The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep
Abstract
:1. Horns in Bovid Species
2. Impact of Horn Status on the Welfare of Humans and Animals
3. Diversity of Horn Status in Domestic Ruminants
4. Molecular Causes of Inherited Absence of Horns in Domestic Ruminants
4.1. Cattle (Bos taurus and Bos indicus) and Mongolian Yak (Bos mutus)
4.2. Goat (Capra hircus)
4.3. Sheep (Ovis aries)
5. Recent Developments in Genetic Engineering Offer New Possibilities for Breeding Hornless Ruminants—First Examples and Current Legal Limits
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allais-Bonnet, A.; Hintermann, A.; Deloche, M.-C.; Cornette, R.; Bardou, P.; Naval-Sanchez, M.; Pinton, A.; Haruda, A.; Grohs, C.; Zakany, J.; et al. Analysis of Polycerate Mutants Reveals the Evolutionary Co-option of HOXD1 for Horn Patterning in Bovidae. Mol. Biol. Evol. 2021, 38, 2260–2272. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, C.; Wang, N.; Li, Z.; Heller, R.; Liu, R.; Zhao, Y.; Han, J.; Pan, X.; Zheng, Z.; et al. Genetic basis of ruminant headgear and rapid antler regeneration. Science 2019, 364, eaav6335. [Google Scholar] [CrossRef] [PubMed]
- Geist, V. The Evolution of Horn-Like Organs. Behaviour 1966, 27, 175–214. [Google Scholar] [CrossRef]
- Lincoln, G.A. Teeth, horns and antlers: The weapons of sex. In The Difference between the Sexes; Short, R.V., Bulaban, E., Eds.; Cambridge University Press: Cambridge, UK, 1994; pp. 131–158. [Google Scholar]
- Stankowich, T.; Caro, T. Evolution of weaponry in female bovids. Proc. Biol. Sci. 2009, 276, 4329–4334. [Google Scholar] [CrossRef] [Green Version]
- Estes, R.D. The significance of horns and other male secondary sexual characters in female bovids. Appl. Anim. Behav. Sci. 1991, 29, 403–451. [Google Scholar] [CrossRef]
- Maity, P.; Tekalur, S.A. Finite element analysis of ramming in Ovis canadensis. J. Biomech. Eng. 2011, 133, 21009. [Google Scholar] [CrossRef]
- Preston, B.T.; Stevenson, I.R.; Pemberton, J.M.; Coltman, D.W.; Wilson, K. Overt and covert competition in a promiscuous mammal: The importance of weaponry and testes size to male reproductive success. Proc. Biol. Sci. 2003, 270, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.R.; Kruuk, L. Function of weaponry in females: The use of horns in intrasexual competition for resources in female Soay sheep. Biol. Lett. 2007, 3, 651–654. [Google Scholar] [CrossRef]
- Picard, K.; Thomas, D.W.; Festa-Bianchiet, M.; Belleville, F.; Laneville, A. Differences in thermal conductivity of tropical and temperate bovid horns. Ecoscience 1999, 6, 148–158. [Google Scholar] [CrossRef]
- Parés-Casanova, P.; Caballero, M. Possible tendency of polled cattle towards larger ears. Revista Colombiana de Ciencias Pecuarias 2014, 27, 221–225. [Google Scholar]
- Porter, V.; Alderson, L.; Hall, S.; Sponenberg, D.P. Masons World Encyclopedia of Livestock Breeds and Breeding: 2 Volume Pack; CAB International: Wallingford, UK, 2016; ISBN 9781845934668. [Google Scholar]
- Stookey, J.M.; Goonewardene, L.A. A comparison of production traits and welfare implications between horned and polled beef bulls. Can. J. Anim. Sci. 1996, 76, 1–5. [Google Scholar] [CrossRef]
- Scheper, C.; Emmerling, R.; Götz, K.-U.; König, S. A variance component estimation approach to infer associations between Mendelian polledness and quantitative production and female fertility traits in German Simmental cattle. Genet. Sel. Evol. 2021, 53, 60. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.E.; Gratten, J.; Berenos, C.; Pilkington, J.G.; Clutton-Brock, T.H.; Pemberton, J.M.; Slate, J. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 2013, 502, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Goldblum, D.; Frueh, B.E.; Koerner, F. Eye injuries caused by cow horns. Retina 1999, 19, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Knierim, U.; Irrgang, N.; Roth, B.A. To be or not to be horned—Consequences in cattle. Livest. Sci. 2015, 179, 29–37. [Google Scholar] [CrossRef]
- Braun, U.; Gerspach, C.; Stettler, M.; Grob, D.; Sydler, T. Rumen perforation caused by horn injury in two cows. Acta Vet. Scand. 2016, 58, 5. [Google Scholar] [CrossRef] [Green Version]
- Youngers, M.E.; Thomson, D.U.; Schwandt, E.F.; Simroth, J.C.; Bartle, S.J.; Siemens, M.G.; Reinhardt, C.D. Case Study: Prevalence of horns and bruising in feedlot cattle at slaughter. Prof. Anim. Sci. 2017, 33, 135–139. [Google Scholar] [CrossRef]
- Menke, C.; Waiblinger, S.; Fölsch, D.W.; Wiepkema, P.R. Social behaviour and injuries of horned cows in loose housing systems. Anim. Welf. 1999, 8, 243–258. [Google Scholar]
- Waiblinger, S.; Schmied-Wagner, C.; Nordmann, E.; Mersmann, D.; Szabo, S.; Graml, C.; von Hof, J.; Maschat, K.; Grubmüller, T.; Winckler, C. Haltung von Behornten und Unbehornten Milchziegen in Großgruppen; Endbericht zum Forschungsprojekt 100191; Eigenverlag: Vienna, Austria, 2010. [Google Scholar]
- Cozzi, G.; Gottardo, F.; Brscic, M.; Contiero, B.; Irrgang, N.; Knierim, U.; Pentelescu, O.; Windig, J.J.; Mirabito, L.; Kling Eveillard, F.; et al. Dehorning of cattle in the EU Member States: A quantitative survey of the current practices. Livest. Sci. 2015, 179, 4–11. [Google Scholar] [CrossRef]
- Hempstead, M.N.; Lindquist, T.M.; Shearer, J.K.; Shearer, L.C.; Plummer, P.J. Health and Welfare Survey of 30 Dairy Goat Farms in the Midwestern United States. Animals 2021, 11, 2007. [Google Scholar] [CrossRef]
- Council Directive 98/59/EC concering the protection of animals kept for farming purpose: 98/58/EC, CELEX-EUR. CELEX-EUR Off. J. L 221 1998, 23–27. Available online: http://extwprlegs1.fao.org/docs/pdf/eur25031.pdf (accessed on 14 January 2022).
- Cozzi, G.; Prevedello, P.; Boukha, A.; Winckler, C.; Knierim, U.; Pentelescu, O.; Windig, J.J.; Mirabito, L.; Kling Eveillard, F.; Dockes, A.C.; et al. Alternatives to Castration and Dehorning. Report on Dehorning Practices across EU Member States.: SP2: Alternatives to Dehorning: To Develop and Promote Alternatives to the Dehorning of Cattle. WP2.1: State of the Art of Dehorning in the EU Member States. ALCASDE; SANCO/2008/D5/018). 2009. Available online: https://ec.europa.eu/food/system/files/2016-10/aw_prac_farm_pigs_cast-alt_research_alcasade_final-report.pdf (accessed on 20 February 2022).
- Tierschutzgesetz: TSchG. 2006, pp. 1206–1313. Available online: https://www.gesetze-im-internet.de/tierschg/BJNR012770972.html (accessed on 15 February 2022).
- Prayaga, K.C. Genetic options to replace dehorning in beef cattle—A review. Aust. J. Agric. Res. 2007, 58, 1. [Google Scholar] [CrossRef]
- Commission Regulation (EC). No 889/2008 of 5 September 2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control. 2008. Available online: http://data.europa.eu/eli/reg/2008/889/oj (accessed on 21 January 2022).
- Still Brooks, K.M.; Hempstead, M.N.; Anderson, J.L.; Parsons, R.L.; Sutherland, M.A.; Plummer, P.J.; Millman, S.T. Characterization of Efficacy and Animal Safety across Four Caprine Disbudding Methodologies. Animals 2021, 11, 430. [Google Scholar] [CrossRef] [PubMed]
- Castle, W.E. Genetics of horns in sheep. J. Hered. 1940, 31, 486–487. [Google Scholar] [CrossRef]
- Johnston, S.E.; Beraldi, D.; McRae, A.F.; Pemberton, J.M.; Slate, J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity 2010, 104, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Li, S.; Liu, Q.; Wang, Z.; Zhou, Z.; Di, R.; Miao, B.; Hu, W.; Wang, X.; Hu, X.; et al. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization. Gigascience 2018, 7, giy019. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Wilson, K.; Stevenson, I.R. Density-dependent selection on horn phenotype in Soay sheep. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 839–850. [Google Scholar] [CrossRef] [Green Version]
- Schafberg, R.; Swalve, H.H. The history of breeding for polled cattle. Livest. Sci. 2015, 179, 54–70. [Google Scholar] [CrossRef]
- Warwick, B.L.; Dunkle, P.B. Inheritance of horns in sheep: Triple Alleles in a Dorset-Rambouillet Cross. J. Hered. 1939, 30, 325–329. [Google Scholar] [CrossRef]
- Gehrke, L.J.; Capitan, A.; Scheper, C.; König, S.; Upadhyay, M.; Heidrich, K.; Russ, I.; Seichter, D.; Tetens, J.; Medugorac, I.; et al. Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genet. Sel. Evol. 2020, 52, 6. [Google Scholar] [CrossRef] [Green Version]
- Clutton-Brock, T.H.; Pemberton, J.M. (Eds.) Soay Sheep: Population Dynamics and Selection on St. Kilda; Cambridge University Press: Cambridge, UK, 2004; ISBN 0521823005. [Google Scholar]
- Wiener, D.J.; Wiedemar, N.; Welle, M.M.; Drögemüller, C. Novel Features of the Prenatal Horn Bud Development in Cattle (Bos taurus). PLoS ONE 2015, 10, e0127691. [Google Scholar] [CrossRef] [Green Version]
- Egyptian Museum. Relief of a Man Milking a Cow; Carving on the Sarcophagus of Queen Kawit; Deir el-Bahari, West Thebes, ~2061–2010 B.C. Available online: http://www.globalegyptianmuseum.org/record.aspx?id=15277 (accessed on 27 April 2022).
- Aldersey, J.E.; Sonstegard, T.S.; Williams, J.L.; Bottema, C.D.K. Understanding the effects of the bovine POLLED variants. Anim. Genet. 2020, 51, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georges, M.; Drinkwater, R.; King, T.; Mishra, A.; Moore, S.S.; Nielsen, D.; Sargeant, L.S.; Sorensen, A.; Steele, M.R.; Zhao, X.; et al. Microsatellite mapping of a gene affecting horn development in Bos taurus. Nat. Genet. 1993, 4, 206–210. [Google Scholar] [CrossRef] [PubMed]
- White, W.T.; Ibsen, H.L. Horn inheritance in Galloway-Holstein cattle crosses. J. Genet. 1936, 32, 33–49. [Google Scholar] [CrossRef]
- Bateson, W.; Saunders, E.R. The facts of heredity in the light of Mendel’s discovery. Rep. Evol. Comm. R. Soc. 1902, 1, 125–160. [Google Scholar]
- Medugorac, I.; Seichter, D.; Graf, A.; Russ, I.; Blum, H.; Göpel, K.H.; Rothammer, S.; Förster, M.; Krebs, S. Bovine polledness--an autosomal dominant trait with allelic heterogeneity. PLoS ONE 2012, 7, e39477. [Google Scholar] [CrossRef] [Green Version]
- Rothammer, S.; Capitan, A.; Mullaart, E.; Seichter, D.; Russ, I.; Medugorac, I. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet. Sel. Evol. 2014, 46, 44. [Google Scholar] [CrossRef] [Green Version]
- Allais-Bonnet, A.; Grohs, C.; Medugorac, I.; Krebs, S.; Djari, A.; Graf, A.; Fritz, S.; Seichter, D.; Baur, A.; Russ, I.; et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS ONE 2013, 8, e63512. [Google Scholar] [CrossRef] [Green Version]
- Mariasegaram, M.; Reverter, A.; Barris, W.; Lehnert, S.A.; Dalrymple, B.; Prayaga, K. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle. BMC Genom. 2010, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Wiedemar, N.; Tetens, J.; Jagannathan, V.; Menoud, A.; Neuenschwander, S.; Bruggmann, R.; Thaller, G.; Drögemüller, C. Independent polled mutations leading to complex gene expression differences in cattle. PLoS ONE 2014, 9, e93435. [Google Scholar] [CrossRef] [Green Version]
- Wiedemar, N.; Drögemüller, C. A 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep. Anim. Genet. 2015, 46, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, L.; Pannetier, M.; Gall, L.; Allais-Bonnet, A.; Elzaiat, M.; Le Bourhis, D.; Daniel, N.; Richard, C.; Cotinot, C.; Ghyselinck, N.B.; et al. FOXL2 is a female sex-determining gene in the goat. Curr. Biol. 2014, 24, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medugorac, I.; Graf, A.; Grohs, C.; Rothammer, S.; Zagdsuren, Y.; Gladyr, E.; Zinovieva, N.; Barbieri, J.; Seichter, D.; Russ, I.; et al. Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks. Nat. Genet. 2017, 49, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Utsunomiya, Y.T.; Torrecilha, R.B.P.; Milanesi, M.; Paulan, S.d.C.; Utsunomiya, A.T.H.; Garcia, J.F. Hornless Nellore cattle (Bos indicus) carrying a novel 110 kbp duplication variant of the polled locus. Anim. Genet. 2019, 50, 187–188. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, I.A.S.; Burns, B.M.; McGowan, M.R.; Porto-Neto, L.R.; Hayes, B.J.; Ferretti, R.; Schutt, K.M.; Lyons, R.E. Optimized Genetic Testing for Polledness in Multiple Breeds of Cattle. G3 2020, 10, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Capitan, A.; Grohs, C.; Weiss, B.; Rossignol, M.-N.; Reversé, P.; Eggen, A. A newly described bovine type 2 scurs syndrome segregates with a frame-shift mutation in TWIST1. PLoS ONE 2011, 6, e22242. [Google Scholar] [CrossRef] [Green Version]
- Pailhoux, E.; Vigier, B.; Chaffaux, S.; Servel, N.; Taourit, S.; Furet, J.P.; Fellous, M.; Grosclaude, F.; Cribiu, E.P.; Cotinot, C.; et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat. Genet. 2001, 29, 453–458. [Google Scholar] [CrossRef]
- Simon, R.; Lischer, H.E.L.; Pieńkowska-Schelling, A.; Keller, I.; Häfliger, I.M.; Letko, A.; Schelling, C.; Lühken, G.; Drögemüller, C. New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Anim. Genet. 2020, 51, 439–448. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, R.; Mao, A.; Liu, G.E.; Zhan, S.; Li, L.; Zhong, T.; Wang, L.; Cao, J.; Chen, Y.; et al. Genome-wide association study reveals 14 new SNPs and confirms two structural variants highly associated with the horned/polled phenotype in goats. BMC Genom. 2021, 22, 769. [Google Scholar] [CrossRef]
- Pannetier, M.; Elzaiat, M.; Thépot, D.; Pailhoux, E. Telling the story of XX sex reversal in the goat: Highlighting the sex-crossroad in domestic mammals. Sex Dev. 2012, 6, 33–45. [Google Scholar] [CrossRef]
- Soller, M.; Padeh, B.; Wysoki, M.; Ayalon, N. Cytogenetics of Saanen goats showing abnormal development of the reproductive tract associated with the dominant gene for polledness. Cytogenetics 1969, 8, 51–67. [Google Scholar] [CrossRef]
- Asdell, S.A. The genetic sex of intersexual goats and a probable linkage with the gene for hornlessness. Science 1944, 99, 124. [Google Scholar] [CrossRef] [PubMed]
- Szatkowska, I.; Zabarski, D.; Proskura, W.S.; Tabor, S. Polledness intersex syndrome in goats–molecular and histological aspects. Turk. J. Vet. Anim. Sci. 2014, 38, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Yadav, B.R.; Singh, C.; Kumar, P.; Tomer, O.S.; Yadav, J.S. Morphological, anatomical and cytogenetical investigations in sexually anomalous goats. Small Rumin. Res. 1993, 11, 331–342. [Google Scholar] [CrossRef]
- Pannetier, M.; Renault, L.; Jolivet, G.; Cotinot, C.; Pailhoux, E. Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter. Genomics 2005, 85, 715–726. [Google Scholar] [CrossRef]
- Zlotorynski, E. Genome organization: Add a TAD of duplication. Nat. Rev. Mol. Cell Biol. 2016, 17, 737. [Google Scholar] [CrossRef]
- Franke, M.; Ibrahim, D.M.; Andrey, G.; Schwarzer, W.; Heinrich, V.; Schöpflin, R.; Kraft, K.; Kempfer, R.; Jerković, I.; Chan, W.-L.; et al. Formation of new chromatin domains determines pathogenicity of genomic duplications. Nature 2016, 538, 265–269. [Google Scholar] [CrossRef]
- Archibald, A.L.; Cockett, N.E.; Dalrymple, B.P.; Faraut, T.; Kijas, J.W.; Maddox, J.F.; McEwan, J.C.; Hutton Oddy, V.; Raadsma, H.W.; Wade, C.; et al. The sheep genome reference sequence: A work in progress. Anim. Genet. 2010, 41, 449–453. [Google Scholar] [CrossRef]
- Dolling, C. Hornedness and polledness in sheep.: IV. Triple alleles affecting horn growth in the Merino. Aust. J. Agric. Res. 1961, 12, 353–361. [Google Scholar] [CrossRef]
- Johnston, S.E.; McEwan, J.C.; Pickering, N.K.; Kijas, J.W.; Beraldi, D.; Pilkington, J.G.; Pemberton, J.M.; Slate, J. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 2011, 20, 2555–2566. [Google Scholar] [CrossRef]
- Duijvesteijn, N.; Bolormaa, S.; Daetwyler, H.D.; van der Werf, J.H.J. Genomic prediction of the polled and horned phenotypes in Merino sheep. Genet. Sel. Evol. 2018, 50, 28. [Google Scholar] [CrossRef] [Green Version]
- Dominik, S.; Henshall, J.M.; Hayes, B.J. A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep. Anim. Genet. 2012, 43, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Pickering, N.K.; Johnson, P.L.; Auvray, B.; Dodds, K.G.; McEwan, J.C. Mapping the horns locus in sheep. Proc. Assoc. Advmt. Anim. Breed. Genet 2009, 18, 88–91. [Google Scholar]
- Lühken, G.; Krebs, S.; Rothammer, S.; Küpper, J.; Mioč, B.; Russ, I.; Medugorac, I. The 1.78-kb insertion in the 3’-untranslated region of RXFP2 does not segregate with horn status in sheep breeds with variable horn status. Genet. Sel. Evol. 2016, 48, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, H.; Liu, X.; Xu, H.; Cai, Y.; Lan, X. Insight into the Possible Formation Mechanism of the Intersex Phenotype of Lanzhou Fat-Tailed Sheep Using Whole-Genome Resequencing. Animals 2020, 10, 944. [Google Scholar] [CrossRef] [PubMed]
- EuGH. “Vorlage zur Vorabentscheidung–Absichtliche Freisetzung genetisch veränderter Organismen in die Umwelt–Mutagenese–Richtlinie 2001/18/EG–Art. 2 und 3–Anhänge I A und I B–Begriff ‚genetisch veränderter Organismus‘–Herkömmlich angewandte und als sicher geltende Verfahren/Methoden zur genetischen Veränderung–Neue Verfahren/Methoden der Mutagenese–Risiken für die menschliche Gesundheit und die Umwelt–Ermessen der Mitgliedstaaten bei der Umsetzung der Richtlinie–Richtlinie 2002/53/EG–Gemeinsamer Sortenkatalog für landwirtschaftliche Pflanzenarten–Herbizidtolerante Pflanzensorten–Art. 4–Zulassung durch Mutagenese gewonnener genetisch veränderter Sorten zum gemeinsamen Sortenkatalog–Anforderung zum Schutz der menschlichen Gesundheit und der Umwelt–Befreiung”. 2018. Available online: https://curia.europa.eu/juris/document/document.jsf?text=&docid=204387&pageIndex=0&doclang=DE&mode=req&dir=&occ=first&part=1 (accessed on 19 December 2021).
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Ruan, J.; Xu, J.; Chen-Tsai, R.Y.; Li, K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res. 2017, 26, 715–726. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L. The contribution of transgenic and genome-edited animals to agricultural and industrial applications. Rev. Sci. Tech. 2018, 37, 97–112. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
- Carlson, D.F.; Lancto, C.A.; Zang, B.; Kim, E.-S.; Walton, M.; Oldeschulte, D.; Seabury, C.; Sonstegard, T.S.; Fahrenkrug, S.C. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 2016, 34, 479–481. [Google Scholar] [CrossRef]
- Schuster, F.; Frenzel, A.; Petersen, B.; Lucas-Hahn, A.; Boch, J.; Nieman, H. Generierung eines Hornlos-Phänotyps in Holstein-Friesian und Braunvieh Bullen durch Einsatz von DNA-Nukleasen. In Aus der Arbeit der Forschungsstätten für Tierwissenschaften, Kurzfassungen, Proceedings of the Vortragstagung der GDfZ und GfT, Bonn, Germany, 12–13 October 2018; Deutsche Gesellschaft für Züchtungskunde e.V. (DGfZ): Bonn, Germany, 2018; p. C 14. [Google Scholar]
- Schuster, F.; Aldag, P.; Frenzel, A.; Hadeler, K.-G.; Lucas-Hahn, A.; Niemann, H.; Petersen, B. CRISPR/Cas12a mediated knock-in of the Polled Celtic variant to produce a polled genotype in dairy cattle. Sci. Rep. 2020, 10, 13570. [Google Scholar] [CrossRef] [PubMed]
- Young, A.E.; Mansour, T.A.; McNabb, B.R.; Owen, J.R.; Trott, J.F.; Brown, C.T.; van Eenennaam, A.L. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nat. Biotechnol. 2020, 38, 225–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Windig, J.J.; Hoving-Bolink, R.A.; Veerkamp, R.F. Breeding for polledness in Holstein cattle. Livest. Sci. 2015, 179, 96–101. [Google Scholar] [CrossRef]
- Mueller, M.L.; Cole, J.B.; Sonstegard, T.S.; van Eenennaam, A.L. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population. J. Dairy Sci. 2019, 102, 4215–4226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, M.L.; Cole, J.B.; Connors, N.K.; Johnston, D.J.; Randhawa, I.A.S.; van Eenennaam, A.L. Comparison of Gene Editing Versus Conventional Breeding to Introgress the POLLED Allele Into the Tropically Adapted Australian Beef Cattle Population. Front. Genet. 2021, 12, 593154. [Google Scholar] [CrossRef] [PubMed]
- Hennig, S.L.; Owen, J.R.; Lin, J.C.; McNabb, B.R.; van Eenennaam, A.L.; Murray, J.D. A deletion at the polled PC locus alone is not sufficient to cause a polled phenotype in cattle. Sci. Rep. 2022, 12, 2067. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J.; Lillico, S.G.; Mileham, A.J.; McLaren, D.G.; Whitelaw, C.; et al. Genome edited sheep and cattle. Transgenic Res. 2015, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yu, H.; Lei, A.; Zhou, J.; Zeng, W.; Zhu, H.; Dong, Z.; Niu, Y.; Shi, B.; Cai, B.; et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci. Rep. 2015, 5, 13878. [Google Scholar] [CrossRef] [Green Version]
- Frewer, L.J.; Coles, D.; Houdebine, L.-M.; Kleter, G.A. Attitudes towards genetically modified animals in food production. Br. Food J. 2013, 116, 1291–1313. [Google Scholar] [CrossRef]
- Frewer, L.J.; van der Lans, I.A.; Fischer, A.R.; Reinders, M.J.; Menozzi, D.; Zhang, X.; van den Berg, I.; Zimmermann, K.L. Public perceptions of agri-food applications of genetic modification–A systematic review and meta-analysis. Trends Food Sci. Technol. 2013, 30, 142–152. [Google Scholar] [CrossRef]
- Canavari, M.; Nayga, R.M. On consumers’ willingness to purchase nutritionally enhanced genetically modified food. Appl. Econ. 2009, 41, 125–137. [Google Scholar] [CrossRef]
- Devolder, K. Genome Editing in Livestock, Complicity, and the Technological Fix Objection. J. Agric. Environ. Ethics 2021, 34, 16. [Google Scholar] [CrossRef] [PubMed]
Genotype at the POLLED Locus | |||
---|---|---|---|
Genetic Sex | pp (Homozygous; Wild Type) | Pp (Heterozygous) | PP (Homozygous) |
XX—female | horned/fertile | polled/fertile | polled/infertile—intersex (normal outer phenotype or “pseudo-buck” to variable degrees |
XY—male | horned/fertile | polled/fertile | polled/fertility unclear |
Horn Status Group | Breed | Species | Horn Status Females | Horn Status Males |
---|---|---|---|---|
Completely polled | Barbados Blackbelly Sheep * | Ovis aries | Polled | Polled |
Bentheimer Charollais | Ovis aries Ovis aries | Polled Polled | Polled Polled | |
Coburger East Friesian Milk Sheep * German Black-headed Mutton German Brown Mountain German White Mountain Ile de France Kerry Hill Sheep * Lacaune Sheep * Merinoland Sheep * Poll Dorset Roughwool Pomeranian Sheep * Rhone Sheep Suffolk Texel Sheep * | Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries | Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled | Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled Polled | |
Completely horned | Grey Horned Heath * Scottish Blackface Sheep * Valais Blacknose Sheep Mouflon * | Ovis aries Ovis aries Ovis aries Ovis musimon | Horned Horned Horned Horned | Horned Horned Horned Horned |
Variable in both sexes | African Dorper Sheep * Alpines Steinschaf Icelandic Sheep Krainer Steinschaf * Soay Sheep * | Ovis aries Ovis aries Ovis aries Ovis aries Ovis aries | Variable Variable Variable Variable Variable | Variable Variable Variable Variable Variable |
Strictly sex-linked | Ethiopian Menz Cameroon Sheep * | Ovis aries Ovis aries | Polled Polled | Horned Horned |
Rambouillet | Ovis aries | Polled | Horned | |
Males horned, females variable | Walachian Sheep | Ovis aries | Variable | Horned |
Ouessant Sheep * | Ovis aries | Mostly polled | Horned |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, R.; Drögemüller, C.; Lühken, G. The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes 2022, 13, 832. https://doi.org/10.3390/genes13050832
Simon R, Drögemüller C, Lühken G. The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes. 2022; 13(5):832. https://doi.org/10.3390/genes13050832
Chicago/Turabian StyleSimon, Rebecca, Cord Drögemüller, and Gesine Lühken. 2022. "The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep" Genes 13, no. 5: 832. https://doi.org/10.3390/genes13050832
APA StyleSimon, R., Drögemüller, C., & Lühken, G. (2022). The Complex and Diverse Genetic Architecture of the Absence of Horns (Polledness) in Domestic Ruminants, including Goats and Sheep. Genes, 13(5), 832. https://doi.org/10.3390/genes13050832