndrome. Am. J. Med. Genet. A 2020, 182, 2117–2123. [Google Scholar] [CrossRef]
- Shi, L.; Huang, H.; Jiang, Q.; Huang, R.; Fu, W.; Mao, L.; Wei, X.; Cui, H.; Lin, K.; Cai, L.; et al. Sub-Exome Target Sequencing in a Family With Syndactyly Type IV Due to a Novel Partial Duplication of the LMBR1 Gene: First Case Report in Fujian Province of China. Front. Genet. 2020, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Steel, E.; Hurst, J.A.; Cullup, T.; Calder, A.; Sivakumar, B.; Shah, P.; Wilson, L.C. Cenani-Lenz syndactyly in siblings with a novel homozygous LRP4 mutation and recurrent hypoglycaemia. Clin. Dysmorphol. 2020, 29, 73–80. [Google Scholar] [CrossRef]
- Afzal, M.; Zaman, Q.; Kornak, U.; Mundlos, S.; Malik, S.; Flottmann, R. Novel splice mutation in LRP4 causes severe type of Cenani-Lenz syndactyly syndrome with oro-facial and skeletal symptoms. Eur. J. Med. Genet. 2017, 60, 421–425. [Google Scholar] [CrossRef]
- Alrayes, N.; Aziz, A.; Ullah, F.; Ishfaq, M.; Jelani, M.; Wali, A. Novel missense alteration in LRP4 gene underlies Cenani-Lenz syndactyly syndrome in a consanguineous family. J. Gene Med. 2020, 22, e3143. [Google Scholar] [CrossRef] [PubMed]
- Hettiaracchchi, D.; Bonnard, C.; Jayawardana, S.M.A.; Ng, A.Y.J.; Tohari, S.; Venkatesh, B.; Reversade, B.; Singaraja, R.; Dissanayake, V.H.W. Cenani-Lenz syndactyly syndrome—A case report of a family with isolated syndactyly. BMC Med. Genet. 2018, 19, 125. [Google Scholar] [CrossRef]
- Jamsheer, A.; Zemojtel, T.; Kolanczyk, M.; Stricker, S.; Hecht, J.; Krawitz, P.; Doelken, S.C.; Glazar, R.; Socha, M.; Mundlos, S. Whole exome sequencing identifies FGF16 nonsense mutations as the cause of X-linked recessive metacarpal 4/5 fusion. J. Med. Genet. 2013, 50, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Sedighzadeh, S.S.; Sedaghat, A.; Zamani, M.; Seifi, T.; Shariati, G.; Zeighami, J.; Mazaheri, N.; Galehdari, H. Whole exome sequencing identified a novel frameshift variant in the BHLHA9 in an Iranian family with mesoaxial synostotic syndactyly. Congenit. Anom. 2021, 61, 220–225. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, R.H.; Majeed, A.I.; Liaqat, K.; Shah, P.W.; Khan, B.; Bilal, M.; Umair, M.; Ahmad, W. A novel insertion and deletion mutation in the BHLHA9 underlies polydactyly and mesoaxial synostotic syndactyly with phalangeal reduction. Eur. J. Med. Genet. 2019, 62, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M.; Alkuraya, F.S. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am. J. Med. Genet. A 2019, 179, 266–279. [Google Scholar] [CrossRef]
- Bohlega, S.; Al-Ajlan, H.; Al-Saif, A. Mutation of fibulin-1 causes a novel syndrome involving the central nervous system and connective tissues. Eur. J. Hum. Genet. 2014, 22, 640–643. [Google Scholar] [CrossRef]
- Sun, M.; Ma, F.; Zeng, X.; Liu, Q.; Zhao, X.L.; Wu, F.X.; Wu, G.P.; Zhang, Z.F.; Gu, B.; Zhao, Y.F.; et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J. Med. Genet. 2008, 45, 589–595. [Google Scholar] [CrossRef]
- Al-Qattan, M.M. A novel frameshift mutation of the GLI3 gene in a family with broad thumbs with/without big toes, postaxial polydactyly and variable syndactyly of the hands/feet. Clin. Genet. 2012, 82, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Li, X.; Zhan, Z.; Feng, J.; Cai, H.; Li, Y.; Fu, Q.; Xu, Y.; Jiang, H.; Zhang, X. A Novel Nonsense GLI3 Variant Is Associated With Polydactyly and Syndactyly in a Family by Blocking the Sonic Hedgehog Signaling Pathway. Front. Genet. 2020, 11, 542004. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, D.; Panchal, H.; Lai, P.S.; Dissanayake, V.H.W. Novel variant in NSDHL gene associated with CHILD syndrome and syndactyly- a case report. BMC Med. Genet. 2020, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, Y.; Ueda, K.; Nuri, T.; Satoh, C.; Maekawa, R.; Yoshiura, K.I. EEC-LM-ADULT syndrome caused by R319H mutation in TP63 with ectrodactyly, syndactyly, and teeth anomaly: A case report. Medicine 2020, 99, e22816. [Google Scholar] [CrossRef] [PubMed]
- Sutton, V.R.; van Bokhoven, H. TP63-Related Disorders. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Roelandt, M.A.; Devriendt, K.; de Llano-Perula, M.C.; Raes, M.; Willems, G.; Verdonck, A. Dental and Craniofacial Characteristics in Patients With 14Q22.1-Q22.2 Deletion: A Case Series. Cleft Palate Craniofacial J. 2021, 58, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Chen, Y.; Li, S.; Ren, L.; Zhang, J.; Sun, H.; Dong, J.; Zhao, X. Clinical characterization and outcome of prolonged heart rate-corrected QT interval among children with syndactyly. Medicine 2020, 99, e22740. [Google Scholar] [CrossRef]
- Ngoc, N.T.; Duong, N.T.; Quynh, D.H.; Ton, N.D.; Duc, H.H.; Huong, L.T.M.; Anh, L.T.L.; Hai, N.V. Identification of novel missense mutations associated with non-syndromic syndactyly in two vietnamese trios by whole exome sequencing. Clin. Chim. Acta 2020, 506, 16–21. [Google Scholar] [CrossRef]
- Sukenik Halevy, R.; Chien, H.C.; Heinz, B.; Bamshad, M.J.; Nickerson, D.A.; University of Washington Center for Mendelian Genomics; Kircher, M.; Ahituv, N. Mutations in the fourth beta-propeller domain of LRP4 are associated with isolated syndactyly with fusion of the third and fourth fingers. Hum. Mutat. 2018, 39, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Buyukdogan, H. A Case of Nonsyndromic Unilateral Cleft Hand with Central Polydactyly, Syndactyly, and Thumb Hypoplasia: Support for a Common Etiology. J. Hand Microsurg. 2019, 11, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M. Central and ulnar cleft hands: A review of concurrent deformities in a series of 47 patients and their pathogenesis. J. Hand Surg. 2014, 39, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Tian, Z.; Zheng, J.; Zhi, X.; Du, X.; Shu, J.; Cai, C. A novel missense in GLI3 possibly affecting one of the zinc finger domains may lead to postaxial synpolydactyly: Case report. BMC Med. Genet. 2019, 20, 174. [Google Scholar] [CrossRef]
- Paznekas, W.A.; Boyadjiev, S.A.; Shapiro, R.E.; Daniels, O.; Wollnik, B.; Keegan, C.E.; Innis, J.W.; Dinulos, M.B.; Christian, C.; Hannibal, M.C.; et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 2003, 72, 408–418. [Google Scholar] [CrossRef] [PubMed]
- McConville, D.O.; Archbold, G.P.; Lewis, A.; Morrison, P.J. Zygodactyly (Syndactyly Type A1) Associated With Midfoot Charcot Neuropathy and Diabetes. Diabetes Care 2018, 41, e74–e75. [Google Scholar] [CrossRef]
- Carroll, S.B. Homeotic genes and the evolution of arthropods and chordates. Nature 1995, 376, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Quinonez, S.C.; Innis, J.W. Human HOX gene disorders. Mol. Genet. Metab. 2014, 111, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Barcelo, M.M.; Wong, K.K.; Lui, V.C.; Yuan, Z.W.; So, M.T.; Ngan, E.S.; Miao, X.P.; Chung, P.H.; Khong, P.L.; Tam, P.K. Identification of a HOXD13 mutation in a VACTERL patient. Am. J. Med. Genet. A 2008, 146A, 3181–3185. [Google Scholar] [CrossRef]
- Kjaer, K.W.; Hansen, L.; Eiberg, H.; Utkus, A.; Skovgaard, L.T.; Leicht, P.; Opitz, J.M.; Tommerup, N. A 72-year-old Danish puzzle resolved--comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions. Am. J. Med. Genet. A 2005, 138, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lin, P.F.; Wang, Q.M.; Mao, F.; Cai, Y.; Gong, Y.Q. Synpolydactyly in a Chinese kindred: Mutation detection, prenatal ultrasonographic and molecular diagnosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2011, 28, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Fantini, S.; Vaccari, G.; Brison, N.; Debeer, P.; Tylzanowski, P.; Zappavigna, V. A G220V substitution within the N-terminal transcription regulating domain of HOXD13 causes a variant synpolydactyly phenotype. Hum. Mol. Genet. 2009, 18, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Zaib, T.; Ji, W.; Saleem, K.; Nie, G.; Li, C.; Cao, L.; Xu, B.; Dong, K.; Yu, H.; Hao, X.; et al. A heterozygous duplication variant of the HOXD13 gene caused synpolydactyly type 1 with variable expressivity in a Chinese family. BMC Med. Genet. 2019, 20, 203. [Google Scholar] [CrossRef]
- Guo, X.; Shi, T.; Lin, M.; Zhang, Y. A Nonsense Mutation in HOXD13 Gene from A Chinese Family with Non-Syndromic Synpolydactyly. Tohoku J. Exp. Med. 2019, 249, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, N.; Geng, J.; Wang, Z.; Fu, Q.; Wang, J.; Xu, Y. Exome sequencing identifies a novel nonsense mutation of HOXD13 in a Chinese family with synpolydactyly. Congenit. Anom. 2017, 57, 4–7. [Google Scholar] [CrossRef]
- Ibrahim, D.M.; Tayebi, N.; Knaus, A.; Stiege, A.C.; Sahebzamani, A.; Hecht, J.; Mundlos, S.; Spielmann, M. A homozygous HOXD13 missense mutation causes a severe form of synpolydactyly with metacarpal to carpal transformation. Am. J. Med. Genet. A 2016, 170, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Kurban, M.; Wajid, M.; Petukhova, L.; Shimomura, Y.; Christiano, A.M. A nonsense mutation in the HOXD13 gene underlies synpolydactyly with incomplete penetrance. J. Hum. Genet. 2011, 56, 701–706. [Google Scholar] [CrossRef][Green Version]
- Al-Qattan, M.M. A Review of the Phenotype of Synpolydactyly Type 1 in Homozygous Patients: Defining the Relatively Long and Medially Deviated Big Toe with/without Cupping of the Forefoot as a Pathognomonic Feature in the Phenotype. Biomed. Res. Int. 2020, 2020, 2067186. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Fang, X.; Mao, H.; Sun, B.; Zhou, J.; An, Y.; Wang, B. A Novel Missense Variant of HOXD13 Caused Atypical Synpolydactyly by Impairing the Downstream Gene Expression and Literature Review for Genotype-Phenotype Correlations. Front. Genet. 2021, 12, 731278. [Google Scholar] [CrossRef] [PubMed]
- Salsi, V.; Zappavigna, V. Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J. Biol. Chem. 2006, 281, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Zu, B.; Wang, Z.; Xu, Y.; You, G.; Fu, Q. Nonframeshifting indel variations in polyalanine repeat of HOXD13 gene underlies hereditary limb malformation for two Chinese families. Dev. Dyn. 2021, 250, 1220–1228. [Google Scholar] [CrossRef]
- Gong, L.; Wang, B.; Wang, J.; Yu, H.; Ma, X.; Yang, J. Polyalanine repeat expansion mutation of the HOXD13 gene in a Chinese family with unusual clinical manifestations of synpolydactyly. Eur. J. Med. Genet. 2011, 54, 108–111. [Google Scholar] [CrossRef]
- Radhakrishnan, P.; Nayak, S.S.; Pai, M.V.; Shukla, A.; Girisha, K.M. Occurrence of Synpolydactyly and Omphalocele in a Fetus with a HOXD13 Mutation. J. Pediatr. Genet. 2017, 6, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ji, C.; Cao, L.; Wu, Y.; Shang, Y.; Wang, W.; Luo, Y. A splice donor site mutation in HOXD13 underlies synpolydactyly with cortical bone thinning. Gene 2013, 532, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.J.; Hansen, S.L.; Jones, N.F. Reconstruction of congenital differences of the hand. Plast. Reconstr. Surg. 2009, 124, 128e–143e. [Google Scholar] [CrossRef]
- Dao, K.D.; Shin, A.Y.; Billings, A.; Oberg, K.C.; Wood, V.E. Surgical treatment of congenital syndactyly of the hand. J. Am. Acad. Orthop. Surg. 2004, 12, 39–48. [Google Scholar] [CrossRef]
- Swarup, I.; Zhang, Y.; Do, H.; Daluiski, A. Epidemiology of syndactyly in New York State. World J. Orthop. 2019, 10, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Kvernmo, H.D.; Haugstvedt, J.R. Treatment of congenital syndactyly of the fingers. Tidsskr. Den Nor. Legeforening 2013, 133, 1591–1595. [Google Scholar] [CrossRef]
- Goldfarb, C.A.; Steffen, J.A.; Stutz, C.M. Complex syndactyly: Aesthetic and objective outcomes. J. Hand Surg. Am. 2012, 37, 2068–2073. [Google Scholar] [CrossRef]
- Little, K.J.; Cornwall, R. Congenital Anomalies of the Hand--Principles of Management. Orthop. Clin. N. Am. 2016, 47, 153–168. [Google Scholar] [CrossRef]
- Mandarano-Filho, L.G.; Bezuti, M.T.; Akita, R.; Mazzer, N.; Barbieri, C.H. Congenital syndactyly: Case by case analysis of 47 patients. Acta Ortopédica Bras. 2013, 21, 333–335. [Google Scholar] [CrossRef]
- Hikosaka, M.; Ogata, H.; Nakajima, T.; Kobayashi, H.; Hattori, N.; Onishi, F.; Tamada, I. Advantages of open treatment for syndactyly of the foot: Defining its indications. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2009, 43, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Gawlikowska-Sroka, A. Polydactyly and syndactyly as the most common congenital disorders of the limbs. Ann. Acad. Med. Stetin. 2008, 54, 130–133. [Google Scholar]
- Geoghegan, L.; Knowles, B.G.; Nikkhah, D. Syndactyly. J. Surg. Case Rep. 2020, 2020, rjaa517. [Google Scholar] [CrossRef]
- Senda, E.; Ueda, K.; Hirota, Y.; Mitsuno, D.; Nuri, T. Using Dermal Fat Graft to Release Complex Syndactyly: A New Method. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3068. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, J.; Song, B. The use of abdominal flaps for complex syndactyly release: A case series. J. Hand Surg. 2021, 46, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Sasaki, M.; Oshima, J.; Aihara, Y.; Sekido, M. Aesthetic reconstruction for syndactyly using the “gradation skin graft” from the plantar instep area. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 3371–3376. [Google Scholar] [CrossRef] [PubMed]
- Langlais, T.; Rougereau, G.; Marty-Diloy, T.; Bachy, M.; Barret, H.; Vialle, R.; Fitoussi, F. Surgical treatment in child’s congenital toe syndactyly: Risk factor of recurrence, complication and poor clinical outcomes. Foot Ankle Surg. 2022, 28, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.P.; Jones, N.F. Interdigitating Rectangular Flaps and Dorsal Pentagonal Island Flap for Syndactyly Release. J. Hand Surg. Am. 2019, 44, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, S.; Li, N.; Feng, Z.; Liu, Q. Dorsal Hexagon Local Flap Without Skin Graft for Web Reconstruction of Congenital Syndactyly. J. Hand Surg. Am. 2020, 45, 63.e61–63.e69. [Google Scholar] [CrossRef]
- Yuan, F.; Zhong, L.; Chung, K.C. Aesthetic Comparison of Two Different Types of Web-Space Reconstruction for Finger Syndactyly. Plast. Reconstr. Surg. 2018, 142, 963–971. [Google Scholar] [CrossRef]
- Tang, H.; Sun, G.; Qi, J.; Nie, K.; Jin, W.; Li, S.; Wei, Z.; Wang, D. Surgical Treatment of Congenital Type V Thumb Syndactyly. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2016, 30, 1127–1129. [Google Scholar] [CrossRef]
- Kong, B.Y.; Baek, G.H.; Gong, H.S. Treatment of keloid formation following syndactyly division: Surgical technique. Hand Surg. 2012, 17, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Chouairi, F.; Mercier, M.R.; Persing, J.S.; Gabrick, K.S.; Clune, J.; Alperovich, M. National Patterns in Surgical Management of Syndactyly: A Review of 956 Cases. Hand 2020, 15, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Escrig, A.; Gobernado, I.; Sanchez-Herranz, A. Whole genome sequencing: A qualitative leap forward in genetic studies. Rev. Neurol. 2012, 54, 692–698. [Google Scholar]




| Clinical Phenotype | Original Name | Major Symptoms | Locus/Gene | Mutation Type | Inheritance | References |
|---|---|---|---|---|---|---|
| Syndactyly I-a | Zygodactyly | Cutaneous webbing of 2nd and 3rd toes without the hand involvement | Chr.3p21.31 | - | AD* | [4,10,11] |
| Syndactyly I-b | Lueken type | Bilateral bony or cutaneous webbing of 3rd/4th fingers and 2nd/3rd toes | HOXD13 | Duplication, missense, and deletion | AD | [4,12] |
| Syndactyly I-c | Montagu type | Bilateral bony or cutaneous webbing of 3rd/4th fingers, with normal feet | HOXD13 | Duplication, missense, and deletion | AD | [4,13] |
| Syndactyly I-d | Castilla type | Bilateral cutaneous webbing of the 4th and 5th toes | - | - | AD | [4,8,14] |
| Syndactyly II-a | Vordingborg type | Distinct combinations of syndactyly and polydactyly | HOXD13 | Duplication, missense, frameshift, splicing and deletion | AD | [15,16,17] |
| Syndactyly II-b | Metacarpal and metatarsal synostoses | FBLN1 | Missense | AD | [15,18] | |
| Syndactyly II-c | Cutaneous webbing, abnormal metacarpals | Chr.14q11.2-12 | - | AD | [19] | |
| Syndactyly III | Johnston-Kirby type | Bilateral complete syndactyly of the 4th and 5th fingers | Chr.7q36.3 | - | AD | [10,20,21] |
| Syndactyly IV | Haas-type polysyndactyly | Complete cutaneous syndactyly of all fingers | LMBR1 | Large duplications and missense | AD | [22,23,24,25] |
| Syndactyly V | Dowd type | Synostotic fusion of metacarpals | HOXD13 | Duplication, missense, and deletion | AD | [1,26,27] |
| Syndactyly VI | Mitten type | Fusion of 2nd–5th fingers of the right hand | - | - | AD | [7] |
| Syndactyly VII-a | Cenani-Lenz syndactyly (CLS) | Bony fusion of all digits | LRP4 | Missense | AR* | [28,29] |
| Syndactyly VII-b | 15q13.3, GREM1-FMN1 | - | - | [30] | ||
| Syndactyly VIII | Orel-Holmes type | Fusion of metacarpals 4/5 | FGF16 | Nonsense | XR* | [20] |
| Syndactyly IX | Mesoaxial synostotic syndactyly (MSSD) | Phalangeal reduction | BHLHA9 | Missense, frameshift, and deletion | AR | [31,32,33] |
| Gene | Deformity/Syndrome | References |
|---|---|---|
| APC | Cenani-Lenz syndrome and other related syndactyly disorders | [59] |
| FIBULIN1 | Atrophy-syndactyly syndrome | [60] |
| GLI3 | Acrocephalo-syndactyly | [62] |
| GLI3 | Polydactyly and syndactyly | [63] |
| GLI3 | Isolated postaxial synpolydactyly | [73] |
| NSDH | CHILD syndrome phenotype and syndactyly | [64] |
| TP63 | Syndactyly in combination with other abnormalities | [65,66] |
| LRP4 | Isolated syndactyly | [70] |
| GJA1 | Oculodentodigital dysplasia | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaib, T.; Rashid, H.; Khan, H.; Zhou, X.; Sun, P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes 2022, 13, 771. https://doi.org/10.3390/genes13050771
Zaib T, Rashid H, Khan H, Zhou X, Sun P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes. 2022; 13(5):771. https://doi.org/10.3390/genes13050771
Chicago/Turabian StyleZaib, Tahir, Hibba Rashid, Hanif Khan, Xiaoling Zhou, and Pingnan Sun. 2022. "Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives" Genes 13, no. 5: 771. https://doi.org/10.3390/genes13050771
APA StyleZaib, T., Rashid, H., Khan, H., Zhou, X., & Sun, P. (2022). Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes, 13(5), 771. https://doi.org/10.3390/genes13050771

