Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives
Abstract
:1. Background
2. Classification of Syndactyly
3. Variable Phenotypic Features of Non-Syndromic Syndactyly Types
4. Genetic Factors Underlying the Differential Phenotypes of Syndactyly
5. Some Excluded Types of Syndactyly and Underlying Genetic Factors
6. HOXD13 and Its Role in Causing Syndactyly
Mutation Type | cDNA Change | AA Change | NCBI Ref. Sequence | Allele | Phenotype | Ref. |
---|---|---|---|---|---|---|
Missense | c.917G>A | p.R306Q | NM_000523.4 | Heterozygous | SD1-c | [13] |
Missense | c.500A>G | p.Y167C | NM_000523.4 | Heterozygous | SD1-b | [42] |
Missense | c.961A>C | p.T321P | NM_000523.4 | Heterozygous | SD1-c | [42] |
Missense | c.917G>A | p.R306Q | NM_000523.3 | Heterozygous | SD1-c | [43] |
Duplication | c.183_206dup | p.A64_A71dup | NM_000523.3 | Heterozygous | SPD1 | [82] |
Duplication | c.184_210dup | p.A63_A71dup | NM_000523.3 | Heterozygous | SPD1 | [80] |
Duplication | c.183_206dup | p.A64_A71dup | NM_000523.4 | Heterozygous | SPD1 | [90] |
Duplication | c.186-212dup | p.A63_A71dup | NM_000523.4 | Heterozygous | SPD1 | [91] |
Missense | c.859C>T | p.G287X | NM_000523.3 | Heterozygous | SPD1 | [83] |
Missense | c.556C>T | p.R186X | NM_000523.4 | Heterozygous | SPD1 | [84] |
Missense | c.938C>G | p.T313R | NM_000523.4 | Homozygous | SPD1 | [85] |
Missense | c.892C>T | p.R298W | NM_000523.2 | Heterozygous | SPD1 | [45] |
Missense | c.659G>T | p.G220V | NM_000523.2 | Heterozygous | SPD1 | [81] |
Missense | c.938C>G | p.T313R | NM_000523.3 | Homozygous | SPD1 | [86] |
Missense | c.893G>A | p.A298G | NM_000523.3 | Heterozygous | SPD1 | [44] |
Deletion | c.708delC | p.A236Lfs*30 | NM_000523.4 | Heterozygous | SPD1 | [92] |
Missense | c.925A>T | p.I309F | NM_000523.4 | Heterozygous | SPD1 | [88] |
Splice donor site | c.781+1G>A | - | NC_000002.12 NM_000523.3 | Heterozygous | SPD1 | [93] |
Missense | c.950A>G | p.Q317R | NM_000523.3 | Heterozygous | SD5 | [27] |
7. Diagnosis and Surgical Treatment of Syndactyly
8. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, S. Incidence of selected congenital malformations in Iowa. Am. J. Epidemiol. 1971, 94, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Castilla, E.E.; Paz, J.E.; Orioli-Parreiras, I.M. Syndactyly: Frequency of specific types. Am. J. Med. Genet. 1980, 5, 357–364. [Google Scholar] [CrossRef]
- Jordan, D.; Hindocha, S.; Dhital, M.; Saleh, M.; Khan, W. The epidemiology, genetics and future management of syndactyly. Open Orthop. J. 2012, 6, 14–27. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Schott, J.; Ali, S.W.; Oeffner, F.; Amin-ud-Din, M.; Ahmad, W.; Grzeschik, K.H.; Koch, M.C. Evidence for clinical and genetic heterogeneity of syndactyly type I: The phenotype of second and third toe syndactyly maps to chromosome 3p21.31. Eur. J. Hum. Genet. 2005, 13, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Giele, H.; Giele, C.; Bower, C.; Allison, M. The incidence and epidemiology of congenital upper limb anomalies: A total population study. J. Hand Surg. Am. 2001, 26, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Yabe, K.; Kimura, Y.; Ito, Y.; Rokukawa, M.; Furukawa, M.; Ito, K.; Matsuura, M.; Kiguchi, M. Syndactyly lethal: New mutation with multiple malformations occurring in Sprague Dawley rats. Congenit. Anom. 2009, 49, 262–268. [Google Scholar] [CrossRef]
- Temtamy, S.A.; McKusick, V.A. The genetics of hand malformations. Birth Defects Orig. Artic. Ser. 1978, 14, 1–619. [Google Scholar]
- Malik, S. Syndactyly: Phenotypes, genetics and current classification. Eur. J. Hum. Genet. 2012, 20, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Sobreira, N.L.; Cernach, M.C.; Brunoni, D.; Perez, A.B. Complex toe syndactyly with characteristic facial phenotype: A new syndrome? Am. J. Med. Genet. A 2008, 146A, 1725–1728. [Google Scholar] [CrossRef]
- Al-Qattan, M.M.; Shamseldin, H.E.; Al Mazyad, M.; Al Deghaither, S.; Alkuraya, F.S. Genetic heterogeneity in type III familial cutaneous syndactyly and linkage to chromosome 7q36. Am. J. Med. Genet. A 2013, 161A, 1579–1584. [Google Scholar] [CrossRef]
- Andersen, H.J.; Hansen, A.K. Tibial hypo-/aplasia with preaxial syn- and polydactyly. Arch. Orthop. Trauma Surg. 1990, 109, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Bosse, K.; Betz, R.C.; Lee, Y.A.; Wienker, T.F.; Reis, A.; Kleen, H.; Propping, P.; Cichon, S.; Nothen, M.M. Localization of a gene for syndactyly type 1 to chromosome 2q34-q36. Am. J. Hum. Genet. 2000, 67, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Liu, D.; Song, M.; Xu, X.; Xiong, G.; Yang, K.; Zhang, K.; Meng, H.; Guo, H.; Bai, Y. Mutations in the homeodomain of HOXD13 cause syndactyly type 1-c in two Chinese families. PLoS ONE 2014, 9, e96192. [Google Scholar] [CrossRef] [Green Version]
- Akarsu, A.N.; Stoilov, I.; Yilmaz, E.; Sayli, B.S.; Sarfarazi, M. Genomic structure of HOXD13 gene: A nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum. Mol. Genet. 1996, 5, 945–952. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Grzeschik, K.H. Synpolydactyly: Clinical and molecular advances. Clin. Genet. 2008, 73, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Sarfarazi, M.; Akarsu, A.N.; Sayli, B.S. Localization of the syndactyly type II (synpolydactyly) locus to 2q31 region and identification of tight linkage to HOXD8 intragenic marker. Hum. Mol. Genet. 1995, 4, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- Muragaki, Y.; Mundlos, S.; Upton, J.; Olsen, B.R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996, 272, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Schoenmakers, E.F.; Thoelen, R.; Holvoet, M.; Kuittinen, T.; Fabry, G.; Fryns, J.P.; Goodman, F.R.; Van de Ven, W.J. Physical map of a 1.5 mb region on 12p11.2 harbouring a synpolydactyly associated chromosomal breakpoint. Eur. J. Hum. Genet. 2000, 8, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Abbasi, A.A.; Ansar, M.; Ahmad, W.; Koch, M.C.; Grzeschik, K.H. Genetic heterogeneity of synpolydactyly: A novel locus SPD3 maps to chromosome 14q11.2-q12. Clin. Genet. 2006, 69, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, F.; Della Monica, M.; Riccardi, G.; Riccio, I.; Riccio, V.; Scarano, G. A family with X-linked recessive fusion of metacarpals IV and V. Am. J. Med. Genet. A 2004, 124A, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, A.; Donnai, D.; Metcalfe, K.; Schrander-Stumpel, C.; Brueton, L.; Verloes, A.; Aylsworth, A.; Toriello, H.; Winter, R.; Dixon, M. Localization of a gene for oculodentodigital syndrome to human chromosome 6q22-q24. Hum. Mol. Genet. 1997, 6, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, D.; Pawlik, B.; Li, Y.; Akarsu, N.A.; Caliebe, A.; May, K.J.; Schweiger, B.; Vargas, F.R.; Balci, S.; Gillessen-Kaesbach, G.; et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum. Mutat. 2010, 31, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Samson, P.; Salazard, B. Syndactyly. Chir. Main 2008, 27 (Suppl. 1), S100–S114. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Guo, H.; Meng, H.; Zhang, K.; Hu, H.; Yao, H.; Bai, Y. Confirmation of genetic homogeneity of syndactyly type IV and triphalangeal thumb-polysyndactyly syndrome in a Chinese family and review of the literature. Eur. J. Pediatr. 2013, 172, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Lohan, S.; Spielmann, M.; Doelken, S.C.; Flottmann, R.; Muhammad, F.; Baig, S.M.; Wajid, M.; Hulsemann, W.; Habenicht, R.; Kjaer, K.W.; et al. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin. Genet. 2014, 86, 318–325. [Google Scholar] [CrossRef]
- Robinow, M.; Johnson, G.F.; Broock, G.J. Syndactyly type V. Am. J. Med. Genet. 1982, 11, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Sun, M.; Zhao, J.; Leyva, J.A.; Zhu, H.; Yang, W.; Zeng, X.; Ao, Y.; Liu, Q.; Liu, G.; et al. Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome. Am. J. Hum. Genet. 2007, 80, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.N.; Klar, J.; Ali, Z.; Khan, F.; Baig, S.M.; Dahl, N. Cenani-Lenz syndrome restricted to limb and kidney anomalies associated with a novel LRP4 missense mutation. Eur. J. Med. Genet. 2013, 56, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pawlik, B.; Elcioglu, N.; Aglan, M.; Kayserili, H.; Yigit, G.; Percin, F.; Goodman, F.; Nurnberg, G.; Cenani, A.; et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am. J. Hum. Genet. 2010, 86, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Dimitrov, B.I.; Voet, T.; De Smet, L.; Vermeesch, J.R.; Devriendt, K.; Fryns, J.P.; Debeer, P. Genomic rearrangements of the GREM1-FMN1 locus cause oligosyndactyly, radio-ulnar synostosis, hearing loss, renal defects syndrome and Cenani--Lenz-like non-syndromic oligosyndactyly. J. Med. Genet. 2010, 47, 569–574. [Google Scholar] [CrossRef] [Green Version]
- Percin, E.F.; Percin, S.; Egilmez, H.; Sezgin, I.; Ozbas, F.; Akarsu, A.N. Mesoaxial complete syndactyly and synostosis with hypoplastic thumbs: An unusual combination or homozygous expression of syndactyly type I? J. Med. Genet. 1998, 35, 868–874. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Percin, F.E.; Ahmad, W.; Percin, S.; Akarsu, N.A.; Koch, M.C.; Grzeschik, K.H. Autosomal recessive mesoaxial synostotic syndactyly with phalangeal reduction maps to chromosome 17p13.3. Am. J. Med. Genet. A 2005, 134, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Wang, R.; Han, S.; Ahmad, W.; Zhang, X. A novel homozygous missense mutation in BHLHA9 causes mesoaxial synostotic syndactyly with phalangeal reduction in a Pakistani family. Hum. Genome Var. 2017, 4, 17054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deunk, J.; Nicolai, J.P.; Hamburg, S.M. Long-term results of syndactyly correction: Full-thickness versus split-thickness skin grafts. J. Hand Surg. Br. 2003, 28, 125–130. [Google Scholar] [CrossRef]
- Hsu, C.K. Hereditary syndactylia in a Chinese family. Chin. Med. J. 1965, 84, 482–485. [Google Scholar]
- Cross, H.E.; Lerberg, D.B.; McKusick, V.A. Type II syndactyly. Am. J. Hum. Genet. 1968, 20, 368–380. [Google Scholar]
- Malik, S.; Girisha, K.M.; Wajid, M.; Roy, A.K.; Phadke, S.R.; Haque, S.; Ahmad, W.; Koch, M.C.; Grzeschik, K.H. Synpolydactyly and HOXD13 polyalanine repeat: Addition of 2 alanine residues is without clinical consequences. BMC Med. Genet. 2007, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenani, A.; Lenz, W. Total syndactylia and total radioulnar synostosis in 2 brothers. A contribution on the genetics of syndactylia. Z. Kinderheilkd. 1967, 101, 181–190. [Google Scholar] [CrossRef]
- Harpf, C.; Pavelka, M.; Hussl, H. A variant of Cenani-Lenz syndactyly (CLS): Review of the literature and attempt of classification. Br. J. Plast. Surg. 2005, 58, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Philip-Sarles, N. Genetics of congenital hand malformations. Chir. Main 2008, 27 (Suppl. 1), S7–S20. [Google Scholar] [CrossRef] [PubMed]
- Ghadami, M.; Majidzadeh, A.K.; Haerian, B.S.; Damavandi, E.; Yamada, K.; Pasallar, P.; Najafi, M.T.; Nishimura, G.; Tomita, H.A.; Yoshiura, K.I.; et al. Confirmation of genetic homogeneity of syndactyly type 1 in an Iranian family. Am. J. Med. Genet. 2001, 104, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Singh, S.K.; Bhattacharya, V.; Ali, A. Novel HOXD13 variants in syndactyly type 1b and type 1c, and a new spectrum of TP63-related disorders. J. Hum. Genet. 2022, 67, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Tan, T.; He, Q.; Lin, Q.; Yang, Z.; Zhu, A.; Guan, L.; Xiao, J.; Song, Z.; Guo, Y. Identification of a missense HOXD13 mutation in a Chinese family with syndactyly type I-c using exome sequencing. Mol. Med. Rep. 2017, 16, 473–477. [Google Scholar] [CrossRef]
- Wang, B.; Xu, B.; Cheng, Z.; Zhou, X.; Wang, J.; Yang, G.; Cheng, L.; Yang, J.; Ma, X. A novel non-synonymous mutation in the homeodomain of HOXD13 causes synpolydactyly in a Chinese family. Clin. Chim. Acta 2012, 413, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Bacchelli, C.; Scambler, P.J.; De Smet, L.; Fryns, J.P.; Goodman, F.R. Severe digital abnormalities in a patient heterozygous for both a novel missense mutation in HOXD13 and a polyalanine tract expansion in HOXA13. J. Med. Genet. 2002, 39, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Chen, F.; Zhang, J.; Lin, Z.; Ma, Q.; Xu, G.; Xiao, D.; Gui, Y.; Yang, J.; Wan, S. A rare TTC30B variant is identified as a candidate for synpolydactyly in a Chinese pedigree. Bone 2019, 127, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Debeer, P.; Schoenmakers, E.F.; Twal, W.O.; Argraves, W.S.; De Smet, L.; Fryns, J.P.; Van De Ven, W.J. The fibulin-1 gene (FBLN1) is disrupted in a t(12;22) associated with a complex type of synpolydactyly. J. Med. Genet. 2002, 39, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Nishat, S.; Mansoor, Q.; Javaid, A.; Ismail, M. Oculodentodigital Syndrome with Syndactyly Type III in a Pakistani consanguineous family. J. Dermatol. Case Rep. 2012, 6, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Schrander-Stumpel, C.T.; De Groot-Wijnands, J.B.; De Die-Smulders, C.; Fryns, J.P. Type III syndactyly and oculodentodigital dysplasia: A clinical spectrum. Genet. Couns. 1993, 4, 271–276. [Google Scholar]
- Xu, J.; Wu, J.; Teng, X.; Cai, L.; Yuan, H.; Chen, X.; Hu, M.; Wang, X.; Jiang, N.; Chen, H. Large duplication in LMBR1 gene in a large Chinese pedigree with triphalangeal thumb polysyndactyly syndrome. Am. J. Med. Genet. A 2020, 182, 2117–2123. [Google Scholar] [CrossRef]
- Shi, L.; Huang, H.; Jiang, Q.; Huang, R.; Fu, W.; Mao, L.; Wei, X.; Cui, H.; Lin, K.; Cai, L.; et al. Sub-Exome Target Sequencing in a Family With Syndactyly Type IV Due to a Novel Partial Duplication of the LMBR1 Gene: First Case Report in Fujian Province of China. Front. Genet. 2020, 11, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, E.; Hurst, J.A.; Cullup, T.; Calder, A.; Sivakumar, B.; Shah, P.; Wilson, L.C. Cenani-Lenz syndactyly in siblings with a novel homozygous LRP4 mutation and recurrent hypoglycaemia. Clin. Dysmorphol. 2020, 29, 73–80. [Google Scholar] [CrossRef]
- Afzal, M.; Zaman, Q.; Kornak, U.; Mundlos, S.; Malik, S.; Flottmann, R. Novel splice mutation in LRP4 causes severe type of Cenani-Lenz syndactyly syndrome with oro-facial and skeletal symptoms. Eur. J. Med. Genet. 2017, 60, 421–425. [Google Scholar] [CrossRef]
- Alrayes, N.; Aziz, A.; Ullah, F.; Ishfaq, M.; Jelani, M.; Wali, A. Novel missense alteration in LRP4 gene underlies Cenani-Lenz syndactyly syndrome in a consanguineous family. J. Gene Med. 2020, 22, e3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettiaracchchi, D.; Bonnard, C.; Jayawardana, S.M.A.; Ng, A.Y.J.; Tohari, S.; Venkatesh, B.; Reversade, B.; Singaraja, R.; Dissanayake, V.H.W. Cenani-Lenz syndactyly syndrome—A case report of a family with isolated syndactyly. BMC Med. Genet. 2018, 19, 125. [Google Scholar] [CrossRef] [Green Version]
- Jamsheer, A.; Zemojtel, T.; Kolanczyk, M.; Stricker, S.; Hecht, J.; Krawitz, P.; Doelken, S.C.; Glazar, R.; Socha, M.; Mundlos, S. Whole exome sequencing identifies FGF16 nonsense mutations as the cause of X-linked recessive metacarpal 4/5 fusion. J. Med. Genet. 2013, 50, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Sedighzadeh, S.S.; Sedaghat, A.; Zamani, M.; Seifi, T.; Shariati, G.; Zeighami, J.; Mazaheri, N.; Galehdari, H. Whole exome sequencing identified a novel frameshift variant in the BHLHA9 in an Iranian family with mesoaxial synostotic syndactyly. Congenit. Anom. 2021, 61, 220–225. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, R.H.; Majeed, A.I.; Liaqat, K.; Shah, P.W.; Khan, B.; Bilal, M.; Umair, M.; Ahmad, W. A novel insertion and deletion mutation in the BHLHA9 underlies polydactyly and mesoaxial synostotic syndactyly with phalangeal reduction. Eur. J. Med. Genet. 2019, 62, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M.; Alkuraya, F.S. Cenani-Lenz syndrome and other related syndactyly disorders due to variants in LRP4, GREM1/FMN1, and APC: Insight into the pathogenesis and the relationship to polyposis through the WNT and BMP antagonistic pathways. Am. J. Med. Genet. A 2019, 179, 266–279. [Google Scholar] [CrossRef]
- Bohlega, S.; Al-Ajlan, H.; Al-Saif, A. Mutation of fibulin-1 causes a novel syndrome involving the central nervous system and connective tissues. Eur. J. Hum. Genet. 2014, 22, 640–643. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Ma, F.; Zeng, X.; Liu, Q.; Zhao, X.L.; Wu, F.X.; Wu, G.P.; Zhang, Z.F.; Gu, B.; Zhao, Y.F.; et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J. Med. Genet. 2008, 45, 589–595. [Google Scholar] [CrossRef]
- Al-Qattan, M.M. A novel frameshift mutation of the GLI3 gene in a family with broad thumbs with/without big toes, postaxial polydactyly and variable syndactyly of the hands/feet. Clin. Genet. 2012, 82, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Li, X.; Zhan, Z.; Feng, J.; Cai, H.; Li, Y.; Fu, Q.; Xu, Y.; Jiang, H.; Zhang, X. A Novel Nonsense GLI3 Variant Is Associated With Polydactyly and Syndactyly in a Family by Blocking the Sonic Hedgehog Signaling Pathway. Front. Genet. 2020, 11, 542004. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, D.; Panchal, H.; Lai, P.S.; Dissanayake, V.H.W. Novel variant in NSDHL gene associated with CHILD syndrome and syndactyly- a case report. BMC Med. Genet. 2020, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, Y.; Ueda, K.; Nuri, T.; Satoh, C.; Maekawa, R.; Yoshiura, K.I. EEC-LM-ADULT syndrome caused by R319H mutation in TP63 with ectrodactyly, syndactyly, and teeth anomaly: A case report. Medicine 2020, 99, e22816. [Google Scholar] [CrossRef] [PubMed]
- Sutton, V.R.; van Bokhoven, H. TP63-Related Disorders. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Roelandt, M.A.; Devriendt, K.; de Llano-Perula, M.C.; Raes, M.; Willems, G.; Verdonck, A. Dental and Craniofacial Characteristics in Patients With 14Q22.1-Q22.2 Deletion: A Case Series. Cleft Palate Craniofacial J. 2021, 58, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Chen, Y.; Li, S.; Ren, L.; Zhang, J.; Sun, H.; Dong, J.; Zhao, X. Clinical characterization and outcome of prolonged heart rate-corrected QT interval among children with syndactyly. Medicine 2020, 99, e22740. [Google Scholar] [CrossRef]
- Ngoc, N.T.; Duong, N.T.; Quynh, D.H.; Ton, N.D.; Duc, H.H.; Huong, L.T.M.; Anh, L.T.L.; Hai, N.V. Identification of novel missense mutations associated with non-syndromic syndactyly in two vietnamese trios by whole exome sequencing. Clin. Chim. Acta 2020, 506, 16–21. [Google Scholar] [CrossRef]
- Sukenik Halevy, R.; Chien, H.C.; Heinz, B.; Bamshad, M.J.; Nickerson, D.A.; University of Washington Center for Mendelian Genomics; Kircher, M.; Ahituv, N. Mutations in the fourth beta-propeller domain of LRP4 are associated with isolated syndactyly with fusion of the third and fourth fingers. Hum. Mutat. 2018, 39, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.; Buyukdogan, H. A Case of Nonsyndromic Unilateral Cleft Hand with Central Polydactyly, Syndactyly, and Thumb Hypoplasia: Support for a Common Etiology. J. Hand Microsurg. 2019, 11, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Al-Qattan, M.M. Central and ulnar cleft hands: A review of concurrent deformities in a series of 47 patients and their pathogenesis. J. Hand Surg. 2014, 39, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Tian, Z.; Zheng, J.; Zhi, X.; Du, X.; Shu, J.; Cai, C. A novel missense in GLI3 possibly affecting one of the zinc finger domains may lead to postaxial synpolydactyly: Case report. BMC Med. Genet. 2019, 20, 174. [Google Scholar] [CrossRef]
- Paznekas, W.A.; Boyadjiev, S.A.; Shapiro, R.E.; Daniels, O.; Wollnik, B.; Keegan, C.E.; Innis, J.W.; Dinulos, M.B.; Christian, C.; Hannibal, M.C.; et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 2003, 72, 408–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConville, D.O.; Archbold, G.P.; Lewis, A.; Morrison, P.J. Zygodactyly (Syndactyly Type A1) Associated With Midfoot Charcot Neuropathy and Diabetes. Diabetes Care 2018, 41, e74–e75. [Google Scholar] [CrossRef] [Green Version]
- Carroll, S.B. Homeotic genes and the evolution of arthropods and chordates. Nature 1995, 376, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Quinonez, S.C.; Innis, J.W. Human HOX gene disorders. Mol. Genet. Metab. 2014, 111, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Barcelo, M.M.; Wong, K.K.; Lui, V.C.; Yuan, Z.W.; So, M.T.; Ngan, E.S.; Miao, X.P.; Chung, P.H.; Khong, P.L.; Tam, P.K. Identification of a HOXD13 mutation in a VACTERL patient. Am. J. Med. Genet. A 2008, 146A, 3181–3185. [Google Scholar] [CrossRef]
- Kjaer, K.W.; Hansen, L.; Eiberg, H.; Utkus, A.; Skovgaard, L.T.; Leicht, P.; Opitz, J.M.; Tommerup, N. A 72-year-old Danish puzzle resolved--comparative analysis of phenotypes in families with different-sized HOXD13 polyalanine expansions. Am. J. Med. Genet. A 2005, 138, 328–339. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lin, P.F.; Wang, Q.M.; Mao, F.; Cai, Y.; Gong, Y.Q. Synpolydactyly in a Chinese kindred: Mutation detection, prenatal ultrasonographic and molecular diagnosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2011, 28, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Fantini, S.; Vaccari, G.; Brison, N.; Debeer, P.; Tylzanowski, P.; Zappavigna, V. A G220V substitution within the N-terminal transcription regulating domain of HOXD13 causes a variant synpolydactyly phenotype. Hum. Mol. Genet. 2009, 18, 847–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaib, T.; Ji, W.; Saleem, K.; Nie, G.; Li, C.; Cao, L.; Xu, B.; Dong, K.; Yu, H.; Hao, X.; et al. A heterozygous duplication variant of the HOXD13 gene caused synpolydactyly type 1 with variable expressivity in a Chinese family. BMC Med. Genet. 2019, 20, 203. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Shi, T.; Lin, M.; Zhang, Y. A Nonsense Mutation in HOXD13 Gene from A Chinese Family with Non-Syndromic Synpolydactyly. Tohoku J. Exp. Med. 2019, 249, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, N.; Geng, J.; Wang, Z.; Fu, Q.; Wang, J.; Xu, Y. Exome sequencing identifies a novel nonsense mutation of HOXD13 in a Chinese family with synpolydactyly. Congenit. Anom. 2017, 57, 4–7. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, D.M.; Tayebi, N.; Knaus, A.; Stiege, A.C.; Sahebzamani, A.; Hecht, J.; Mundlos, S.; Spielmann, M. A homozygous HOXD13 missense mutation causes a severe form of synpolydactyly with metacarpal to carpal transformation. Am. J. Med. Genet. A 2016, 170, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Kurban, M.; Wajid, M.; Petukhova, L.; Shimomura, Y.; Christiano, A.M. A nonsense mutation in the HOXD13 gene underlies synpolydactyly with incomplete penetrance. J. Hum. Genet. 2011, 56, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Al-Qattan, M.M. A Review of the Phenotype of Synpolydactyly Type 1 in Homozygous Patients: Defining the Relatively Long and Medially Deviated Big Toe with/without Cupping of the Forefoot as a Pathognomonic Feature in the Phenotype. Biomed. Res. Int. 2020, 2020, 2067186. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Fang, X.; Mao, H.; Sun, B.; Zhou, J.; An, Y.; Wang, B. A Novel Missense Variant of HOXD13 Caused Atypical Synpolydactyly by Impairing the Downstream Gene Expression and Literature Review for Genotype-Phenotype Correlations. Front. Genet. 2021, 12, 731278. [Google Scholar] [CrossRef] [PubMed]
- Salsi, V.; Zappavigna, V. Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J. Biol. Chem. 2006, 281, 1992–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zu, B.; Wang, Z.; Xu, Y.; You, G.; Fu, Q. Nonframeshifting indel variations in polyalanine repeat of HOXD13 gene underlies hereditary limb malformation for two Chinese families. Dev. Dyn. 2021, 250, 1220–1228. [Google Scholar] [CrossRef]
- Gong, L.; Wang, B.; Wang, J.; Yu, H.; Ma, X.; Yang, J. Polyalanine repeat expansion mutation of the HOXD13 gene in a Chinese family with unusual clinical manifestations of synpolydactyly. Eur. J. Med. Genet. 2011, 54, 108–111. [Google Scholar] [CrossRef]
- Radhakrishnan, P.; Nayak, S.S.; Pai, M.V.; Shukla, A.; Girisha, K.M. Occurrence of Synpolydactyly and Omphalocele in a Fetus with a HOXD13 Mutation. J. Pediatr. Genet. 2017, 6, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ji, C.; Cao, L.; Wu, Y.; Shang, Y.; Wang, W.; Luo, Y. A splice donor site mutation in HOXD13 underlies synpolydactyly with cortical bone thinning. Gene 2013, 532, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.J.; Hansen, S.L.; Jones, N.F. Reconstruction of congenital differences of the hand. Plast. Reconstr. Surg. 2009, 124, 128e–143e. [Google Scholar] [CrossRef]
- Dao, K.D.; Shin, A.Y.; Billings, A.; Oberg, K.C.; Wood, V.E. Surgical treatment of congenital syndactyly of the hand. J. Am. Acad. Orthop. Surg. 2004, 12, 39–48. [Google Scholar] [CrossRef]
- Swarup, I.; Zhang, Y.; Do, H.; Daluiski, A. Epidemiology of syndactyly in New York State. World J. Orthop. 2019, 10, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Kvernmo, H.D.; Haugstvedt, J.R. Treatment of congenital syndactyly of the fingers. Tidsskr. Den Nor. Legeforening 2013, 133, 1591–1595. [Google Scholar] [CrossRef] [Green Version]
- Goldfarb, C.A.; Steffen, J.A.; Stutz, C.M. Complex syndactyly: Aesthetic and objective outcomes. J. Hand Surg. Am. 2012, 37, 2068–2073. [Google Scholar] [CrossRef]
- Little, K.J.; Cornwall, R. Congenital Anomalies of the Hand--Principles of Management. Orthop. Clin. N. Am. 2016, 47, 153–168. [Google Scholar] [CrossRef]
- Mandarano-Filho, L.G.; Bezuti, M.T.; Akita, R.; Mazzer, N.; Barbieri, C.H. Congenital syndactyly: Case by case analysis of 47 patients. Acta Ortopédica Bras. 2013, 21, 333–335. [Google Scholar] [CrossRef] [Green Version]
- Hikosaka, M.; Ogata, H.; Nakajima, T.; Kobayashi, H.; Hattori, N.; Onishi, F.; Tamada, I. Advantages of open treatment for syndactyly of the foot: Defining its indications. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2009, 43, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Gawlikowska-Sroka, A. Polydactyly and syndactyly as the most common congenital disorders of the limbs. Ann. Acad. Med. Stetin. 2008, 54, 130–133. [Google Scholar]
- Geoghegan, L.; Knowles, B.G.; Nikkhah, D. Syndactyly. J. Surg. Case Rep. 2020, 2020, rjaa517. [Google Scholar] [CrossRef]
- Senda, E.; Ueda, K.; Hirota, Y.; Mitsuno, D.; Nuri, T. Using Dermal Fat Graft to Release Complex Syndactyly: A New Method. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3068. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, J.; Song, B. The use of abdominal flaps for complex syndactyly release: A case series. J. Hand Surg. 2021, 46, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Sasaki, M.; Oshima, J.; Aihara, Y.; Sekido, M. Aesthetic reconstruction for syndactyly using the “gradation skin graft” from the plantar instep area. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 3371–3376. [Google Scholar] [CrossRef] [PubMed]
- Langlais, T.; Rougereau, G.; Marty-Diloy, T.; Bachy, M.; Barret, H.; Vialle, R.; Fitoussi, F. Surgical treatment in child’s congenital toe syndactyly: Risk factor of recurrence, complication and poor clinical outcomes. Foot Ankle Surg. 2022, 28, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.P.; Jones, N.F. Interdigitating Rectangular Flaps and Dorsal Pentagonal Island Flap for Syndactyly Release. J. Hand Surg. Am. 2019, 44, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, S.; Li, N.; Feng, Z.; Liu, Q. Dorsal Hexagon Local Flap Without Skin Graft for Web Reconstruction of Congenital Syndactyly. J. Hand Surg. Am. 2020, 45, 63.e61–63.e69. [Google Scholar] [CrossRef]
- Yuan, F.; Zhong, L.; Chung, K.C. Aesthetic Comparison of Two Different Types of Web-Space Reconstruction for Finger Syndactyly. Plast. Reconstr. Surg. 2018, 142, 963–971. [Google Scholar] [CrossRef]
- Tang, H.; Sun, G.; Qi, J.; Nie, K.; Jin, W.; Li, S.; Wei, Z.; Wang, D. Surgical Treatment of Congenital Type V Thumb Syndactyly. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2016, 30, 1127–1129. [Google Scholar] [CrossRef]
- Kong, B.Y.; Baek, G.H.; Gong, H.S. Treatment of keloid formation following syndactyly division: Surgical technique. Hand Surg. 2012, 17, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Chouairi, F.; Mercier, M.R.; Persing, J.S.; Gabrick, K.S.; Clune, J.; Alperovich, M. National Patterns in Surgical Management of Syndactyly: A Review of 956 Cases. Hand 2020, 15, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Escrig, A.; Gobernado, I.; Sanchez-Herranz, A. Whole genome sequencing: A qualitative leap forward in genetic studies. Rev. Neurol. 2012, 54, 692–698. [Google Scholar]
Clinical Phenotype | Original Name | Major Symptoms | Locus/Gene | Mutation Type | Inheritance | References |
---|---|---|---|---|---|---|
Syndactyly I-a | Zygodactyly | Cutaneous webbing of 2nd and 3rd toes without the hand involvement | Chr.3p21.31 | - | AD* | [4,10,11] |
Syndactyly I-b | Lueken type | Bilateral bony or cutaneous webbing of 3rd/4th fingers and 2nd/3rd toes | HOXD13 | Duplication, missense, and deletion | AD | [4,12] |
Syndactyly I-c | Montagu type | Bilateral bony or cutaneous webbing of 3rd/4th fingers, with normal feet | HOXD13 | Duplication, missense, and deletion | AD | [4,13] |
Syndactyly I-d | Castilla type | Bilateral cutaneous webbing of the 4th and 5th toes | - | - | AD | [4,8,14] |
Syndactyly II-a | Vordingborg type | Distinct combinations of syndactyly and polydactyly | HOXD13 | Duplication, missense, frameshift, splicing and deletion | AD | [15,16,17] |
Syndactyly II-b | Metacarpal and metatarsal synostoses | FBLN1 | Missense | AD | [15,18] | |
Syndactyly II-c | Cutaneous webbing, abnormal metacarpals | Chr.14q11.2-12 | - | AD | [19] | |
Syndactyly III | Johnston-Kirby type | Bilateral complete syndactyly of the 4th and 5th fingers | Chr.7q36.3 | - | AD | [10,20,21] |
Syndactyly IV | Haas-type polysyndactyly | Complete cutaneous syndactyly of all fingers | LMBR1 | Large duplications and missense | AD | [22,23,24,25] |
Syndactyly V | Dowd type | Synostotic fusion of metacarpals | HOXD13 | Duplication, missense, and deletion | AD | [1,26,27] |
Syndactyly VI | Mitten type | Fusion of 2nd–5th fingers of the right hand | - | - | AD | [7] |
Syndactyly VII-a | Cenani-Lenz syndactyly (CLS) | Bony fusion of all digits | LRP4 | Missense | AR* | [28,29] |
Syndactyly VII-b | 15q13.3, GREM1-FMN1 | - | - | [30] | ||
Syndactyly VIII | Orel-Holmes type | Fusion of metacarpals 4/5 | FGF16 | Nonsense | XR* | [20] |
Syndactyly IX | Mesoaxial synostotic syndactyly (MSSD) | Phalangeal reduction | BHLHA9 | Missense, frameshift, and deletion | AR | [31,32,33] |
Gene | Deformity/Syndrome | References |
---|---|---|
APC | Cenani-Lenz syndrome and other related syndactyly disorders | [59] |
FIBULIN1 | Atrophy-syndactyly syndrome | [60] |
GLI3 | Acrocephalo-syndactyly | [62] |
GLI3 | Polydactyly and syndactyly | [63] |
GLI3 | Isolated postaxial synpolydactyly | [73] |
NSDH | CHILD syndrome phenotype and syndactyly | [64] |
TP63 | Syndactyly in combination with other abnormalities | [65,66] |
LRP4 | Isolated syndactyly | [70] |
GJA1 | Oculodentodigital dysplasia | [74] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaib, T.; Rashid, H.; Khan, H.; Zhou, X.; Sun, P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes 2022, 13, 771. https://doi.org/10.3390/genes13050771
Zaib T, Rashid H, Khan H, Zhou X, Sun P. Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes. 2022; 13(5):771. https://doi.org/10.3390/genes13050771
Chicago/Turabian StyleZaib, Tahir, Hibba Rashid, Hanif Khan, Xiaoling Zhou, and Pingnan Sun. 2022. "Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives" Genes 13, no. 5: 771. https://doi.org/10.3390/genes13050771
APA StyleZaib, T., Rashid, H., Khan, H., Zhou, X., & Sun, P. (2022). Recent Advances in Syndactyly: Basis, Current Status and Future Perspectives. Genes, 13(5), 771. https://doi.org/10.3390/genes13050771